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Optical kinks and kink-kink and kink-pulse interactions in resonant two-level media
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An optical kink is a shock-wave-like field structure which can appear in a resonant two-level medium as a
result of the nonlinear process of self-steepening. We numerically simulate this process using an adiabatically
switching wave form as an input and confirm the self-similarity of resulting kinks. The analysis is also applicable
to a more general wave form with a decaying trailing edge which we call a kinklike pulse. We study in detail
collisions of kinks with other kinks and ultrashort pulses and demonstrate the possibility to control kink speed
by changing the parameters of counterpropagating fields. The effects considered can be treated as belonging to a
wide class of unexplored phenomena in the regime of incoherent light-matter interaction.
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I. INTRODUCTION

An optical kink is a type of soliton which can be represented
as a shock wave (or shock front) with the shape preserved
when propagating in a nonlinear medium [1]. In the spatial
domain, such solitons are sometimes considered to be do-
main walls separating distinct regions of space. Kinks were
mathematically introduced as solutions of the sine-Gordon
equation [2] and appear in different fields of physics. In
the broad sense of the word, kinks may represent not only
“true” solitons with particlelike properties but also solitonic
waves which can interact inelastically. In the context of optics,
kinks were predicted and observed in a number of nonlinear
media. Optical shock solutions were deduced for nonlinear
interaction of waves via stimulated Raman scattering in both
nondispersive [3] and dispersive media [4] as well as in
optical fibers [5]. Kink solitons were also predicted to exist
as surface waves supported by an optical lattice imprinted in
a nonlinear medium [6] and in a gain medium in the presence
of two-photon absorption [7]. As experimental examples, we
can mention pairs of kinks and antikinks obtained in nonlinear
photorefractive crystals [8], dispersive shock waves in optical
fiber arrays [9], and dark solitons formed by domain walls in
erbium-doped fiber lasers with birefringent cavities [10–12].

In this paper, we are interested in another type of optical-
kink solution predicted by Ponomarenko and Haghgoo [13].
They have found such a solution considering the Maxwell-
Bloch equations which govern the propagation of light in
resonant two-level media. The kinks form as a result of
self-steepening of the input wave form, which should have a
constant intensity at the trailing edge. The characteristic time of
the intensity jump of such an optical shock is determined by the
transverse relaxation time T2, i.e., by relaxation of microscopic
polarization. On the other hand, the longitudinal relaxation
time T1 governing the decay of the excited-state population
is responsible for kink disintegration. It turns out that these
solutions possess an important property of self-similarity, i.e.,
scaling of their profiles during propagation. Later, the same
authors confirmed the preservation of this novel type of kink
under inhomogeneous broadening of the medium [14]. It is
worth noting that kink solutions are absent in the media with
the usual cubic (Kerr) nonlinearity and need more sophisti-
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cated situations with competing nonlinear contributions, such
as cubic-quintic or saturable nonlinearity [1]. The two-level
medium, being an example of a saturable absorber, supports the
saturable nonlinearity which is responsible for kink formation.

This paper can be considered a continuation of the work
by Ponomarenko and Haghgoo [13] and, simultaneously, a
development of our previous studies of ultrashort pulses and
their interactions in two-level media [15]. In particular, unusual
dynamics of matter was reported under asymmetric collisions
of self-induced transparency solitons [16] and in the cases
of extremely short (subcycle) pulses [17] and chirped pulses
[18]. However, contrary to self-induced transparency and other
coherent effects which occur for ultrashort pulses, kinks form
in the regime of incoherent light-matter interaction when, as
stated above, the characteristic time of the input field cannot
be considered negligible in comparison to relaxation times.
On the other hand, consideration should differ significantly
from standard steady-state analysis, which in recent decades
allowed us to discover and study a number of effects
such as mirrorless optical bistability [19,20] and local-field
effects [21,22]. Although we eventually deal with stationary
(constant-wave) fields, kinks are fundamentally dynamical
features. Moreover, kink formation can be treated as an
example of a transient process which needs full-scale modeling
of temporal dynamics. Transient processes of different natures
have attracted much attention in recent years, which ensures
the relevance of our study for modern nonlinear optics. From
the viewpoint of solitonic studies, the kinks can be considered
another class of incoherent solitons along with that reported
in Ref. [23].

Thus, in this paper, we numerically study the formation,
propagation, and interaction of optical kinks in a homoge-
neously broadened two-level medium. The paper’s structure
is as follows. In Sec. II, the main equations are given, and
the parameters of the calculations are discussed. Section III is
devoted to the basic features of kink formation out of an input
wave form; self-similarity is tested, and kinklike pulses are
introduced. In Secs. IV and V, collisions of kinks are studied
with counterpropagating kinks and ultrashort pulses (solitons),
respectively. The paper is completed with a short conclusion.

II. MAIN EQUATIONS AND PARAMETERS

In semiclassical approximation, light propagation in a
homogeneously broadened two-level medium can be described
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by the Maxwell-Bloch equations. Since we deal with the inco-
herent regime of light-matter interaction (i.e., the characteristic
time of light-intensity change is not much less than the medium
relaxation times), we can safely write these equations under
the rotating-wave approximation as follows (see, e.g., [15]):

dR

dτ
= i�W + iRδ − γ2R, (1)

dW

dτ
= 2i(�∗R − R∗�) − γ1(W − 1), (2)

∂2�

∂ξ 2
− ∂2�

∂τ 2
+ 2i

∂�

∂ξ
+ 2i

∂�

∂τ
= 3ε

(
∂2R

∂τ 2
− 2i

∂R

∂τ
− R

)
,

(3)

where τ = ωt and ξ = kz are the dimensionless time and
distance; � = (μ/h̄ω)E is the dimensionless electric-field
amplitude (normalized Rabi frequency); E and R are the
complex amplitudes of the electric field and atomic polar-
ization, respectively; W is the difference between populations
of ground and excited states; δ = 
ω/ω = (ω0 − ω)/ω is the
normalized frequency detuning; ω0 is the frequency of the
atomic resonance; ω is the light’s carrier frequency; μ is the
dipole moment of the quantum transition; γ1,2 = 1/(ωT1,2) are
the normalized relaxation rates of population and polarization,
respectively; ε = ωL/ω = 4πμ2C/3h̄ω is the dimensionless
parameter of interaction between light and matter (normalized
Lorentz frequency); C is the concentration (density) of two-
level atoms; k = ω/c is the wave number; c is the speed of
light; and h̄ is the Planck constant. An asterisk stands for
complex conjugation.

We solve Eqs. (1)–(3) numerically using essentially the
same approach as in our previous publications (see [24]). The
parameters of the medium and light used for calculations (if not
stated otherwise) are listed below. The relaxation times T1 = 1
ns and T2 = 0.1 ps correspond to semiconductors doped with
quantum dots (although we do not consider here the effects of
the host medium, taking the background dielectric permittivity
to be unity); the detuning δ = 0 (exact resonance, i.e., ω =
ω0), the central light wavelength λ = 2πc/ω0 = 0.8 μm, and
the strength of light-matter coupling (the Lorentz frequency)
ωL = 1011 s−1. The region used in calculations includes a two-
level medium of thickness L surrounded by vacuum regions
of length 20λ from both sides. The medium is supposed to be
initially in the ground state, so that W (t = 0) = 1.

III. KINKS AND KINKLIKE PULSES

In this section, we consider the process of kink formation as
a result of adiabatic switching of a constant wave (cw) which
can be described with a functional form as follows [13]:

�(t) = �0

1 + e−(t−t0)/tp
, (4)

where �0 is the normalized amplitude of the cw field at the
trailing edge (Rabi frequency jump), tp is a switching time,
and t0 is the offset time corresponding to the instant when
the field amplitude is half the maximum (further, we start
calculations from t = 0 and set t0 = 5tp in this section). It
is important that this wave form has a constant amplitude
at the trailing edge. To obtain a characteristic example of
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FIG. 1. Light-intensity profiles at different positions inside the
medium: (a) L = 0, (b) L = 500λ, (c) L = 1000λ. (d) Dynamics
of population difference at the same positions as in (a)–(c). The
parameters of input radiation are �0 = 0.5γ2 and tp = 50T2.

the kink, we take the parameters �0 = 0.5γ2 and tp = 50T2.
Figure 1 shows the results of calculations of light-intensity
dynamics at different positions inside the medium: at L = 0
(the entrance), L = 500λ, and L = 1000λ (the exit). It is seen
that the incident intensity changes smoothly according to the
function (4). As light propagates deep inside the medium,
the rising edge of the wave becomes more abrupt. This
self-steepening of the wave front is a characteristic feature
of kink formation. Analogous self-steepening occurs also
in the dynamics of population difference at corresponding
depths inside the medium [Fig. 1(d)]: the cw trailing edge
rapidly saturates the medium, so that the populations of both
levels become equal (hence, W = 0). Our kinks have another
peculiarity, an overshoot (or spike) at the rising edge of
the wave: for a very short time, the intensity exceeds the
steady-state level at the trailing edge. This feature was absent in
previous studies of kinks [13] and, perhaps, is due to chirping
leading to modulations of the kink profile. We discuss this
point in more detail further.

To verify that our wave forms are the kinks, we should
demonstrate that they possess the property of self-similarity.
Rather than tracing the kink profile over large distances, let us
show that our wave forms can be scaled so that similar profiles
can be obtained at different properly chosen parameters.
According to Ref. [13], the distance of kink formation is given
by

L∗ = �2
∞T 2

2

α
, (5)

where α is a linear absorption coefficient and �∞ is the
asymptotic kink amplitude (Rabi frequency jump of the kink).
Since �∞ ∼ �0, α ∼ T2, and tp ∼ T2, we can expect the
self-similar resulting wave forms after passing the distance

L ∼ �2
0T2 ∼ �2

0tp. (6)

First, we fix the amplitude �0, so the input waves with tp1

and tp2 should give the same kink profile after propagating the
distances related by L1/L2 = tp1/tp2. Figure 2 verifies this
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FIG. 2. Light-intensity profiles for different switching times tp
and medium thicknesses L. The Rabi frequency jump is �0 = 0.5γ2.
Dashed line shows the input wave form.

expectation at �0 = 0.5γ2: the kinks with tp = 10T2, 50T2,
and 100T2 are very similar and appear at the exit almost
simultaneously (at t = 10tp) after propagating L = 200λ,
1000λ and 2000λ, respectively. This observation is equivalent
to self-similarity while changing the transverse relaxation
rate γ2 (or corresponding time T2). It is also seen that for
a very rapid change in the input intensity, self-steepening is
absent [Fig. 2(d)] since the switching time is already of the
same order of magnitude as the temporal width of the kink
(tp ∼ T2). According to the scaling law, self-steepening could
develop already after L = 20λ but is absent even after a tenfold
increase in the distance. This is direct corroboration of the
expected condition tp � T2 for kink formation. Note also that
the overshoot at the rising edge of the wave form is present in
this case as well.

Second, we fix the switching time (tp = 50T2), and accord-
ing to Eq. (6), the input waves with �0,1 and �0,2 should give
the same kink profile after passing the distances related by
L1/L2 = (�0,1/�0,2)2. The results of testing this expectation
are given in Fig. 3, where the kinks with �0 = 0.4γ2, 0.5γ2,
and 0.6γ2 are shown after propagating L = 640λ, 1000λ,
and 1440λ, respectively. One can see that these wave forms
are very similar and need almost the same time to pass the
medium (some discrepancy can be attributed to the fact that
the relation �∞ ∼ �0 is not exact). We should also note that
the wave forms with higher intensity move much faster
than less powerful ones. Similar kinks form at �0 = 0.3γ2

(L = 360λ) and �0 = 0.2γ2 (L = 160λ), but as shown in
Fig. 3(d), the input wave form with �0 = 0.1γ2 cannot produce
a kink after the distance L = 40λ (or at longer distances). This
is in accordance with the prediction of the critical amplitude,
which gives the lower bound for kink existence [13].

On the other hand, the upper bound is given by the
expression �0 � 0.5γ2 [13]. At larger amplitudes, according
to Ref. [13], the kink should become a chirped wave due
to the onset of Rabi oscillations at larger Rabi frequencies.
However, we do not see any fundamental changes in its profile
at �0 = 0.6γ2 [Fig. 3(c)]. Perhaps, the chirp appears as the
spike at the rising edge of the kink which already exists at
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FIG. 3. Light-intensity profiles for different Rabi frequency
jumps �0 and medium thicknesses L. The switching time is tp = 50T2.
The dashed line shows the input wave form.

�0 = 0.5γ2 and gradually diminishes with decreasing �0.
According to our calculations, this spike appears long before
the bound value of Ref. [13]: for example, it is clearly seen
at �0 = 0.4γ2 as well [Fig. 3(a)]. Thus, our numerical results
show that the Rabi-oscillation-induced chirp does not become
apparent abruptly at �0 = 0.5γ2 but gradually becomes more
pronounced.

What seems to be more important is that the kinks at
larger �0 lose the property of self-similarity despite remaining
stable wave forms. This conclusion is illustrated in Fig. 3(e),
which shows kink formation at �0 = 2γ2 after propagating the
distance L = 16000λ. According to Eq. (6), this wave form
should be similar to those given in Figs. 3(a)–3(c), but it is not.
The former need the same time (∼10tp) to pass the medium,
while the latter is much slower than expected (it needs about
17tp). Note that some indication of this effect was present
already in Fig. 3(c), where slightly more time was required for
the kink with �0 = 0.6γ2 to propagate through the medium.
Therefore, the value �0 = 0.5γ2 can indeed be viewed as an
upper bound for self-similar kinks.

The critical lower bound of the amplitude is a function of
the longitudinal relaxation time T1 [13]. However, we will not
study that dependence here. Rather, let us see how T1 influences
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FIG. 4. (a) Light-intensity profiles and (b) intensity distributions
along the medium (at time point t = 10tp) for different longitudinal
relaxation times T1. Other parameters are �0 = 0.5γ2, tp = 50T2,
L = 1000λ. The dashed line shows the input wave form.

the kink appearance at the fixed amplitude, switching time,
and medium thickness. The results of calculations at different
values of T1 are shown in Fig. 4. As the longitudinal relaxation
time gets lower, the resulting Rabi frequency jump of the kink
decreases as well as its speed. Finally, when T1 ∼ tp, the kink
entirely disappears due to energy dissipation. The decay of the
field inside the medium in this case is illustrated in Fig. 4(b),
in contrast to the propagating kink in the case T1 � tp. The
dissipation of the kink can be equivalently obtained when we
leave the relaxation times unchanged and consider very slowly
switching waves with tp of the same order of magnitude as T1.

Although it was stated that the constant intensity at the
trailing edge of the input wave is a necessary condition for kink
formation, this requirement is not absolute for self-steepening
development. In fact, the input wave can be switched off after
some time. It turns out that this time can be rather short. We
model switching on and off the input light with the wave form
as follows:

�(t) = �0

(1 + e−(t−t0)/tp )(1 + e(t−t ′0)/t ′p )
, (7)

where t ′p and t ′0 are the switching-off time and the correspond-
ing offset time, respectively, which generally differ from the
switching-on characteristics tp and t0. Figures 5(a)–5(c) show
that the shock is formed at the rising edge of the wave form (7)
even for rather short switching-off offset t ′0 = 15tp (recall that
the switching-on value is t0 = 5tp) and remains essentially the
same at t ′0 = 25tp and t ′0 = 35tp. One can see that decay of
the transmitted radiation perfectly replicates the switching-off
dynamics of the input wave form, even for very fast switching
off [t ′p = T2, Fig. 5(d)]. We call such profiles formed as a result
of transmission of the wave forms (7) the kinklike pulses.

IV. KINK-KINK INTERACTIONS

In this section, we discuss interactions between kinks
or kinklike pulses. One can imagine two situations: co-
propagating and counterpropagating kinks. In the case of

FIG. 5. Light-intensity profiles of the kinklike pulses. The param-
eters used are �0 = 0.5γ2, L = 1000λ, tp = 50T2 and (a) t ′

p = 50T2,
t ′
0 = 15tp; (b) t ′

p = 50T2, t ′
0 = 25tp; (c) t ′

p = 50T2, t ′
0 = 35tp; and (d)

t ′
p = T2, t ′

0 = 25tp . Dashed lines show the input wave forms.

copropagating wave forms launched one after another in the
same direction, the perspectives are very limited. The first wave
form transforms into a kink and saturates the medium, so that
the levels are equally populated, and hence, W = 0. Then, the
second wave form propagates unchanged: since the medium
is saturated, self-steepening does not occur, and the kink does
not form. If the first wave form is a kinklike pulse (7), after its
passing, the medium slowly returns to the ground state (with
the characteristic time T1). This means that the second wave
form can be transformed into a kink if it is launched in a period
long enough after the first kinklike pulse.

Let us consider a more interesting situation in which
the wave forms propagate through the two-level medium in
opposite directions and meet inside it. Examples of such
a collision are given in Fig. 6, where one of the input
fields has the Rabi frequency jump �0 = 0.5γ2, while the
counterpropagating field is either less (�′

0 = 0.4γ2) or more
(�′

0 = 0.6γ2) powerful than the first one. We choose the
thickness to be large enough (L = 2000λ) that the kinks have
enough time to form before collision. We compare the case of
collision (top panels) with the case of single-kink formation
and propagation through the medium (middle and bottom
panels). One can see that the collision practically does not
change the intensity of both kinks. However, the propagation
speed of the kinks dramatically increases. Moreover, both
kinks now move almost at the same speed. For example,
the single wave forms with �0 = 0.5γ2 and �′

0 = 0.4γ2 need
times of approximately 15tp and 19tp to pass the medium,
while they need only about 12tp in the case of the collision.
Thus, we have two important facts: (i) an increase in speed
propagation and (ii) equalization of the speeds of both kinks.

This observation is due to several reasons. First, the speed
of the kink depends on the stationary field intensity (Rabi
frequency jump). After the collision, the kink propagates
through the spatial region where the background stationary
field is created by the counterpropagating wave form. In
other words, the resulting intensity of the field after collision
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FIG. 6. Intensity profiles in the case of an interaction between the forward-propagating (FP) kink of amplitude �0 = 0.5γ2 and the
backward-propagating (BP) kink of amplitude (a) �′

0 = 0.4γ2 and (b) �′
0 = 0.6γ2 in comparison with the single-kink results. Other parameters

are medium thickness L = 2000λ and switching time tp = t ′
p = 50T2 for both kinks.

is the same and is given by the sum of amplitudes of the
kinks. The raised sum intensity results in an increase in the
propagation speed of both kinks. Second, the interaction of
counterpropagating waves leads to their interference and hence
to the creation of periodic grating of the population difference
inside the medium [25] and even to effects of wave instability
[26]. The equal speeds of both kinks can be attributed to
strong interaction via this population grating, which effectively
equalizes the speed of the wave forms.

Similar observations are valid for other situations, e.g.,
for two counterpropagating wave fronts of abruptly (not
adiabatically) switched cw fields. In a sense, the increased
speed of wave fronts moving apart after a collision can be
interpreted as a repulsion of wave fronts or kinks. This transient
process deserves a separate detailed study. Here, suffice it to
say that we obtained the instrument to control the speed of the
kinks which has the most impressive manifestations of kinks
of comparatively low intensity: the increase in their speed after
collision with more powerful kinks is the most striking.

Moreover, it is not necessary to use the kink as a backward-
propagating wave form to control the forward-propagating
kink. Other variants are possible as well. In Fig. 7, the results
for the collision of the kink with the counterpropagating
wave front switching almost instantaneously (t ′p = 0.001T2)
are depicted. It is seen that both wave forms pass a medium
of thickness L = 1000λ almost simultaneously and need only
about 7.5tp [compare with the more than 10tp needed for a
single kink to propagate through a medium of the same length;
see Fig. 3(b)]. Another possibility is to use not the kinks,
but kinklike pulses. The situation shown in Fig. 8 perfectly
corresponds to the case in Fig. 6(b) where the kinks were
considered. There is no need to say that we could analyze other
analogous combinations, such as a kink + a kinklike pulse

or a kinklike pulse + a cw front. All these situations have
common features: interference of counterpropagating waves
and formation of population grating.

Thus, kink propagation can be controlled with the counter-
propagating wave form. What instruments do we possess to
change the speed of the kink? The first such instrument is the
intensity of the control (counterpropagating) wave form. This
is illustrated in Fig. 6: the kink with the Rabi frequency jump
�0 = 0.5γ2 passes the medium faster after interaction with a
more powerful kink (�′

0 = 0.6γ2) than with a less powerful
one (�′

0 = 0.4γ2). Another instrument is the offset time t ′0
of the counterpropagating wave form. As an example, Fig. 9

FIG. 7. Intensity profiles in the case of an interaction between
the forward-propagating (FP) kink of amplitude �0 = 0.5γ2 and the
backward-propagating (BP) wave front of amplitude �′

0 = 0.6γ2.
Other parameters are medium thickness L = 1000λ and switching
time tp = 50T2 for the FP wave form and t ′

p = 0.001T2 for the BP
wave form.
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FIG. 8. Intensity profiles in the case of an interaction between the
forward-propagating (FP) kinklike pulse of amplitude �0 = 0.5γ2

and the backward-propagating (BP) kinklike pulse of amplitude
�′

0 = 0.6γ2. Other parameters are medium thickness L = 2000λ and
switching time tp = t ′

p = 50T2 for both kinklike pulses.

shows that increasing this offset time from 5tp (the backward-
propagating kink is launched simultaneously with the forward-
propagating one) to 8tp (the backward-propagating kink is
launched later than the forward-propagating one by 3tp) results
in growing the passage time of the forward-propagating kink

FIG. 9. Intensity profiles of the forward-propagating kink (am-
plitude �0 = 0.5γ2, offset time t0 = 5tp) after an interaction with the
backward-propagating kink of amplitude �′

0 = 0.6γ2 and different
offset times t ′

0. Other parameters are medium thickness L = 1000λ

and switching time tp = t ′
p = 50T2 for both kinks.

from about 8tp to almost 9.5tp. The reason is obvious: the
wave forms collide later, so the kink mostly propagates alone,
and its passage time tends to that of a single kink (slightly
over 10tp).

V. KINK-PULSE INTERACTION

In this section, we study the interaction of kinks with
counterpropagating ultrashort pulses. In particular, we con-
sider pulses of Gaussian profile � = �p exp[−(t − t ′0)2/2t ′2p ]
with a duration t ′p and an offset time t ′0. It is well known
that, in the regime of coherent light-matter interaction (when
t ′p � T2 � T1), such pulses form self-induced transparency
(SIT) solitons [27]. The pulses considered here approximately
correspond to such solitons (although the duration is only one
or two orders of magnitude less than the relaxation time T2).
The key parameter of SIT solitons is their area, which, at
constant t ′p, can be treated as a measure of pulse amplitude
�p. If the area A is equal to 2π , such a pulse inverts the
medium at the rising edge and then returns it back exactly
to the ground state at the trailing edge. The pulse with area
differing from 2π leaves the medium partially excited and,
according to the “area theorem,” can be transformed into a 2π

soliton as it propagates deep inside the medium.
Let us consider the interaction of the wave form (4) with

counterpropagating pulses of different area with the duration
t ′p = 0.1T2 and the same offset time t ′0 = tp. As in the previous
section, we focus on kink speed as a parameter influenced by
collision. Figure 10 shows the dependence of kink passage
time on the pulse area. It is seen that there is a strong
minimum around pulse area A/2π = 0.84 when the kink
needs approximately 8.8tp to pass a medium of L = 1000λ. At
the maximum, around A/2π = 1.18, the passage time grows
to 9.8tp, which, with the parameters used, is almost equal to
the value in the case of a single kink. Thus, pulse area (hence,
intensity) can be considered an instrument to control the kink
speed.

To get insight into the interaction process, we plot in Fig. 11
the population difference at the entrance of the medium for a
single pulse (no kink, left panels) and in the presence of a

FIG. 10. Time interval needed for the forward-propagating kink
to pass the medium as a function of the area of the backward-
propagating pulse. Medium thickness L = 1000λ, kink switching
time tp = 50T2, and Rabi frequency jump �0 = 0.5γ2; pulse duration
is 0.1T2, and offset time t ′

0 = tp .
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FIG. 11. Dynamics of population difference for (a) and (c) a
single pulse and (b) and (d) a kink-pulse interaction. Pulses of
two areas are considered: (a) and (b) A/2π = 0.84 and (c) and (d)
A/2π = 1.18. The other parameters are the same as in Fig. 10.

kink (right panels). The cases of the minimum and maximum
of the curve in Fig. 10 are considered. It is seen that single
pulses give approximately the same final level of population
difference (around 0.4), although the one with area A/2π =
1.18 makes a complete cycle of excitation and deexcitation
[Fig. 11(c)], in contrast to the one with area A/2π = 0.84
[Fig. 11(a)]. This difference between the pulses turns out to
be the key factor governing their different interactions with
the kink. There is a sharp dip induced by the pulse with area
A/2π = 1.18 and superposed on the gradual saturation of the
population difference due to the kink [Fig. 11(d)]. On the
contrary, the pulse with area A/2π = 0.84 does not have any
visible influence on the saturation of the medium caused by
the kink [Fig. 11(b)].

The reason is that the pulse with lower area has another
fate even before reaching the entrance of the medium. This
suggestion is confirmed by an analysis of medium excitation
created by single pulses and experienced by kinks. In Fig. 12,

FIG. 12. Distribution of population difference along the medium
for a single pulse at the time instant t = 4tp . Pulses of two areas
are considered: A/2π = 0.84 and 1.18. The other parameters are the
same as in Fig. 10. Note also the vacuum regions of length 20λ from
both sides of the two-level medium.

FIG. 13. Time interval needed for the forward-propagating kink
to pass the medium as a function of the area of the backward-
propagating pulse. Medium thickness L = 1000λ, kink switching
time tp = 50T2, and Rabi frequency jump �0 = 0.5γ2; pulse duration
is 0.01T2, and offset time t ′

0 = tp .

the population difference along the medium is shown at the
time instant t = 4tp when the backward-propagating pulses
should already be out of the medium. The drastic difference in
behavior of pulses with areas A/2π = 1.18 and 0.84 is clearly
seen. The first leaves the medium almost uniformly excited
at the level of W ∼ 0.8. The second one is strongly absorbed
near the medium entrance, resulting in a profound dip while the
medium near the exit (where the pulse was launched) is excited
almost to the same low level as in the case of A/2π = 1.18.
This is due to the fact that the condition t ′p = 0.1T2 does
not provide a coherent regime of light-matter interaction and
formation of SIT solitons. A wave form giving rise to a kink
needs more time for self-steepening and medium saturation
when propagating through the strongly and nonuniformly
excited medium (the case of A/2π = 0.84) than in the case of
a weakly and uniformly excited one (A/2π = 1.18).

For pulses of shorter duration (t ′p = 0.01T2) which better
correspond to the condition of a coherent regime, we have
a more obvious and predictable picture (Fig. 13). The 2π

pulses which leave the medium almost unperturbed and easily
transform into SIT solitons have minimal influence on the
kink speed, whereas propagation of the pulses with area of π

or 3π results in the maximum level of medium excitation and
gives the strongest kink retardation (down to 8.3tp). Thus,
using ultrashort counterpropagating pulses is another tool
for controlling kink passage through the medium with the
possibility to change the resulting kink speed with the proper
choice of pulse duration and area.

VI. CONCLUSION

Using numerical simulations, we have studied in detail the
formation of optical kinks and kinklike pulses in two-level
media and demonstrated their self-similarity. The results
are generally in agreement with the analytical theory of
Ponomarenko and Haghgoo [13], although there are some
minor discrepancies. In particular, the chirped kink appears
in our calculations in the range of parameters where analytical
theory predicts a monotonic wave form. This difference can
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be ascribed to our more general approach since we do not use
a slowly varying envelope approximation. Further, we have
studied collisions of kinks with other wave forms and shown
that the speed of kink propagation can be significantly changed
by interaction with a counterpropagating kink, stationary wave
front, or ultrashort pulse. These possibilities are interesting
from the physical point of view but can also be used in different
optical schemes for nonlinear control of propagating wave
fields and optical information processing. In particular, kinks
can be considered as a substitute for the usual (pulse) solitons
as optical bits of information since they can exist in different
parameter ranges. We should also note that the inelasticity of
collisions resulting in a speed change does not allow us to
consider such kinks as strict solitons, only as solitonic waves.

In conclusion, we make several remarks on possible
directions of kink studies. Although it was reported that
kinks are preserved under inhomogeneous broadening [14],
it may be interesting to test this prediction with our more
general numerical approach adapting the scheme described in

Ref. [28]. Since calculations in this paper were performed for
two-level atoms in vacuum, a more general consideration is
worth exploring, taking into account the background matrix
(see, e.g., the study of its influence on mirrorless optical
bistability [29]). In a dense enough medium, near–dipole-
dipole interactions between active particles begin to play an
essential role, which can be taken into account through the so-
called local-field correction [30]. All this allows us to consider
optical kinks an interesting example of incoherent phenomena
lying between and connecting the regime of ultrafast processes
(with self-induced transparency solitons being a characteristic
feature) and the stationary regime (with optical bistability and
similar effects). Of course, it is not less important to obtain
these kinks experimentally since there are only a few practical
realizations of optical shock waves and studies of their rich
dynamics. The solid-state systems are especially attractive
for experimental observations, in particular solids doped with
resonant atoms (e.g., rare-earth ions) and bulk semiconductors
doped with quantum dots.
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