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Antibunching in an optomechanical oscillator
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We theoretically analyze antibunching of the phonon field in an optomechanical oscillator employing the
membrane-in-the-middle geometry. More specifically, a single-mode mechanical oscillator is quadratically
coupled to a single-mode cavity field in the regime in which the cavity dissipation is a dominant source of
damping, and adiabatic elimination of the cavity field leads to an effective cubic nonlinearity for the mechanics.
We show analytically in the weak-coupling regime that the mechanics displays a chaotic phonon field for small
optomechanical cooperativity, whereas an antibunched single-phonon field appears for large optomechanical
cooperativity. This opens the door to control of the second-order correlation function of a mechanical oscillator
in the weak-coupling regime.
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I. INTRODUCTION

Cavity optomechanics is a front-line research field in
which the motional degrees of freedom of a mechanical
oscillator are coupled to optical fields inside an optical
cavity, stemming from the interplay of cavity resonance and
radiation pressure forces [1–4]. Recent progress in nano-
and microfabrication techniques has led to impressive mile-
stones including the cooling of a mechanical oscillator to
the motional ground state [5,6], optomechanically induced
transparency [7], coherent coupling of optical and mechanical
modes [8,9], entanglement between optical and mechanical
resonators [10], and optically induced interaction between me-
chanical oscillators [11]. Cavity optomechanics has numerous
applications such as precise measurement of the position of
a mirror allowing for gravitational wave detection [12,13],
realization of macroscopic quantum objects [14], and as a
fundamental platform for exploring coupling to other quantum
systems [15–17].

To date almost all experiments on and treatments of cavity
optomechanics have been based on linearized optomechanical
interactions in the sense that the interaction is linear in both
the field and the mechanical variables and is, therefore, based
on single photon-phonon interactions [1–4]. The intrinsic op-
tomechanical interaction is, however, nonlinear, which comes
to the fore in the single-photon strong-coupling regime. The
nonlinear nature of the optomechanical interaction gives rise to
a variety of features previously explored in nonlinear quantum
optics [18], including photon blockade effects [19], generation
of non-Gaussian states [20], and nonclassical antibunched
mechanical resonators [21–24].

Currently the single-photon radiation pressure is too low to
realize the nonlinear strong-coupling regime in nanofabricated
optomechanical systems, making it difficult to observe nonlin-
ear features. To this end, several recent proposals have studied
possible nonlinearities in optomechanical setups exploiting,
for example, an enhanced optomechanical nonlinearity based
on an optomechanical system employing a few optical modes
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[25–28], an intrinsic mechanical nonlinearity [29,30], and the
coupling of mechanical systems to a qubit [31,32].

In this paper, we theoretically analyze an approach
to producing an antibunched phonon field based on the
membrane-in-the-middle geometry and in the weak-coupling
regime [33,34]. In particular, a single-mode mechanical
oscillator is quadratically coupled to a single-mode cavity field
in the regime where the cavity damping is a dominant source
of dissipation, resulting in an effective cubic nonlinearity
after adiabatic elimination of the cavity field. We show that
the mechanical oscillator is coupled to an effective optical
reservoir at zero temperature in addition to its own mechanical
heat bath at finite temperature. To avoid the difficulties
that arise from the multiplicative noise that appears from
use of the Heisenberg-Langevin equations, we here employ
the Schrödinger picture. Then we demonstrate analytically
that the mechanics displays a chaotic phonon field with
small multiphoton optomechanical cooperativity, whereas an
antibunched single phonon appears for large multiphoton
cooperativity.

The remainder of this paper is organized as follows:
Sec. II describes the model system, and Sec. III derives the
relevant master equation for the mechanical system. In Sec. IV,
we employ the complex P representation to investigate the
steady-state behaviors of the mechanical oscillator for both the
high- and the low-temperature regimes and the appearance of
antibunching. Experimental feasibility is discussed in Sec. V,
and Sec.VI gives our summary and conclusions.

II. MODEL SYSTEM

We consider a membrane-in-the-middle optomechanical
system in which the single mode of an optical resonator is
quadratically coupled to a single mechanical mode of effective
mass m and frequency ωm. The net Hamiltonian governing the
optomechanical system is

Ĥ = Ĥopt + Ĥmech + Ĥom + Ĥloss, (1)

where

Ĥopt = h̄ωcâ
†â + ih̄(ηe−iωLt â† − η∗eiωLt â) (2)
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is the Hamiltonian for the single-mode optical field driven by
a monochromatic field of frequency ωL at pumping rate η, and

Ĥmech = h̄ωmb̂†b̂ (3)

is the Hamiltonian for the free mechanical mode. The optome-
chanical interaction is given by

Ĥom = h̄g0â
†â(b̂ + b̂†)2, (4)

where g0 > 0 is the quadratic single-photon optomechanical
coupling coefficient, which we choose as positive to avoid any
issues of mechanical instability [35]. Finally, Ĥloss describes
the interaction of the cavity-field and mechanical modes with
their associated reservoirs and accounts for dissipation.

III. DENSITY OPERATOR FORMALISM

The Heisenberg-Langevin equations of motion for our
problem can involve multiplicative quantum noise in the
presence of nonlinear interactions [35]. To circumvent these
problems we here explore the dynamics of the optomechanical
system in the Schrödinger picture since the equation of motion
describing the optomechanical system is then strictly linear in
the density operator. The dynamics of the optomechanical sys-
tem under the influence of thermal fluctuations in the quantum
regime can then be described by the master equation [36]

˙̃ρ = − i

h̄
[Ĥopt + Ĥmech + Ĥom,ρ̃] + κ

2
D[â]ρ̃

+ γ

2
n̄thD[b̂†]ρ̃ + γ

2
(n̄th + 1)D[b̂]ρ̃, (5)

where ρ̃ is the density operator for the combined optomechani-
cal system, and the dissipation terms D[ô]ρ̃ are of the standard
Lindblad form

D[ô]ρ̃ = (2ôρ̃ô† − ô†ôρ̃ − ρ̃ô†ô). (6)

These account for damping of the cavity field at decay rate κ

due to the coupling to a zero-temperature optical reservoir and
damping of the mechanical oscillator at decay rate γ due to
interaction with a mechanical reservoir at temperature T . The
thermal occupation number of the mechanical bath is denoted
n̄th = [exp(h̄ωm/kBT ) − 1]−1.

A. Master equation in the interaction picture

To proceed it is convenient to introduce the unitary operator
Û1, which transforms to a frame rotating at driving frequency
ωL for the cavity field

Û1 = e−iωLâ†ât , (7)

and the unitary displacement operator Û2, capturing the steady-
state mean amplitude of the cavity field resulting from the
external pump

Û2 = e(αâ†−α∗â), (8)

with the steady-state intracavity amplitude α given by

α = η

−i�c + κ/2
≡ √

nc. (9)

Without loss of generality α is here chosen as real by
judicious choice of the phase of the pumping rate η, and

�c = ωL − ωc is the detuning of the pump laser from the
resonance. The master equation for the transformed density
operator ρ̄ = Û

†
2 Û

†
1 ρ̃Û1Û2 then becomes

˙̄ρ = i�c[â†â,ρ̄] − iω′
m[b̂†b̂,ρ̄] − ig0nc[b̂†2 + b̂2,ρ̄]

− ig[(â + â†)(b̂† + b̂)2,ρ̄] − ig0[â†â(b̂† + b̂)2,ρ̄]

+ κ

2
D[â]ρ̄ + γ

2
n̄thD[b̂†]ρ̄ + γ

2
(n̄th + 1)D[b̂]ρ̄, (10)

where ω′
m = ωm + 2g0nc is the shifted frequency of the

mechanical oscillator, and g = g0
√

nc. This frequency shift
proportional to the intracavity photon number comes from
the quadratic optomechanical interaction, as opposed to the
displacement of the mechanical equilibrium position, which
rises in the case of linear optomechanical coupling.

In the regime in which the mean cavity photon number
nc is much larger than the photon fluctuations, the fifth term
on the right-hand-side of Eq. (10) may be neglected: This
term is a factor 1/nc smaller than the third term and a factor
1/

√
nc smaller than the fourth term, these also arising from the

quadratic interaction. Following this approximation leads to
an optomechanical interaction that is linear in the cavity-field
operators.

In order to investigate the mechanics in the deep quantum
regime, we proceed by assuming that the optomechanical
system operates in the resolved-sideband regime, which
requires ω′

m � κ , and that the external pump is red-detuned by
twice the effective mechanical frequency, �c = −2ω′

m. Then
a further simplification follows by invoking the rotating-wave
approximation in the interaction picture implemented by the
unitary transformation Û3 = ei(�câ

†â−ω′
mb̂†b̂)t , and the resulting

master equation becomes

ρ̇ = −ig[â†b̂2 + b̂†2â,ρ] + κ

2
D[â]ρ + γ

2
n̄thD[b̂†]ρ

+ γ

2
(n̄th + 1)D[b̂]ρ, (11)

where ρ = Û
†
3 ρ̄Û3. We note that the third term on the right-

hand side of Eq. (10) has been neglected on the basis that
it is off-resonant and counter-rotating if g0nc � ω′

m, and we
have checked numerically that this term is indeed negligible
in the weak-coupling regime. Physically the Hamiltonian
representing the Schrödinger evolution in Eq. (11) reads

Ĥ = h̄g(â†b̂2 + b̂†2â) (12)

and is identical to the interaction picture Hamiltonian de-
scribing a parametric amplifier in quantum optics and is well
known to generate two photons in the subharmonic mode (b̂)
and destroy a photon in the pump mode (â) [37]. It is thus
expected that two phonons of the mechanics can be destroyed
by creating a single photon which is eventually leaked out the
optical resonator by the cavity-field dissipation at rate κ .

B. Reduced density operator for the mechanics

In the regime where cavity dissipation is the dominant
source of damping, the state of the cavity field tends to
approach a coherent state on a time scale of 1/κ and thus the
density operator describing the optomechanical system can be

053844-2



ANTIBUNCHING IN AN OPTOMECHANICAL OSCILLATOR PHYSICAL REVIEW A 95, 053844 (2017)

approximated as a product state,

ρ(t) ≈ ρo(t) ⊗ ρm(t), (13)

where ρ̂o is the reduced density operator for the cavity field
and ρ̂m is the reduced density operator for the mechanics. One
should keep in mind that on a time scale slower than 1/κ , the
dynamics of the optomechanical system is dependent on that of
the mechanical oscillator, whereas the dynamics of the cavity
field is instantaneously followed by that of the mechanics
due to the fast dissipation of the cavity field. Specifically,
the reduced density operator for the cavity field describes
the vacuum state ρ̂o = (|0〉〈0|)o in that we are already in the
displaced-field picture.

In order to properly eliminate the reduced density operator
for the cavity field and to derive the effective master equation
for the mechanical oscillator, we follow the approach used
for eliminating the density operator for the pump mode of a
parametric amplifier in quantum optics or for the cavity field
in cavity QED (see, e.g., [38]). The dynamics of the reduced
density operator for the mechanics is then described by the
effective master equation

dρm

dt
= 	opt

2
D[b̂2]ρm + γ

2
n̄thD[b̂†]ρm

+ γ

2
(n̄th + 1)D[b̂]ρm, (14)

where 	opt is the nonlinear optomechanical damping rate
given by

	opt = 8g2

κ
. (15)

Note that this rate is identical to the maximum value of
the optomechanical damping rate for the resolved-sideband
regime [1]. The first term on the right-hand side of the effective
master equation accounts for two-phonon damping of the
mechanical oscillator and the damping rate is proportional
to the cavity photon number, indicating that the mechanical
oscillator experiences the optical reservoir at zero temperature
through the cavity field. In other words, the intracavity photon
number can be used as a control parameter for the nonlinear op-
tomechanical coupling strength of the mechanics to the optical
reservoir. That is, the dynamics and steady-state properties of
the mechanical oscillator are affected by two independent heat
baths: the optical bath at zero temperature via two-phonon
processes and the mechanical bath at finite temperature via
one-phonon processes. We remark that Eq. (14) was previously
solved in the context of a laser with intracavity two-photon
absorption using a generating function from which the photon
populations and relevant moments can be obtained [39,40].
The solutions given here are in agreement with this analytic
solution.

It is convenient to scale time to the inverse of the mechanical
decay rate, τ = γ t , in terms of which the effective master
equation for the mechanics then becomes

dρm

dτ
= C

2
D[b̂2]ρm + 1

2
n̄thD[b̂†]ρm

+ 1

2
(n̄th + 1)D[b̂]ρm, (16)

where the multiphoton cooperativity C is given by

C = 	opt

γ
= 8g2

γ κ
. (17)

The multiphoton cooperativity is dimensionless and is a
measure of the relative coupling strengths of the mechanical
oscillator to the cavity-filtered optical bath and mechanical
heat bath. A large cooperativity compared to the thermal
occupation number n̄th indicates that mechanical oscillator is
more influenced by the optical bath than the mechanical bath
and the dynamics of the mechanics is highly nonlinear.

IV. RESULTS

We now turn to the analytic solution of the master equation
for the mechanics in the high- and low-temperature regimes
and explore the second-order correlation function for the
mechanics, defined as

g(2)(0) ≡ 〈b̂†2b̂2〉ss

〈b̂†b̂〉2
ss

, (18)

where the subscript “ss” denotes the expectation values taken
with respect to the steady-state solution. For this purpose we
employ well-known phase-space methods that we now discuss
briefly as applied to our case.

A. Phase-space methods

As is well known, a nonlinear quantum mechanical problem
can be mapped into a classical stochastic process with an
appropriate phase-space representation. We proceed to derive
the equation of motion for the mechanical system in the
complex P representation. Expanding the density operator for
the mechanics as

ρm =
∫ |μ〉〈ν∗|

〈ν∗|μ〉 P (μ,ν)dμdν (19)

and making use of the quantum correspondence appropriate
for the complex P representation [41]

b̂ρm ↔ μP (μ,ν), (20)

b̂†ρm ↔
(

ν − ∂

∂μ

)
P (μ,ν), (21)

ρmb̂† ↔ νP (μ,ν), (22)

ρmb̂ ↔
(

μ − ∂

∂ν

)
P (μ,ν), (23)

the master equation for the mechanics takes the form of the
Fokker-Planck equation

dP (χ )

dτ
= −

∑
i

∂

∂χi

[A(χ )]iP (χ )

+ 1

2

∑
i,j

∂

∂χi

∂

∂χj

[D(χ )]i,jP (χ ), (24)

where χ = (μ,ν)T , the drift vector A(χ ) is given by

A(χ ) =
(

− 1
2μ − Cνμ2

− 1
2ν − Cμν2

)
, (25)
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and the diffusion matrix D(χ ) is

D(χ ) =
(−Cμ2 n̄th

n̄th −Cν2

)
. (26)

We remark that Eq. (24) is identical to that for the complex
P distribution for a single-mode optical field in a cavity
that involves a cubic-nonlinear dispersive medium [42]. We
further note that there are two diffusion sources for the
complex P distribution function, thermal fluctuations due
to the mechanical heat bath represented by the off-diagonal
elements of the diffusion matrix, and additional quantum
fluctuations due to the optomechanical interaction represented
by the diagonal elements. Given the steady-state complex
distribution function Ps all normally ordered steady-state
moments can be calculated as

〈(b̂†)n(b̂)n
′ 〉ss =

∫
dμ(μ∗)n(μ)n

′
Ps(μ,μ∗). (27)

B. High-temperature regime

In the regime where the thermal fluctuations are the
dominant source of diffusion, n̄th � C, we are able to ne-
glect quantum fluctuations resulting from the optomechanical
interaction so that the diffusion matrix can be approximated as

D(χ ) ≈
(

0 n̄th

n̄th 0

)
. (28)

Then setting the left-hand side of Eq. (24) to 0 at steady
state and employing the usual potential condition [37], the
distribution function is readily found as

Ps(μ,ν) = N exp

(
− 1

n̄th
μν

)
exp

(
− C

n̄th
μ2ν2

)
, (29)

where N is a normalization constant. Note that this complex
P distribution is bounded and well behaved in the domain in
which ν = μ∗, namely, the Glauber-Sudarshan P representa-
tion can be used [43]. The corresponding Glauber-Sudarshan
P distribution becomes

Ps(μ,μ∗) = N exp

(
− 1

n̄th
|μ|2

)
exp

(
− C

n̄th
|μ|4

)
. (30)

From this result we see that for C � 1 the Glauber-Sudarshan
P distribution approaches that for a thermal mixture with
occupation number n̄th,

Ps(μ,μ∗) ≈ 1

n̄thπ
exp

(
− 1

n̄th
|μ|2

)
, (31)

as expected in the limit of small multiphoton coopera-
tivity [44]. On the other hand, the Glauber-Sudarshan P

distribution can be approximated as

Ps(μ,μ∗) ≈ 2

π3/2

√
C

n̄th
exp

(
− C

n̄th
|μ|4

)
(32)

in the limit of large multiphoton cooperativity, C � 1.
In Fig. 1 we plot the steady-state mean phonon number

obtained from Eq. (27),

〈b̂†b̂〉ss ≡ nss = − 1

2C
+

√
n̄th

πC

exp
(− 1

4Cn̄th

)
erfc

(√
1

4Cn̄th

) , (33)

FIG. 1. Steady-state mean phonon number of the mechanics as
a function of the multiphoton cooperativity C for different thermal
occupation numbers n̄th; n̄th = 106 (dotted red line), n̄th = 105 (dot-
dashed orange line), n̄th = 104 (dashed green line), and n̄th = 103

(solid blue line).

versus the multiphoton cooperativity C for different thermal
phonon numbers n̄th. Here erfc(x) = 1 − erf(x) is the comple-
mentary error function. The results show that the mechanics,
in a thermal state of mean occupation number n̄th at low
multiphoton cooperativity, is cooled down as the multiphoton
cooperativity C is increased. Indeed the steady-state mean
phonon number approaches

nss ≈
√

n̄th

πC
(34)

in the limit of large multiphoton cooperativity, C � 1.
To investigate further we calculate the second-order cor-

relation function g(2)(0) for the mechanics and plot it in
Fig. 2 as a function of the multiphoton cooperativity for
different thermal occupation numbers. This figure makes clear
that in the regime where C � 1 the second-order correlation

FIG. 2. Steady-state second-order correlation function g(2)(0)
in the high-temperature regime as a function of the multiphoton
cooperativity C for different thermal occupation numbers n̄th; n̄th =
106 (dotted red line), n̄th = 105 (dot-dashed orange line), n̄th = 104

(dashed green line), and n̄th = 103 (solid blue line). One-phonon
absorption and emission processes are dominant so that the second-
order correlation function is larger than unity.
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FIG. 3. Steady-state phonon number distribution P (n) of the
mechanical oscillator (green circles) for n̄th = 104 and C = 102. For
comparison, the phonon number distributions of the mechanics in a
thermal state (red triangles) and a coherent state (blue squares) with
the same mean phonon number are shown.

function g(2)(0) becomes 2, a feature of a thermal state. On
the other hand, g(2)(0) approaches π/2 for large multiphoton
cooperativity, indicating that the steady state of the mechanics
is chaotic. This tendency stems from the fact that the linear
thermal fluctuations overwhelm the nonlinear two-phonon
optomechanical cooling. As a result, the phonon distribution
is always bunched in the high-temperature regime, and the
variance of the phonon number distribution for the mechanical
oscillator is in between those of the mechanics at thermal
equilibrium and a coherent state with the same mean phonon
number. This is illustrated in Fig. 3, which shows the steady-
state phonon number distribution P (n) of the mechanical
oscillator (green circles) for n̄th = 104 and C = 102, along
with the cases of a thermal state (red triangles) and a coherent
state (blue squares) for comparison.

C. Low-temperature regime

In order to explore the possibility of an antibunched
phonon field, a key signature that the mechanical system
is in a truly quantum state, we proceed to examine the
low-temperature regime. We have obtained the steady-state
complex P distribution following the procedures outlined in
Ref. [45], but for the sake of clarity of presentation we relegate
the details to the Appendix and concentrate on the results here.
Specifically, we find that the complex P distribution is given by

Ps(μ,ν) = 2Ae2μν

(1 + 2n̄th − C)μν
2F1

(
1,1;

1 + 2n̄th

C
;

n̄th

Cμν

)

+ 2Ae2μν

n̄th

∞∑
r=1

(−2μν)r

rr!

× 2F1

(
1,2 + r − 1 + 2n̄th

C
; 1 + r;

Cμν

n̄th

)
, (35)

where 2F1(a,b; c; z) is the hypergeometric function. The
corresponding expression for the steady-state mean phonon
number of the mechanics is given by Eq. (A23) and is plotted
in Fig. 4 as a function of the multiphoton cooperativity C and
for a variety of thermal occupation numbers. These results

FIG. 4. Steady-state mean phonon number nss of the mechanical
oscillator as a function of the multiphoton cooperativity C in the
low-temperature regime: n̄th = 1 (solid blue line), n̄th = 10 (dashed
green line), n̄th = 20 (dot-dashed orange line), and n̄th = 40 (dotted
red line).

show that the mechanics is cooled down near the motional
ground state in the regime where C � 1. In this regime the
optomechanical two-phonon damping is dominant so that only
the ground and first excited states are significantly populated
(see the steady-state phonon distribution, indicated by blue
rhombi, in Fig. 6) and the ground-state population and the
population of the first excited state are approximately given by

P (0) ≈ 3n̄th + 1

4n̄th + 1
, (36)

P (1) ≈ n̄th

4n̄th + 1
, (37)

respectively. These results are in accordance with the numer-
ical calculations based on the Fock-state representation [46].

The expression for the second-order correlation function
g(2)(0) of the mechanics is given by Eq. (A24). Figure 5
shows a color-coded plot of the second-order correlation
function of the mechanical oscillator as a function of both
the mutiphoton cooperativity (C) and the thermal occupation
number (n̄th). The plot reveals that the phonon distribution of
the mechanics is antibunched [g(2)(0) < 1] when C > 2n̄th + 1,
whereas it is bunched [g(2)(0) > 1] when C < 2n̄th + 1.
Physically, the mechanics tends to experience one-phonon
absorption and emission processes, and its phonon distribution
is super-Poissonian, if the mechanical thermal and quantum
noise sources are dominant, C < 2n̄th + 1. However, in the
regime where the optomechanical coupling is stronger than
the thermal decoherence, C > 2n̄th + 1, the mechanics has a
tendency to experience two-phonon absorption and emission
processes and its phonon distribution becomes antibunched.
When C � 2n̄th + 1, the second-order correlation function
can be simplified as

g(2)(0) = 2(4n̄th + 1)

C
+ O

(
1

C2

)
. (38)

As expected, when C = 2n̄th + 1 the steady state of the
mechanical oscillator becomes a coherent state with mean
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FIG. 5. Steady-state second-order correlation function g(2)(0) of
the mechanical oscillator as a function of both the multiphoton coop-
erativity and the thermal occupation number. The various lines show
contours of constant g(2)(0): g(2)(0) = 1.6 (dotted line), g(2)(0) = 1.3
(dot-dashed line), g(2)(0) = 1.0 (thick solid line), g(2)(0) = 0.7 (thick
dot-dashed line), and g(2)(0) = 0.4 (thick dashed line).

phonon number

nss = n̄th

2n̄th + 1
, (39)

and the second-correlation function becomes unity. This
situation is indicated by the thick solid line in Fig. 5:
Regions of parameter space above this line yield steady-state
bunching, whereas below this line antibunching is realized.
Figure 6 shows three representative plots of the phonon
number distributions of the mechanics, indicating that only
the ground and first excited states are significantly populated if
C � n̄th + 1 (blue rhombi), the distribution being Poissonian

FIG. 6. Steady-state phonon distributions P (n) of the mechanical
oscillator with different multiphoton cooperativities at the same
temperature, n̄th = 20: C = 1 (red circles), C = 41 (green squares),
and C = 1000 (blue rhombi).

if C = 2n̄th + 1 (green circles) and the distribution becoming
nearly exponential if C � 2n̄th + 1 (red circles).

We finish by noting that in the regime where the mechanical
heat bath is at zero temperature thermal effects are completely
negligible compared to quantum fluctuations, n̄th = 0, and the
diffusion matrix D(χ ) reads

D(χ ) =
(−Cμ2 0

0 −Cν2

)
. (40)

This situation was previously studied extensively in the context
of quantum optics [45] and the steady-state complex P

distribution is given by

Ps(μ,ν) = 1 − 1
C

2π2
e2μν

∞∑
r=0

(−2μν)r−1(
r + 1 − 1

C

)
r!

. (41)

In this case the mechanical oscillator is coupled to an optical
reservoir at zero temperature by the nonlinear optomechanical
coupling and is also coupled to the mechanical heat bath at
zero temperature by the intrinsic linear interaction. Then the
steady state of the mechanical oscillator is the motional ground
state, as expected, and thus the mean phonon number nss = 0
and the second-order correlation function g(2)(0) = 0 [45].

V. EXPERIMENTAL FEASIBILITY

There are of course barriers to realizing antibunching of
a phonon field, but recent developments make this more
feasible. Consider, for concreteness, the photonic crystal
optomechanical cavity described in Ref. [47], in which a
mechanical mode with effective mass m = 3.7 pg and natural
frequency ωm = 2π×8.7 MHz is coupled to an optical field via
the quadratic optomechanical interaction with single-photon
quadratic coupling coefficient g0 = 2π×245 Hz. This optome-
chanical system operating with intracavity photon numbers
nc = 103, cavity decay rate κ = 2π×5 GHz, and mechanical
quality factor Qm = 107 and at temperature T = 11mK
gives the cavity-enhanced optomechanical coupling strength
g = 2π×245 kHz, multiphoton cooperativity C = 110, and
thermal occupation number n̄th = 22. This example comes
close to realizing the conditions for observing antibunching
but falls short in that it does not operate in the resolved-
sideband regime since κ � ωm. On the other hand, operation
of a photonic crystal optomechanical cavity in the resolved-
sideband regime has previously been reported in a different
setup [6,48]. Thus, even though no single experimental setup
currently satisfies all the requirements needed for realizing
an antibunched phonon field, this may be remedied in the
near-future due to recent advances in microfabrication and
nanotechnology, which have led to an optical resonator with a
quality factor of order 107 [49] and a mechanical oscillator with
Qm = 108 [50]. In addition, the demonstration of a Hanbury-
Brown-Twiss-type experiment [51] for a phonon field in a
nanomechanical resonator paves the way to measuring the
second-order correlation.

VI. SUMMARY AND CONCLUSIONS

We have analytically investigated the steady state of a
mechanical oscillator coupled to a single-mode optical field
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via a quadratic optomechanical interaction and in the weak-
coupling limit. The mechanics was shown to experience an
effective cubic nonlinearity in the limit that the cavity dissipa-
tion rate is much larger than both the optomechanical coupling
and the mechanical damping rates, allowing for adiabatic elim-
ination of the cavity field. Our key result is that the steady-state
phonon field is chaotic if the multiphoton cooperativity obeys
C < 2n̄th + 1, whereas it is antibunched if C > 2n̄th + 1. Thus
our calculation opens the door to control of the second-order
correlation of the mechanical oscillator in the weak-coupling
regime and the observation of phonon antibunching.
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APPENDIX: STEADY-STATE COMPLEX P
DISTRIBUTION IN THE LOW-TEMPERATURE REGIME

In order to find the steady-state complex P distribution of
the mechanics, we follow the procedures outlined in Ref. [45].
Equation (24) can be written as

dP

dτ
= ∂

∂μ

[
μ

2
+ Cμ2ν − C

2

∂

∂μ
μ2 + n̄th

2

∂

∂ν

]
P

+ ∂

∂ν

[
ν

2
+ Cν2μ − C

2

∂

∂ν
ν2 + n̄th

2

∂

∂μ

]
P. (A1)

The steady-state complex P distribution can in general be
obtained from[

μ

2
+ Cμ2ν − C

2

∂

∂μ
μ2 + n̄th

2

∂

∂ν

]
Ps = f (ν), (A2)

[
ν

2
+ Cν2μ − C

2

∂

∂ν
ν2 + n̄th

2

∂

∂μ

]
Ps = g(μ), (A3)

where f (ν) and g(μ) must satisfy generalized potential
conditions [45]. To find the form of these functions we write
Ps(μ,ν) as

Ps(μ,ν) = Q(μ,ν)

(Cμν − n̄th)2
; (A4)

then Eqs. (A2) and (A3) can be written as

∂R(μ,ν)

∂μ
= e−2μν(Cμν − n̄th)1− 1+2n̄th

C F (μ,ν), (A5)

∂R(μ,ν)

∂ν
= e−2μν(Cμν − n̄th)1− 1+2n̄th

C G(μ,ν), (A6)

where we define, for typographical simplicity,

R(μ,ν) = e−2μν(Cμν − n̄th)−
1+2n̄th

C Q(μ,ν), (A7)

F (μ,ν) = −2
Cν2f (ν) + n̄thg(μ)

Cμν + n̄th
, (A8)

G(μ,ν) = −2
Cμ2g(μ) + n̄thf (ν)

Cμν + n̄th
. (A9)

The generalized potential condition

∂2R(μ,ν)

∂ν∂μ
= ∂2R(μ,ν)

∂μ∂ν
(A10)

can be written as

∂

∂ν

[
e−2μν(Cμν − n̄th)1− 1+2n̄th

C F (μ,ν)
]

= ∂

∂μ

[
e−2μν(Cμν − n̄th)1− 1+2n̄th

C G(μ,ν)
]
. (A11)

Equation (A11) is satisfied for

f (ν) = A

ν
, (A12)

g(μ) = A

μ
, (A13)

where A is a constant. Thus, the steady-state complex P

distribution, after some algebra, is given by

Ps(μ,ν) = e2μν(Cμν − n̄th)
1+2n̄th

C
−2[B + AI (μ,ν)], (A14)

where B is a constant of integration and I (μ,ν) is the indefinite
integral

I (μ,ν) = −2
∫

dμ
e−2μν

μ
(Cμν − n̄th)1− 1+2n̄th

C . (A15)

This integral may be calculated using a power-series expansion
of the exponential function and the resulting steady-state
complex P distribution reads

Ps(μ,ν) = Be2μν(Cμν − n̄th)
1+2n̄th

C
−2

+ 2Ae2μν

(1 + 2n̄th − C)μν
2F1

(
1,1;

1 + 2n̄th

C
;

n̄th

Cμν

)

+ 2Ae2μν

n̄th

∞∑
r=1

(−2μν)r

rr!

× 2F1

(
1,2 + r − 1 + 2n̄th

C
; 1 + r;

Cμν

n̄th

)
.

(A16)

It should be noted that the two constants A and B are chosen
from the normalization condition and the requirement that
the phonon number distribution be nonnegative. Using the
complex P distribution function, all normal-ordered moments
at steady state can be obtained from

〈(b̂†)n(b̂)n
′ 〉ss =

∫
dμdν(ν)n(μ)n

′
Ps(μ,ν). (A17)

Making the change of variables

N = μν, (A18)

z = μ (A19)

and choosing a circular contour around the origin for the z-line
integral and a Hankel contour for the N -line integral [52], one
can find the normalization condition, the mean phonon num-
ber, the second-order correlation, and so on, from Eq. (A17).
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The normalization condition reads

1

4π2
= −B

e
2n̄th
C

2	
(
2 − 1+2n̄th

C

)(
C

2

) 1+2n̄th
C

−2

−A
2	

( 1+2n̄th
C

)
1 + 2n̄th − C

∞∑
k=0

(2n̄th/C)k

	
( 1+2n̄th

C
+ k

) . (A20)

The populations of the mth number state are given by

Pm = −B

m∑
k=0

4π2e
n̄th
C C

1+2n̄th
C

−2
(

n̄th
C

)m−k

	(m − k + 1)	(k + 1)	
(
2 − k − 1+2n̄th

C

)
−A

8π2	
( 1+2n̄th

C

)
(1 + 2n̄th − C)m!

×
∞∑

k=m

	(k + 1)(n̄th/C)k

	
( 1+2n̄th

C
+ k

)
	(k + 1 − m)

. (A21)

In order for the phonon number distribution to be nonnegative,
B = 0 for C �= 1 + 2n̄th and A = 0 for C = 1 + 2n̄th due to
the oscillatory behavior of the 	 function.

If C �= 1 + 2n̄th, the normalization constant A is given by

A = − 1 + 2n̄th − C

8π2	
( 1+2n̄th

C

) ∑∞
k=0

(2n̄th/C)k

	

(
1+2n̄th

C
+k

) . (A22)

The mean phonon number is given by

nss = 1

2

∑∞
k=0

k

	

(
1+2n̄th

C
+k

)( 2n̄th
C

)k

∑∞
k=0

1

	

(
1+2n̄th

C
+k

)( 2n̄th
C

)k
, (A23)

and the second-order correlation function g(2)(0) is

g(2)(0) =
∑∞

k,k′
k(k−1)

	

(
1+2n̄th

C
+k

)
	

(
1+2n̄th

C
+k′

)( 2n̄th
C

)k+k′

∑∞
k,k′

kk′

	

(
1+2n̄th

C
+k

)
	

(
1+2n̄th

C
+k′

)( 2n̄th
C

)k+k′ . (A24)
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