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Preparing quasienergy states on demand: A parametric oscillator
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We study a nonlinear oscillator, which is parametrically driven at a frequency close to twice its eigenfrequency.
By judiciously choosing the frequency detuning and linearly increasing the driving amplitude, one can prepare any
even quasienergy state starting from the oscillator ground state. Such state preparation is effectively adiabatic.
We find the Wigner distribution of the prepared states. For a different choice of the frequency detuning, the
adiabaticity breaks down, which allows one to prepare on demand a superposition of quasienergy states using
Landau-Zener-type transitions. We find the characteristic spectrum of the transient radiation emitted by the
oscillator after it has been prepared in a given quasienergy state.
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I. INTRODUCTION

Periodically driven quantum systems are described by
quasienergy (Floquet) states, which are a time-domain analog
of Bloch states in spatially periodic systems [1-4]. The new
physics associated with quasienergy states has been attracting
much interest recently. Examples include topological Floquet
states, artificial gauge fields, and new many-body phases
[5-15].

Preparation of Floquet states is often discussed in the
adiabatic framework assuming that the periodic field is slowly
turned on (see [16—19] and references therein). The analysis
for many-body systems is complicated by the effect of heating,
and much progress has been made by studying systems
that display many-body localization, as it may alleviate the
heating. Recently, adiabatic state preparation was considered
also for a parametrically driven nonlinear oscillator [20,21].
In contrast to many-body systems, the energy spectrum here
is discrete, which simplifies the problem. However, a potential
complication and also potentially new and interesting features
stem from the fact that the quasienergy levels for weak driving
can display degeneracy, or a specific type of degeneracy, which
we call the reduced-band (RB) degeneracy.

The goal of this paper is to study preparation of quasienergy
states in a small quantum system in the case where the
quasienergy states can display degeneracy or the RB degener-
acy for weak driving. In optics terms, this case corresponds to
either a multiphoton resonance or a subharmonic resonance,
where the distance between the energy levels of the system
is close to either a multiple or a fraction of the radiation
frequency multiplied by 7. Multiphoton resonance leads to
Rabi oscillations described in [22] for a nonlinear oscillator
using perturbation theory. In terms of the Floquet states, when
the driving frequency is close to the oscillator eigenfrequency,
such an oscillator can display simultaneous multiple anticross-
ing of the quasienergy levels [23].

We will use as a model a driven quantum oscillator.
Such a model is interesting as it describes a broad range of
physical systems, from molecular vibrations [22] to the modes
of nonlinear optical and microwave cavities to Josephson
junctions [24]. Here we study the features of the Floquet dy-
namics that emerge when an oscillator is driven parametrically
and the drive frequency wp is close to twice the oscillator
eigenfrequency.
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To explain how the multiphoton and subharmonic
resonances are seen in the quasienergy spectrum, we note
that quasienergies of a system &, and the quasienergy level
spacing &, — &, are defined modulo /iwr. In the limit of zero
driving &, — &, is simply related to the spacing &, — &,, of
the corresponding energy levels of the system, ¢, — ¢, =
(& — En)mod (iwp). The standard multiphoton resonance
for weak driving occurs if &, — &, is a multiple of fiwp,
and then &, — ¢, = 0 for a given pair of states (n,m), i.e.,
the quasienergies are degenerate. In contrast, in the case of a
subharmonic resonance, &, — &,, can be a fraction of Ziwg. In
particular, for the parametric resonance in an oscillator one can
have |€, — &,+1| = hwr /2 (a more general resonant condition
is discussed below, see Fig. 2). In this case |¢, — &,41| =
hiwr /2. This is the RB degeneracy, as the quasienergies would
coincide if they were defined modulo Ziwr /2. Such degeneracy
is nontrivial, since if the system is prepared in a superposition
of the RB-degenerate states it displays period doubling: the
state is reproduced (up to a trivial phase factor) after twice the
driving period, rather than after one period.

In what follows we show that, by slowly turning on the
resonant parametric drive, it is possible to prepare on demand
various quasienergy states starting from the ground state of
the oscillator (n = 0). Importantly, this can be done in a
finite time and with high accuracy without using special
pulse-shaping techniques, but just by increasing the amplitude
of the drive linearly in time. Such a scenario is easy to
implement in the experiment. We also study preparation
of a superposition of quasienergy states starting from the
ground state. Such preparation can be accomplished using
nonadiabatic transitions for the driving frequency wp tuned
close to multiphoton resonance, so that ¢,, — &g is small for
the targeted m. Again, this relies on a simple linear increase
of the driving amplitude. However, the nonadiabatic dynamics
in this case turns out to be different from the conventional
Landau-Zener dynamics.

The paper is organized as follows. In Sec. II, we present
the model of a parametric nonlinear oscillator and discuss its
quasienergy spectrum. We show the evolution of the spectrum
with the varying driving frequency in the limit of zero drive
amplitude and the occurrence of the degeneracy and the RB
degeneracy of the quasienergy levels as the system goes
through multiphoton or subharmonic resonance. In Sec. III,
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we present the Wigner distribution for the quasienergy states
prepared from the oscillator ground state by slowly ramping
up the amplitude of the driving in the absence of degeneracy.
We demonstrate the possibility to prepare a Floquet state “on
demand” and the rich structure of its Wigner distribution.
The only constraint is that the resulting Floquet states are
“even” with respect to inversion in phase space. In Sec. IV,
we consider preparation of a superposition of two quasienergy
states via a nonadiabatic transition when the system is close
to degeneracy for weak field. In Sec. V, we briefly discuss
the adiabaticity in the presence of dissipation. In Sec. VI we
study fluorescence of the oscillator driven into a Floquet state,
and in particular the characteristic transient spectrum of the
fluorescence. Section VI contains concluding remarks.

II. RWA HAMILTONIAN AND QUASIENERGY SPECTRUM

The Hamiltonian of a weakly nonlinear parametric oscilla-
tor with coordinate ¢ and momentum p has the form

PPl g, Y 4
H(@t) = 5 +354 [@f + F cos(wrt)] + 74" (D)
We assume that the driving amplitude F' and the nonlinearity
are comparatively small, F,y(¢?) < w3, and the driving
frequency wp is close to resonance, |wr — 2wy| < wy; without
loss of generality, we consider F,y > 0. A quantum para-
metric oscillator described by Eq. (1) has been realized in
various platforms, from optical and microwave cavities to
nanomechanical systems (see [24-27]).

For a periodically modulated quantum system, there exists
a complete set of solutions to the Schrodinger equation called
Floquet states, which are eigenfunctions of the operator 7;, of
time translation by the modulation period #5:

Ve(t) = e Pug(t),uc(t + tp) = us(t). )

Parameter ¢ is called the quasienergy or Floquet eigenvalue.
For the parametric oscillator with Hamiltonian (1), tp =
2 / WF.

A standard procedure to find quasienergy states and
quasienergies is to plug the solution Eq. (2) into the
Schrodinger equation, and then solve the resulting equation for
u,(t) using Fourier series expansion (see the Appendices). For
a driven oscillator, a much simpler way to find quasienergies is
to go to the rotating frame at frequency wg /2 by applying the
standard unitary transformation U(t) = exp[—i wra‘at /21,
where a and a' are the oscillator ladder operators. In the
rotating wave approximation (RWA) we disregard fast oscillat-
ing terms in the transformed Hamiltonian UTHU — ihU'U,
which gives the RWA Hamiltonian

RV o RF
HRWA:—héwpn—}—T(n —i—n)—}—T(a +a”)  (3)

where i = a'a, wr = wr/2 — wy is the detuning frequency,
F = F/4wy, and V = 3yh/4a)(2,.

The Hamiltonians H and Hgrwa commute with the parity
operator P = exp(—ia‘am) [28] that transforms g — —q,
p — —p. Therefore, an eigenstate ¢ of Hrwa has definite
parity Pg = *1; here E is an eigenvalue of Hrwa, Which
can be called the RWA energy, Hrwa¢r = E¢p. As a
consequence, the corresponding time-dependent state in the
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FIG. 1. The cross section of the RWA Hamiltonian function

Hrwa(Q,P) given by Eq. (5) by the plane P =0 and the RWA
energy levels.

laboratory frame ®g(r) = exp(—i Et/h)U(t)¢g is a Floquet
state of Eq. (2). The quasienergy ¢ and the periodic factor in
the Floquet wave functions u, are immediately expressed in
terms of the RWA energy E and the eigenfunction ¢g:

e =[E+ (1 — Pp)hor/4mod(fiwr),

ue(t) = expli(1 — Pp)ort /41U ()¢, “4)
-1, ¢gisodd
where  Pp = {1, ¢r iseven

The aforementioned RB degeneracy where the quasienergies
differ by hiwp/2 occurs if Hrwa has degenerate states ¢p.
Such degeneracy is possible for a parametric oscillator for a
finite driving amplitude [29]. A driven oscillator also provides
a platform for investigating more complicated cases of RB
degeneracy [30].

The understanding of the spectrum of Hgwa can be gained
by looking at the Hamiltonian function Hrwa in the phase
space of the oscillator in the rotating frame, i.e., by writing
Hrwa in terms of the scaled quadratures P and Q defined as
Q =i(a—a"/aj2,P = (a' + a)/A/2. Here, A = V/2F is

the dimensionless Planck constant. In these variables
Hywa(Q.P) = (F?/6y)g(Q.P),

g(Q.P) = 1(P* + 0%’ — Lu(P* + 0 + $(P* — 0%,
(5)

where i = 2wpdwp/F [29]. The eigenstates of the Hamilto-
nian Hrwa can be written in the Q basis, ¢ = ¢r(Q). The
parity operator P is then the inversion operator, P¢z(Q) =
¢e(=0).

For w41 > 0, function Hgrwa(Q,P) has two minima
located at P = 0,Q = +./u + 1. Function Hgwa(Q,P = 0)
is shown in Fig. 1. For sufficiently strong driving, where
the two wells become deep and well separated, the low-
lying eigenstates of Hrwa are symmetric or antisymmetric
superpositions of intrawell states.

In the opposite limit of weak driving, F — 0, the Hamil-
tonian Hgrwa, Eq. (3), is trivially diagonalized in the basis of
the oscillator Fock states. What is interesting, however, is that
the order of the RWA eigenstates in the rotating frame can
be changed compared to the order of the Fock states in the
laboratory frame. From Eq. (3), for F = 0 the eigenvalues E,
of Hrwa can be written in a suggestive form:

1 1 Swr\?
E,==hiVln+-——L). (6)

EnZE_n_E_'O’ ) ) v
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FIG. 2. RWA energies E, in the limit ¥ — 0. The curves from
top down correspond to Swr/V = 0 (black), 1.8 (blue), 2 (green),
and 2.5 (brown). The solid lines are guides for the eyes; the values of
the energies are indicated by the dots, which refer to integer values of
n. The dashed lines are intended to show the degeneracy: E, = Ej3,
E, = E;, (green curve); Ey = E4, E; = E; (brown curve).

From Eq. (6), E, considered as a continuous function of n is
a simple parabola with a minimum at n = §wp/V — 1/2; see
Fig. 2. For éwp/V < 1/2, E, quadratically increases with the
increasing n; see the top line in Fig. 2. However, as the ratio
Sdwp/V increases, E, bends over and has a minimum at some
positive n. Of course, the actual RWA energies are determined
by E, with integer n. When dwp/V > 1, the state with the
lowest E, is no longer the Fock state |0). For instance, for
dwrp/V = 1.8 (blue dots, which lie on the second from top
line in Fig. 2), this state is |1).

The reordering of the quasienergy states described by
Eq. (6) is essential for preparing quasienergy states on
demand. Indeed, if the oscillator is initially in the ground
state, then by tuning the driving frequency and increasing
the driving strength, we make this state an arbitrary even in
Q quasienergy state, i.e., an arbitrary superposition of Fock
states |m) with even m. We also note that, for certain values
of Swpr/V, there can be degenerate RWA levels (the green
and brown dots, which lie on the two lowest curves in Fig. 2
and are connected by dashed lines). We will discuss such
degeneracy later in detail.

The driving mixes Fock states with the same parity. The
evolution of the RWA spectrum with the increasing F is
shown in Fig. 3 for different values of the detuning dwr/V.
A common trend is that RWA energy levels of the same
parity repel each other, whereas neighboring levels of opposite
parity attract each other and form pairs for large F/V. As
mentioned above, such pairs for large F/V are even and odd
superpositions of “intrawell” states of Hgrwa. The distance
between the states within the pairs is determined by interwell
tunneling [29].

Special features of the RWA spectrum

We find that, somewhat counterintuitively, the RWA levels
do not cross each other as F changes. Therefore any gaps that
are present at F' — 0 will remain open for any finite F. For
instance, Figs. 3(a) and 3(b) refer to the cases where the Fock
state |0) is the first and the third lowest RWA eigenstate at
F — 0, respectively. As F increases, it remains the first and
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FIG. 3. Evolution of the RWA energy spectrum with the increas-
ing driving amplitude F for dwr/V = 0(a),1.8(),2(c),2.5(d). The
solid and dashed lines refer to the RWA energy levels of even and odd
parity, respectively. In panel (c), the solid and dashed line coincide.

the third lowest RWA eigenstate. Such a noncrossing feature
will be important for the preparation of quasienergy states by
slowly turning on the driving.

A remarkable feature of the RWA spectrum is that, when
the ratio dwp/V is a positive integer there is a set of
simultaneously doubly degenerate levels of opposite parity
regardless of the value of F. For F — 0, this can be readily
seen from Eq. (6) (see [23] where a similar feature was
found in the case of the driving at frequency close to wy).
When Swrp/V =k,k =1,2,3..., the minimum of E, as a
continuous function of #n is reached at half odd integer n =
k — 1/2. Since E, is a symmetric function of n with respect
to the minimum, the levels separated by An =2m + 1 are
degenerate, that is, Ex1, = Ex—m+1), form =0,1...,k— 1.
The green curve in Fig. 2 (the third from the top) refers to the
case k = 2, where the degeneracy condition is met.

The degeneracy of the RWA energy levels persists for
nonzero F, as can been seen in Fig. 3(c). At weak driving,
this follows from the perturbation theory. To the second order
in F', the correction S E,, to E,, is

F2 2E,/hV — Bwr/V)* —3/4
SE, — —hv I / _( wr/V) / o
4y2 2E,/hV — 1

The dependence of § E,, on the level number 7 is exactly the
same as that of E,, [see Eq. (6)]. Therefore, if E,, = E,/, then
S E, = S E, . Note that the perturbation theory still applies even
if there are degenerate levels of opposite parity since there is
no coupling between them. At strong driving, such degeneracy
corresponds to the vanishing of tunnel splitting found in [29].

For the special case Swr/V = 1, Hrwa can be factored
[21]:

4 +2+F 2+F hF?
=5\ Ty TV )T v
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In this case the coherent states | & «), « = /—F/V, are exact
degenerate eigenstates of Hrwa for arbitrary driving strength.
However, no such eigenstates are known for other values of
Sw F / V.

If the ratio wp/ V is a half integer, Swr/V = 2k + 1)/2,
k=1,2,3,..., the minimum of function E, for F — 0
is reached at integer n = k. Again, due to the parabolic
dependence of E, on n, levels E;.,, are degenerate for m =
1,2, ....k. For instance, the lowest (brown) curve in Fig. 2
refers to the case k = 2. The degeneracy of the levels of the
same parity occurs when the driving frequency equals to one of
the transition frequencies of the undriven oscillator. This can
be seen by rewriting E,, as E, = —nhwrp/2 4+ &,, where £, =
nhwy + hVn(n + 1)/2 is the nth energy level of the oscillator
in the absence of driving. Clearly, the degeneracy condition
Evim = Ej_y isequivalent to &1y — E—y = mwp, which is
the m-photon resonance condition for transition from &_,, to
Ek+m- The degeneracy is lifted at finite F* due to level repulsion,
as shown in Fig. 3(d).

III. EFFECTIVELY ADIABATIC PREPARATION
OF QUASIENERGY STATES AND THE
WIGNER DISTRIBUTION

The observation that the quasienergy levels of the same
parity do not approach each other with the increasing field
F 1is critical for state preparation. It allows one to prepare a
quasienergy state by slowly turning on the field, provided the
states are nondegenerate for F — 0.

We consider ramping up the driving amplitude F linearly
with speed s starting at t = 0, F(t) = sot. If /S0 is small
compared to wy, the time evolution of the oscillator wave
function ¢(¢) can be described in the RWA:

ihd,¢(t) = Hrwa(1)9(1). (®)

We will solve this equation assuming that initially, for zero
driving, the system is in the ground state of the oscillator,
(0.t =0) = |0).

The results of the numerical solution of Eq. (8) are
illustrated in Fig. 4. The values of dwr/V were chosen in
such a way that, in one case (bwp = 0), the state of the
system remains close to the eigenstate of Hrwa with the lowest
eigenvalue E,, whereas in the other case (wp/V = 1.8) it is
close to the third lowest-E,, state [see Fig. 3(b)]. The quality
of the adiabatic approximation for the chosen parameters can
be characterized by the inner product of the state ¢(Q) at
the end of ramp-up and the corresponding stationary RWA
eigenstate ¢ (Q) calculated for F = Fjy. This inner product
is 0.997 and 0.98 for the cases shown in Figs. 4(a) and 4(b),
respectively, which shows that the adiabatic approximation is
very good.

The final value of the field amplitude Flinal in Fig. 4 refers to
the case where the Hamiltonian function Hrwa(Q, P), Eq. (5),
has a pronounced double-well structure (see Fig. 1). For
dwp = 0, the state ¢(Q) is well described by a symmetric
superposition of the lowest intrawell states in Fig. 1, ¢(Q) =
(P + qu)/ﬁ where ¢; and ¢ refer to the left and right
well, respectively. Near their maxima, functions ¢, p are
given by squeezed coherent states with equal amplitude and
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FIG. 4. The density matrix of the oscillator at time Fjny/so
in the Wigner representation for a linear ramp, F(r) = sot. The
oscillator is in state |¢(Q)), which is obtained from the time-
dependent Schrédinger equation (8) assuming that ¢(Q) = |0) for
t = 0. The parameters are (a) Swr/V = O,Fﬁml/V =5,5/V:=1
and (b) Swr/V = 1.8, Finu/V = 3,50/ V? = 0.06.

opposite phases, ¢; g o exp[—(Q £ Qy)?/2An] where Q¢ =
i+ 1 is the position of the right well and n = 1//u + 1
characterizes the state squeezing (see Appendix B). The
adiabatic preparation of such a “cat” state has been discussed
in [20,21].

In contrast, for the case in Fig. 4(b), the driving brings
the system to an excited state of Hgrwa. The state ¢(Q) for
t = Fhna /8o is no longer a superposition of the lowest intrawell
states but, for the chosen Swpg/V, the superposition of the
second lowest intrawell states, ¢(Q) = (¢} + ¢%)/ /2. Near
their maxima, functions ¢} , are well described by a displaced
and squeezed Fock state ]1): q)/L’R x (Q £ Qp)exp[—(Q £+
Q0)?/2An]. Since the RWA energy levels for small F in this
case are closer than for dwr = 0, in particular the Fock states
|0) and |2) have close RWA energies, we had to use a much
slower increase of the driving amplitude to attain high fidelity
of the prepared large-F state.

IV. PREPARING A SUPERPOSITION OF QUASIENERGY
STATES NONADIABATICALLY

As the driving amplitude F' is ramped up, the nonadiabatic-
ity can mix quasienergy states of the same parity. The mixing
is particularly strong if the quasienergy gap that separates the
states is small. As shown in Sec. II, this gap is controlled by
the driving frequency. In this section, we consider a situation
where two nearest quasienergy states of the same parity have
close quasienergies for F — 0, whereas the quasienergies of
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FIG. 5. A schematic of two resonating quasienergy states in the
adiabatic picture. The plot refers to A > 0.

other states are significantly different, so that mixing with
these other states can be disregarded for slowly varying F(¢).
We show that, by ramping up the driving amplitude linearly in
time, we can prepare, with high accuracy, a desired coherent
superposition of the chosen two quasienergy states.

We assume that the states with close quasienergies for ¥ —
0 are |n — 1) and |n + 1), which means that dwr/V ~n +
1/2. As the drive is ramped up, these states are mixed with
each other. Concurrently, they are mixed with other states
of the same parity. However, this mixing is nonresonant and
therefore is weaker.

The picture of the state evolution is as follows. The resonant
mixing leads to a redistribution of the initial population
between the resonating states and to a separation of their
quasienergies already for a comparatively weak field (see
Fig. 5). The increase of the field afterwards does not change
the state populations, even though it modifies the states by
increasingly strongly admixing them to other states of the
same parity.

To describe the initial stage of the evolution we project
the Hamiltonian Hgrwa onto the subspace formed by the states
|[n — 1) and |n + 1), subtract the mean RWA energy (E,+1 +
E,_1)/2, and disregard the coupling to other states. Then the
Hamiltonian becomes

Hrwa(t) = h (V(At) 2(2), )

where A = (E,_1 — E,41)/2h,v(t) = /n(n + DE(t). For a
field that linearly increases in time v(t) = st.

It is convenient to rewrite the Hamiltonian (9) in the conven-
tional form used in the analysis of the Landau-Zener tunneling.
Making a unitary transformation U, = (1/ \/z)(az +0y) (0y ¢
are Pauli matrices), we obtain

i v(t A
Ul HrwaUs = Hiz = h( o _v(t)>. (10)
Note that the vectors ( (1)) and ((1)) for the Hamiltonian (10) are,

respectively, the wave functions (|n — 1) + |n + 1))/+/2 and
(In—1) = |n + 1)V2.

The only difference of the evolution of the states we
consider here from the standard Landau-Zener scenario is that
the initial condition for the Schrodinger equation ihg(t) =
Hyz¢(t) is set for t =0 and the problem is considered
on the semiaxis ¢ > 0. It is convenient to seek the wave
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st/|A|

FIG. 6. Time evolution of the probability |C4(#)]* to be on
the upper branch of the adiabatic eigenstates of the Landau-Zener
Hamiltonian H;z, Eq. (10) (see Fig. 5). The solid and dashed curves
are for A > 0 and A < 0, respectively. The solid curves from top
down and the dashed curves from bottom up refer to the same values
of A?/s. In this order, A?/s = 1.5 (purple), 0.25 (blue), 0.05 (red),
0.01 (black). The sum of the values of |Cy | on the solid and dashed
curves for the same A2 /s (i.e., of the same color) add up to 1 for each
time. The initial condition is ¢(0) = |n — 1).

function as ¢(t) = (1/ﬁ) >yt Ca®ln — 1) +a|n + 1)].
We will be interested in the solution that corresponds to the
initial condition where the smaller-n state is occupied while
the larger-n state is empty, C4(0) = C_(0) =1/ V2. As in
the Landau-Zener problem, the solution to the Schrédinger
equation can be expressed in terms of the parabolic cylinder
functions; see Appendix C.

InFig. 6, we show the result for the coefficient C4(¢), which
is equal to the projection (¢?d(t)|¢(t)) of the wave function
¢(t) on the upper branch (the higher-energy branch in Fig. 5)
of the adiabatic solutions ¢4 (¢) of the Schrodinger equation,
HLZ¢?‘}¢(I) = +02() + A2]1/2¢?‘}¢(I). The result is in full
agreement with the numerical solution of the Schrédinger
equation.

Of primary interest is the long-time behavior of Cj | (7). It
can be obtained from the asymptotic expansion of the parabolic
cylinder functions (see Appendix C), or directly by solving the
Schrodinger equation in the WKB approximation:

Ci(t) ~ a4+ ge D25t~/
Ci(t) ~ are™ 0 4 B "D 2s17) 712, (an

Here, 0(¢) is the dynamical phase for dt’/v23(t") + A? associ-
ated with the adiabatic solutions in Fig. 5:

o(t) s AT (B LA (12)
=—+—In(— —.
2 2s |A| 4s

The expressions for the parameters a4 |, 84, in Eq. (11) follow
from the general solution of the Schrodinger equation; the
explicit form of a4 | is given in Appendix C.

The coefficients C4 () approach their asymptotic values
o a4,y as 1/t and oscillate as exp[=£i6(7)]. We note that, for
t — oo,wehave Cy — Cy(t)and C, — C_(2),i.e., Eq. (11)
directly gives the coefficients C.. of the expansion of the wave
function in the symmetric and antisymmetric combination of
functions |n + 1).
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FIG. 7. The probability |C¢(o<>)|2 to be on the upper branch of
the eigenstates of Hjz in Fig. 5 at large time. The solid and dashed
lines refer to A > 0 and A < 0, respectively. The initial condition is

#0) = |n —1).

Figure 7 shows the asymptotic value |C ¢(o<>)|2 = |op |>asa
function of the Landau-Zener parameter A /s. In the adiabatic
limit A2 /s > 1 andforthecase A > 0, where the system starts
from the upper branch, ¢(0) = qﬂd(O), we have

i s is

a~I=fpar W ia (13)
(|oz¢|2 ] ¢|2 = 1). In distinction from the Landau-Zener
problem, where the nonadiabatic transition probability
approaches zero exponentially as exp(—m A?/s), here it ap-
proaches zero as (A?/s)~2. This special feature is due to the
initial condition in the considered problem being set at t = 0
rather than t — —oo.

In the strongly nonadiabatic case, A%/s < 1, if ¢(0) =
|[n — 1), in the long-time limit the state of the system ultimately
approaches an equal superposition of the eigenstates qb?‘f‘l of
Hiz: oy = |ay| ~ l/«/§. This can be seen from Eq. (10);
see also Appendix C. In the case A = 0, the states (Jn — 1) &
In + 1))/+/2 are exact eigenstates for any time ¢. Therefore,
¢(¢) will remain in an equal superposition of these two states
for any time; note, however, that the states depend on time
differently.

An instructive case is when the oscillator is in the ground
state before the driving is applied and the detuning of the
driving frequency Swp is close to 3V /2. Here, if the field is
ramped up fast, the oscillator will end up in equally populated
adiabatic states, which corresponds to two equally populated
even interwell states in Fig. 1.

V. ADIABATICITY IN THE PRESENCE OF DISSIPATION

Coupling to the environment leads to decoherence of
the quasienergy states. It reduces the fidelity of the state
preparation. Here we consider the constraint on the dissipation
in the case of state preparation by slowly ramping up the
driving field. To achieve high fidelity, one needs to increase
the field at a rate larger than the relaxation rate, but smaller than
the reciprocal spacing of the relevant RWA energies divided
by /. For a state ¢, this means that the decay rate of this
state I'g should be small compared to Ag, where AAE is
the instantaneous difference between the quasienergy of the
state ¢ and the nearest state of the same parity. The parity
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FIG. 8. Solid lines from top down: the instantaneous decay rate
Iy =20 (¢glatalgr) of the state ¢y for '/ V =2 (green), 1 (blue),
and 0.5 (red). Dashed line: the instantaneous level spacing iAg
between the state ¢ and the nearest state of the same parity. The
scaled detuning is §wr/V = 0. The state ¢ is chosen to be the lowest
RWA state, ¢ = |0) for F = 0. The inset shows the evolution of the
RWA spectrum with increasing F'; the solid and dashed lines refer to
the two lowest even- and odd-parity states, respectively.

constraint here is the consequence of the fact that the field
mixes only the same-parity states.

The RWA level spacing ZAg can be estimated where
the driving is weak, F < V, or strong, F > V. For weak
driving, the RWA eigenstates are close to the Fock states.
From the results of Sec. II, Ag ~ V and depends on the
ratio wp/V (see Fig. 2). At strong driving, iAg is given by
the spacing of the intrawell energy levels of the Hamiltonian
Hrwa(Q, P); see Fig. 1. Itis determined by the frequency wm;n
of oscillations about the minima of Hrwa(Q, P), which gives
Ap ~ 2[(8wr + F)F]'/?; see Appendix B.

We illustrate the effect of dissipation using the well-known
model [31] where the kinetics in the rotating frame is described
by the Markov master equation for the density matrix p of the
form

dp =ih"'[p.Hrwal — T'p,
['p =T@fap — 2apat + pa'a). (14)

Here, I' is the oscillator relaxation rate and we assume that
the temperature of the environment is sufficiently low, kT <
”ia)o.

The decay rate 'y of an RWA eigenstate ¢ can be
estimated as the decay rate of the diagonal matrix element
of the density matrix (¢pg|p|¢g). Assuming that the system
is in state ¢g, i.e., p = |¢g){(¢g|, and taking into account
that the matrix elements of the ladder operators on the
states of the same parity are zero, we find from Eq. (14)
Iy =20 (¢pelatalgr). At weak driving, I'z ~ I'. At strong
driving I'g is determined by the rate of transitions between the
intrawell states of Hrwa [32], ' ~ FF/ V.

From the above estimates, the adiabaticity condition I'g <
Apg requires that I' < V,|éwp| for weak driving and I’ <« V
for strong driving. Figure 8 illustrates the evolution of Ag
and I'r of an RWA eigenstate ¢ with the varying driving
amplitude F'. For the case shown in the figure, the state ¢ has
the lowest RWA eigenenergy. At large F/V, both Ag and I'g
increase linearly with F as we expect from the analysis above.
The slope of 'z as a function of F increases as I'/ V increases.
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It coincides with the slope of Ag for '/ V & 2 as shown by the
green curve. For the condition 'y << A to be satisfied for any
F, one needs to have '/ V « 2. For I'/V 2 2, in the consid-
ered case I'g and A as a function of F can cross each other.

VI. TRANSIENT RADIATION FROM
QUASIENERGY STATES

Decay of a parametrically driven oscillator is accompanied
by emission of excitations into the surrounding medium. The
most familiar picture is decay of optical/microwave cavity
modes into propagating electromagnetic waves. Detection of
the radiation from the cavity provides a way of characterizing
the cavity modes. Radiation from the modes in a non-steady
state, such as a quasienergy state, is transient. After a time of
the order of the mode relaxation time, the system relaxes to
a steady state, and the radiation becomes steady and does not
depend on the quasienergy state the system had been staying
in. To identify a quasienergy state from the radiation, one needs
to collect the transient radiation.

We model the radiation field by a set of oscillators
enumerated by subscript k, with quasicontinuous frequencies
oy and with Hamiltonian Hypg = ), ha)kb,tbk. ‘We assume that
the coupling of the considered oscillator to this field is bilinear
in the ladder operators of the oscillator and the radiation, H; =
D i &b + b,t)(a + a'), where & are the coupling parameters.
The total Hamiltonian is Hiym = Hy + Hg + H;. Operator
Hj is the Hamiltonian of the oscillator and the nonradiative
thermal reservoir to which the oscillator is coupled. We assume
that this reservoir and the radiation field are at the same
temperature, which we assume to be sufficiently low, kT <
fiwg. The coupling to the reservoir leads to relaxation of the
oscillator with typical relaxation rate I" [see Eq. (14)] [33].

If the coupling to the radiation field is weak, it can be
considered as a perturbation to the nonradiative dynamics.
The power of the radiation emitted into a spectral range
dQ2 around frequency €2 is given by the change of the
energy of the radiation field in this interval per unit time
W(R,t)dQ2 = % > 8(ex — Q)dQ(ha)kblbk). To the lowest
order in the coupling strength &, we have in the resonant
region where 2 is close to wg /2 [34]

W(RQ,1) = Qraal 2,1 — to, po(t0)1RE*(Q),

t
Qraal 2,1 — 10, p0(t0)] = 2Ref dt ¢! @—er/20=1)

x Trla'(t' — to)a(t — to)po(to)],
(15)

where £2(2) = i~ 3, [5:178(2 — wp).

In deriving Eq. (15) we assumed that the coupling to
the radiation is switched on at time fy; po(#) is the density
matrix of the oscillator and the nonradiative environment.
Equation (15) is written in the rotating frame used above to find
the quasienergy states of the oscillator, with the time counted
off from 1.

The two-time correlation function in Eq. (15) can be
found by solving the quantum kinetic equation. As an initial
condition to this equation we choose the density matrix po(ty)
in the form of a product of the oscillator density matrix p(#)
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and the density matrix of the nonradiative environment in
thermal equilibrium. Such a choice is justified, since a weak
coupling to the dissipative (nonradiative) environment allows
preparing the oscillator in a certain state at time fy given that the
preparation time is short compared to the relaxation time. The
following evolution on the time scale, which largely exceeds
both a);1 and the time it took to prepare the state, can be
described by assuming that at #, there is switched on not only
the coupling to the radiation field but also the stronger (but still
weak) coupling to the nonradiative environment. Corrections
to the dynamics due to the switching are well understood; they
are small in the considered case [34].

The time evolution of the oscillator density matrix in the
rotating frame is then often described by Eq. (14). To study
transient radiation, we set p(ty) = |¢g){(¢g), where ¢g is an
RWA eigenstate in which the oscillator is prepared at #.

For not very strong driving, F < V, function ¢z has a
contribution of only a few Fock states. Respectively, the
oscillator will radiate only a few photons as it comes to the
stationary state. Then, rather than measuring the radiation
power W(S2,t) it is more feasible to measure the total
energy emitted over the transient time. The observation time
should exceed the relaxation time to enable sufficient spectral
resolution.

The energy of the transient radiation has to be separated
from the energy that the oscillator emits in the stationary
state. This can be done by noting that the latter energy
is proportional to the observation time. The spectral power
density (power per unit frequency) in the stationary regime is
given by Eq. (15) written for t — oo [24]. Therefore one can
define the transient radiation spectral density as the integral
over time of the difference of the emitted power (15) and the
power emitted in the stationary regime. Writing this spectral
density as QE%(Q2) Er,q(R2), we obtain

Eva(@) = f At Qradl Q.1 — 0,p0(00) — pul. (16)

fo

Here, py, is the stationary density matrix of the driven oscillator
and the nonradiative environment.

The spectral density E;,q(2) is given by the difference
between the irradiated energy and the energy that would be
irradiated into the same spectral interval if the system were
stationary. This difference is accumulated over a sufficiently
long time that largely exceeds the relaxation time. By con-
struction, it can be positive or negative.

As the oscillator decays from the initial state ¢g, it emits
radiation at frequencies wr/2 + (E — E’)/h, where E’ is the
RWA energy of a state ¢ into which the oscillator can make a
dipolar transition from ¢g. In contrast, in the stationary state,
the oscillator generally can be found in the both states ¢g,¢,
with different probabilities. Depending on these probabilities,
it radiates at both frequencies wr/2 £ (E — E’)/h generally
with different intensities. As a result, in the spectrum E,4(£2)
one may expect a peak or a dip at wr/2 + (E — E’)/R, but
only a dip at wg/2 — (E — E')/h.

Figures 9(a) and 9(b) show the spectrum E,4(£2) when the
oscillator is initially in the RWA eigenstate ¢ prepared from
the vacuum |0) by adiabatically ramping up the driving field.
The driving frequency is chosen so that ¢ has the second

053841-7



YAXING ZHANG AND M. 1. DYKMAN

0.000
& -0.005 a
= ]
£ -0.010 o
[ [
-0.015 ~06 o552
-0.020 08 FIV
-15 -1(?1_—5 /20)/F5 10 15 ©7-20-10 0 10 20 30 40 50
WF (Q~wg/2)/T
0.025 0.10
() (d)
0.020 0.08
= —~ 0.06
g 0015 S
& 0.010 o 0.04
—~ —~
0.005 0.02
0.000 0.00

-15 - 10 15 -20 -10 0 10 20 30

10 -5 0 5
(@-wr/2)/T (Q-wp/2)T

FIG. 9. The transient and steady-state spectra of radiation emitted
by a parametrically driven oscillator. The scaled detuningis §wp/V =
1.8; the scaled decay rate is I'/ V = 0.1. (a,b) The transient spectrum
E..a(2), Eq. (16), for the second lowest even RWA eigenstate, which
can be prepared adiabatically from the oscillator ground state |0)
by ramping up the field to £/V = 0.1 in (a) and to F/V =1 in
(b). The insets show the dependence of the RWA energy levels on
F'; the adjacent (blue) dashed and solid lines refer to odd and even
states, respectively, whereas the vertical (black) dashed lines indicate
the above driving amplitudes. (c,d) The steady-state power spectrum
with the same parameters as in (a) and (b), respectively.

lowest RWA energy among even states; see the insets. The
transient radiation is dominated by transitions from the state
¢r to the lowest odd state ¢p. In this case, for a strong
driving field E — E' = 2h[FSwr + F)]V/? corresponds to the
spacing between the two lowest intrawell states of Hgrwa
in Fig. 1. For weak driving, E — E’ = li(Swr — V); the
frequency wr/2 — (E — E')/h = wy + V is the frequency of
the transition from the first excited state to the ground state of
the undriven oscillator. Figures 9(a) and 9(b) refer not to these
limiting cases but to the intermediate field strengths.

As expected, the spectrum E.,4(€2) displays a peak at
wr/2+ (E — E')/k for relatively strong driving and a small
dip at this frequency for weak driving. It also displays a
characteristic pronounced dip at wr/2 — (E — E’)/k in both
cases. In addition, for strong driving, the spectrum has a
negative narrow peak at wpg /2 due to the interwell transitions
[24]. For a comparison, Figs. 9(c) and 9(d) show the steady-
state radiation power spectrum Qg (€2) = Qraa(£2,00,p5) for
the same parameters as in Figs. 9(a) and 9(b), respectively.

VII. CONCLUSIONS

We have studied preparation of quasienergy states of a
nonlinear oscillator. We found that various states can be
prepared with high accuracy in a finite time by simply linearly
increasing in time the amplitude of the parametric driving.
The driving frequency wp was chosen to be close to twice
the oscillator eigenfrequency wyp, so that strong excitation of
the oscillator could be achieved for a comparatively weak
driving field. The prepared state sensitively depends on the
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interrelation between the detuning of the driving frequency
dwr = wr/2 — wp and the nonequidistance V of the oscillator
energy levels due to the nonlinearity (in frequency units).

An important factor for the state preparation is that the
quasienergy states are either even or odd with respect to
inversion in the phase space. The states of different parity
are not coupled by the driving. This allows one to prepare on
demand an arbitrary even quasienergy state just by slowly
ramping up the driving, if the oscillator is initially in the
ground state. The resulting states have very different structures
in phase space, as evidenced by the Wigner tomography.
A similar analysis shows that an arbitrary odd state can be
prepared, if initially the oscillator is in the first excited state.

A remarkable feature of the system related to its symmetry
is that the oscillator energy levels calculated in the rotating
wave approximation do not cross or anticross with the
increasing driving amplitude. Rather the neighboring RWA
energy levels of even and odd states approach each other
pairwise. At the same time, the levels of the opposite-parity
states can cross with varying wp. This crossing does not lead
to crossing of the quasienergy levels. Where the RWA energy
levels cross, the quasienergy levels are separated by hwg /2.

It is also important for the state preparation that, in the limit
of zero driving, the RWA energy spectrum can simultaneously
have several double-degenerate levels. Such degeneracy corre-
sponds to either a multiphoton or a subharmonic resonance. By
tuning the driving frequency, one can bring the RWA energy
levels closer or further away from the pairwise degeneracy.

The degeneracy of same-parity states provides an effective
way of preparing superpositions of quasienergy states. It is
based on nonadiabatic transitions induced by the increasing
driving amplitude. The field leads to the state mixing that
depends on how fast it is increased. The problem differs from
the standard Landau-Zener problem, since the initial state is
close to degeneracy and the field is ramped up in a finite time.
As a result, for a linearly increasing field, the probability of
the nonadiabatic transition falls off as a power law, rather than
exponentially, with the Landau-Zener parameter A /s, where
A is the level spacing and s is the ramp-up speed.

Dissipation due to the coupling to a thermal reservoir
reduces the fidelity of the state preparation. However, away
from the level degeneracy, the effect of the dissipation is small,
if the oscillator nonlinearity parameter V exceeds the decay
rate I". Then one can ramp up the driving at a rate that is much
smaller than the quasienergy level spacing, yet much larger
than the decay rate. Fluctuations of the system parameters and
of the driving power can also reduce the fidelity. Their effect
is small if their bandwidth is small compared to V or if they
are sufficiently weak, so that their effect does not accumulate
over the duration of the state preparation.

Because of dissipation, the parametric oscillator prepared
in a given quasienergy state will ultimately come to a
stationary state. Our results show that the prepared state can
be characterized by studying the transient radiation of the
oscillator. This method is complimentary to the commonly
used Wigner tomography. It can be particularly useful for
investigating quasienergy states of cavity modes in microwave
cavities, the area of much current interest. The above analysis
suggests a simple way of preparing various quasienergy states
in such cavities as well as in other systems, for example,
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Josephson junctions, that can be modeled by nonlinear
quantum parametric oscillators.
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APPENDIX A: FOURIER SERIES
FOR QUASIENERGY STATES

The eigenvalue problem for the periodic part u.(¢) of the
Floquet wave function defined in Eq. (2) reads

eug(t) = [H(t) — ihd;Jus (). (AL)

Since u.(t) and H(t) are both periodic in time, it is
convenient to expand them in Fourier series. It is also
convenient to write u.(¢) in the basis of the Fock states |n)
of the harmonic oscillator with frequency wy. Then u.(¢) =
> i Ukn exp(—ikwpt)|n) and Eq. (A1) takes the form of the
standard eigenvalue problem

k'\n’
EUk,n = E Mk,n Uk ns

k'\n’

1
M;f,}, = (& — khwr)d képw + ZFQ,fnr((Skng + 8k k1)

(A2)

where g2, = (n|g*|m) and &, is the nth energy level of the
Duffing oscillator in the absence of driving; to the leading order
in the nonlinearity &£, = hlwon + V(n? + n)/2]. The sum runs
overk=0,+1,+2,...andn =0,1,2,....

The matrix elements g2, are nonzero for n =m and
m %+ 2. Therefore the driving term o F couples u;, to
Ukl nt2,Ukx1,,. However, only the coupling to u; 42 and
Uk—_1,—2 18 resonant, since the diagonal elements of matrix M
for such u are close; for example, (£, — khiwp) — [E40 —
(k 4+ Dhwr] = 2héwr — RV (2n + 3) is small compared to
hiwp. Therefore, one can limit the analysis to a set Gg,
of the variables uy , resonantly coupled to uy,. It has the
form Gy, = (Ui’ nyow k' € Z and k' > —n/2}. This is the
rotating wave approximation in the Floquet formulation (A1).

The sets G, with different k but the same n are equivalent:
indeed, changing k — k; corresponds to changing ¢ — ¢ +
(k — k1)hwr in Eq. (A2). Since ¢ is defined modulo Ziw, such
change makes no difference. We can then simplify Gy, as
follows. Consider first even n, i.e.,n = 2n’, and set k = n’:

Gk,2n’ = Gn/,2n’
= {up s onsw k' =—n', —n'+1,...}=Gpo. (A3)

In the last equation, we simply redefined &’ to absorb n’ in the
new definition.
Similarly, for odd n, where n = 2n’ + 1,

Grows1 = Go1. (A4)
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The simplification described by Eqgs. (A3) and (A4) allows
one to reduce Eq. (A2) to two sets of equations:

(&6 — Ex + khowp)ug 2
= F[k(2k — Dug—1,21—2 + (k + 12k + D1 2642],
(6 — Ey1 + khiwp)ug 2x+1
= FIk(k + Dug-1.2%-1 + (k + Dk + 121431
(AS)

where F = F /4wy ~ F/2wr and we used the explicit form
of the matrix elements (n|q?|n % 2).

Equation (A5) coincides with the RWA Schrodinger equa-
tion E¢r = Hrwa@g if one writes ¢ g in the basis of the Fock
states and replaces ¢ with E using Eq. (4).

APPENDIX B: SEMICLASSICAL ANALYSIS
OF THE RWA HAMILTONIAN

For completeness, here we present, following [32], the
description of the scaled RWA Hamiltonian function g(Q, P)
for large driving. For u < —1, function g has one minimum
at (Q,P)=1(0,0). For —1 < p < 1, the minimum at (0,0)
becomes a saddle point and there appear two minima located

at (Q,P) =(£Q,0),0¢ = /1 + 1. For i > 1, the saddle
point at (0,0) becomes a minimum again and there appear two

saddle points at (Q,P) = (0, =/ — 1).

Of primary interest in this paper is the regime 0 < p < 1
where the quasienergy spectrum can display degeneracy and
RB degeneracy. We expand g about the minimum at (Qy,0) to
second order in Q — Qg and P:

g~ (u+ D(Q — Q0)* + P> + gumin, (B1)

where 8min = _(/J' + 1)2/4
Introducing ladder operators b,b! defined as

0— Q= \/gw + D)7ABT + b),

P= i\/g(u + DY - b)

([b,b'] = 1), we write the Hamiltonian g(Q, — iAdg) for low-
lying intrawell eigenstates in the form

8 ~ )\wmin(btb + 1/2) + &min>
Omin = 2¢/ 1 + 1. (B2)

The eigenstates of operator b'b give the intrawell states used
in the main text.

APPENDIX C: NONADIABATIC
TRANSITION AMPLITUDE

The equations for C4(¢) in Sec. IV can be rescaled to the
form of the Weber differential equation:

d’C. 4 1
—ZFip+-|CL=0,
dzzi +|: 4 :sz+2] +
p=A%2s, z4 =~ 2seT (CI)
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The general solution to this equation is a linear combination
of two parabolic cylinder functions [35]:

Ci(z) = AxDxip-1(Fizs) + BLD=ip(z4). (C2)
Coefficients Ay, By can be found from the initial values of
C+(0) with account taken of the relation i/iC+(0) = AC+(0).

Using the asymptotic expansion D, (z) & exp(—z*/4)z¢ for
|z| = oo,largz| < %n, we find to the first orderin 1/¢

Ci(t) ~ Biaie$i9(1) +Aiaieiie(”+in/4(25t2)71/2,

oz+=exp|:ﬂ—£(lnp—l):| — o, (C3)
4 2
where 6(¢) is given by Eq. (12).

For |A| < v(t) we have Cy ~ C; + (A/2v)C_and C| ~
C_ — (A/2v)C4. One can then immediately find the coeffi-
cients o4 |, B4, in Eq. (11). In particular, oy = Byay,0) =
B_o_.
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Of primary interest to us is the limiting value C; ;(00) &
ay, . For the considered initial condition C,(0) = C_(0) =

1/ «/E we find that

*y = Ai[ﬁr<¢%p> + sgn(A)(£1 + i)F(l q;”’)}
AL = A* = (2p/e) iPI2(e3P/4 — g73TP/4y
X \/Fr(ip)/4«/§n, (C4)

where the upper sign refers to o4 and the lower sign refers to
ay; I'(x) is the gamma function.

The expressions for a4 | in the adiabatic limit p — oo can
be obtained from Eqgs. (C4) using the asymptotic form of the
gamma function I'(z) for |z|] — oo [36]. They were used in
Eq. (13).
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