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Mollow triplet through pump-probe single-photon spectroscopy of artificial atoms

Ya. S. Greenberg* and A. N. Sultanov†

Novosibirsk State Technical University, Novosibirsk, Russia
(Received 17 October 2016; revised manuscript received 17 April 2017; published 12 May 2017)

We analyze a photon transport through a one-dimensional open waveguide side coupled to the N -photon
microwave cavity with embedded an artificial two-level atom (qubit). The qubit state is probed by a weak signal
at the fundamental frequency of the waveguide. Within the formalism of projection operators and a non-Hermitian
Hamiltonian approach we develop a one-photon approximation scheme to obtain the photon wave function, which
allows for the calculation of the probability amplitudes of the spontaneous transitions between the levels of two
Rabi doublets in an N -photon cavity. We obtain analytic expressions for the transmission and reflection factors
of the microwave signal through a waveguide which contains the information of the qubit parameters. We show
that for a small number of cavity photons the Mollow spectrum consists of four spectral lines, which is a direct
manifestation of the quantum nature of light. The results obtained in the paper are of a general nature and can
be applied to any type of qubits. The specific properties of the qubit are only encoded in the two parameters: the
energy � of the qubit and its coupling λ to the cavity photons.
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I. INTRODUCTION

The coherent coupling of a superconducting qubit to
the microwave modes of a one-dimensional (1D) coplanar
waveguide transmission line has been intensely investigated
over the last years, both experimentally and theoretically. As
compared with the conventional optical cavity with atomic
gases, superconducting qubits as artificial atoms in solid-state
devices have significant advantages, such as technological
scalability, long coherence time, which is important for the im-
plementation of the quantum gate operations, huge tunability,
and controllability by external electromagnetic fields [1–4].
Another advantage is an on-chip realization of strong and
ultrastrong-coupling regimes [5,6] previously inaccessible to
atomic systems. This enables us to explore novel quantum phe-
nomena emerging only in this regime. Furthermore, solid-state
superconducting circuits with embedded Josephson junction
qubits have reproduced many physical phenomena known pre-
viously from quantum optics, such as Kerr nonlinearities [7,8],
electromagnetically induced transparency [9–12], the Mollow
triplet [13–17], and Autler-Townes splitting [9,13,18].

As the Mollow triplet is a clear manifestation of the coherent
nature of the light-matter interaction, its fluorescent or trans-
mission spectra can be explained considering the pumping
light classically [19]. Instead of looking at the emission
fluorescent spectrum, here we study the transmission of a
single photon, which induces the transitions in a preliminary
pumped cavity. The use of a single-photon source as a probe
reveals a marked influence of the quantum nature of light on the
Mollow spectra and allows us to determine the response to the
input of a single injected photon [16,17,20]. Thus, a theoretical
framework that allows one to directly calculate the response
of such a system to a single injected photon is justified.

A conventional technique, which is used to study the photon
transport in 1D geometry, is based on the master equation
for the density matrix. It allows one to find an analytic
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solution only for N = 1 [21]. For N > 1 the solutions of the
master equation are usually being solved approximately by
numerical integration [22]. To our knowledge, even for N = 2
the analytic expressions for photon transport coefficients are
not known.

From the other point, this technique is not quite suitable for
single-photon measurements since it operates with the average
quantities. A more appropriate approach for the description
of a single-photon transport is the calculation of the photon
wave function which carries the information about quantum
dynamics of the photon-matter interaction [23,24].

In the present paper we consider the transmission and reflec-
tion Mollow spectra for an artificial atom (qubit) embedded
in the N -photon cavity which is side coupled to the open
microwave waveguide. We find the explicit expressions for
the photon wave functions which describe the scattering of a
single photon on the atom-cavity system with any value N of
preliminary pumped cavity photons.

Our analysis is based on the projection operators formalism
and the method of the effective non-Hermitian Hamiltonian,
which has many applications for different open mesoscopic
systems (see review paper [25] and references therein).
Recently this method has been applied to photon transport
through a 1D open transmission line with N embedded
qubits [26].

We find the analytic expressions for the probability ampli-
tudes of the spontaneous transitions induced by an injected
photon in an N -photon cavity. This enables us to find the
forms of spectral lines depending on the qubit parameters and
on the number of photons in a cavity. We show that for a
small number of cavity photons the transmission and reflection
spectra consist of four lines, which is a direct manifestation of
the quantum nature of light. As the number of cavity photons
is increased, two central peaks merge, giving a conventional
Mollow triplet.

The results obtained in the paper are relevant for the ex-
periments where a qubit + cavity system is preliminary, being
driven by a fixed-frequency pump field to one of its excited N -
photon states, with transitions to higher-lying states being stud-
ied by a weak, variable-frequency single-photon probe [20].
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Another application of our results is a phenomenon which
is called a photon blockade. The excitation of the nonlinear
atom-cavity system by a first photon at the frequency ω blocks
the transmission of a second photon at the same frequency [27].

The paper is organized as follows. In Sec. II we briefly
describe the projection operators formalism and the method of
effective non-Hermitian Hamiltonian. In Sec. III we define
the Hamiltonian of a 1D waveguide side coupled to the
N -photon microwave cavity with an embedded qubit and
qualitatively describe the process of a single-photon scattering.
The analytical expression for the effective non-Hermitian
Hamiltonian is given in Sec. IV. In this section we find the
spectrum of the cavity resonances and their dependence on
the cavity decay rate �, cavity-qubit coupling strength λ, and
the number of cavity photons N . The wave function of the
scattering photon is found in Sec. V, where we obtain the
explicit analytical expressions for the probability amplitudes
which describe spontaneous transitions between the levels of
two Rabi doublets. These amplitudes are directly related to the
transmission and reflection factors and show representative
photon spectra. The results obtained in Sec. V are applied
in Sec. VI, where the transmission amplitudes have been
analyzed in detail. In Sec. VI A we analyzed the case N = 2
and showed that our results are consistent with the experiment
in Ref. [20]. In addition, we show in Sec. VI A that in the
experimental scheme of Fink et al. [20] our results predict
the detection of a single photon with the frequency, which is
shifted from that of the input photon by a Rabi frequency.
The probability amplitudes for this process are calculated.
The application of our results to the description of a photon
blockade is given in Sec. VII.

II. PROJECTION FORMALISM AND EFFECTIVE
NON-HERMITIAN HAMILTONIAN

We start with a brief review of projection formalism,
highlighting only those aspects that are required for the paper
here. The application of this method to photon transport was
described in more detail in Ref. [26].

According to this method the Hilbert space of a quantum
system with the Hermitian Hamiltonian H is formally sub-
divided into two arbitrarily selected orthogonal projectors, P

and Q, which satisfy the following properties:

P + Q = 1; PQ = QP = 0; PP = P ; QQ = Q.

(1)

Keeping in mind the scattering problem, we assume that Q

subspace determines a closed system and, therefore, consists
of discrete states, and P subspace consists of the states from
continuum. Those states of subspace Q which will turn out to
be coupled to the states in subspace P will acquire the outgoing
waves and become unstable. Then, for this scattering problem
the effective Hamiltonian which describes the decay of the Q

subsystem becomes non-Hermitian and has to be written as
follows:

Heff(E) = HQQ + HQP

1

E − HPP + iε
HPQ, (2)

where HXY = XHY , with X,Y being Q or P .

FIG. 1. Waveguide side coupled to the N -photon cavity with
imbedded qubit.

The effective Hamiltonian (2) determines the resonance
energies of the Q subsystem, which are due to its interaction
HPQ with continuum states from system P . These resonances
lie in the low half of the complex energy plane, z = Ẽ − ih̄�̃,
and are given by the roots of the equation

D(z) ≡ det(z − Heff) = 0. (3)

The imaginary part �̃ of the resonances describes the decay of
Q states due to their interaction with continuum P states.

The scattering solution for the state vector of the Shrödinger
equation H� = E� reads [28]

|�〉 = |in〉 + 1

E − Heff
HQP |in〉

+ 1

E − HPP + iε
HPQ

1

E − Heff
HQP |in〉, (4)

where |in〉 is the initial state, which contains continuum
variables and satisfies the equation HPP |in〉 = E|in〉. The
last term in expression (4) describes to all orders of HQP

the evolution of initial state |in〉 under the interaction between
P and Q subspaces.

It is useful to stress that the formal results (2) and (4) do not
require any explicit expressions for the projection operators.

III. SINGLE-PHOTON SCATTERING

We consider a microwave 1D waveguide side coupled to a
cavity with an embedded qubit, as is shown in Fig. 1.

The Hamiltonian of the system reads

H =
∑

k

h̄ωkc
†
kck + 1

2
h̄�σz + h̄ωca

†a + h̄λ(a† + a)σX

+ h̄ξ
∑

k

(c†ka + cka
†), (5)

where the first three terms are, respectively, the Hamiltonian
of the waveguide photons, the Hamiltonian of the qubit with
the excitation frequency �, and the Hamiltonian of one mode
cavity. The fourth and fifth terms describe the qubit-cavity
interaction with the strength λ and the interaction between the
waveguide and the cavity with the strength ξ .

As we study a single-photon probe we assume that at every
instant there is either one photon in a waveguide and N − 1
photons in a cavity or no photons in a waveguide and N photons
in a cavity. Therefore, we assume that our Hilbert space is
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FIG. 2. A scheme of a scattering of a single photon on the state
|ϕ1〉 of (N − 1) cavity when the transition |ϕ1〉 → |χ2〉 is excited.

restricted to the following state vectors:

|1〉 ≡ |0〉 ⊗ |g,N〉, |2〉 ≡ |0〉 ⊗ |e,N − 1〉, (6)

|k1〉 ≡ |k〉 ⊗ |g,N − 1〉, |k2〉 ≡ |k〉 ⊗ |e,N − 2〉. (7)

The states (6) correspond to no photons in a waveguide, N

photons in the cavity, and a qubit in the ground g or excited
state e. The states (7) correspond to the situation where one
photon with a momentum k is in a waveguide, N − 1 photons
in the cavity, and a qubit in the ground g or excited state e.

Due to the interaction between cavity photons and a qubit,
each of the pair of states (6) and (7) are being hybridized to two
pairs of dressed states |χi,0〉 = |0〉 ⊗ |χi〉, |ϕi,k〉 = |k〉 ⊗ |ϕi〉,
where

|χi〉 = αi |g,N〉 + βi |e,N − 1〉, (8)

|ϕi〉 = ai |g,N − 1〉 + bi |e,N − 2〉. (9)

Every pair of these dressed states is split by a Rabi frequency
corresponding to the number of the cavity photons:

�
(N)
R =

√
�2 + 4λ2N, (10)

where � = ωc − �. For subsequent calculations we need
only the explicit form of the superposition factors ai and
bi in Eq. (9), which can be expressed in terms of the angle
variable θ : tan 2θ = −2λ(N − 1)/� with a1 = b2 = sin θ ,
b1 = −a2 = cos θ .

The process of the photon scattering can be qualitatively
described as follows. Before a probing photon enters a
waveguide the N − 1 photon cavity + qubit system is in one
of its hybridized states |ϕi〉(i = 1,2) (9) that was prepared by
a preliminary pumping. The multiple interaction of a probing
photon with a cavity leads to the formation of quasienergy
hybridized states (8). These states subsequently decay, with
one photon being escaped to a waveguide and a cavity +
qubit system being left in one of the states (9). This picture
is illustrated in Fig. 2, where the incoming photon excites
the |ϕ1〉 state to the state |χ2〉 at the frequency ω = ωC −
1
2 (�(N)

R + �
(N−1)
R ). The state |χ2〉 subsequently decays either

to the initial state |ϕ1〉 with the outgoing photon having the
excitation frequency ω, or to the state |ϕ2〉 with the outgoing
photon having the frequency ω + �

(N−1)
R .

Hence there four possible outcomes of a probing photon
scattering, depending on which of the two states (9) were

FIG. 3. Four outcomes of the scattering process. Two upper
graphs correspond to elastic scattering, while two lower graphs
correspond to inelastic sidebands. Blue circles denote the initial state,
red ones denote the final state.

prepared by a preliminary pumping. These four possible
channels are shown in Fig. 3.

Two channels describe the elastic scattering when the initial
and final states of the N − 1 cavity + qubit system before and
after scattering are the same, and the energies of incoming and
outgoing photons are equal. The other two channels describe
the inelastic process when the outgoing photon gains or loses
its energy by amount of h̄�

(N−1)
R . Every channel shown in

Fig. 3 corresponds to a specific transmission factor that will
be calculated below. Each channel has two resonances which
correspond to two transitions from N photon cavity to one of
the final states ϕi . For example, channel A in Fig. 3 has one
resonance at the frequency ω = ωC − 1

2 (�(N)
R + �

(N−1)
R ) that

induces the transition |ϕ1〉 → |χ2〉 (see Fig. 2). The other res-
onance is at the frequency ω = ωC + 1

2 (�(N)
R − �

(N−1)
R ) that

induces the transition |ϕ1〉 → |χ1〉. Each of these resonances
subsequently decays to the initial state |ϕ1〉.

IV. CAVITY RESONANCES

In accordance with the projection operators formalism we
define two mutual orthogonal subspaces as follows:

Q = |1〉〈1| + |2〉〈2|, (11)

P =
∑

k

2∑
n=1

|kn〉〈kn| = L

2π

∫
dk

2∑
n=1

|kn〉〈kn|, (12)

where L is the length of the waveguide, and the orthogonality
condition for P subspace vectors is

〈kn|k′
m〉 = 2π

L
δn,mδ(kn − k′

m), (13)

where n,m = 1,2.
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The application of the method requires the continuum state
vectors to be the eigenfunctions of the Hamiltonian HPP . This
is not the case for (7), since HPP couples two vectors |k1〉
and |k2〉. It is not difficult to show that the state vectors |ϕi,k〉
defined in Eq. (9) are the eigenfunctions of HPP with the
energies

Ei/h̄ = − 1
2ωc + ωc(N − 1) + ω − 1

2 (−1)i�(N−1)
R , (14)

where ω is the frequency of incident photon.
The matrix elements of Heff in the Q subspace is as follows:

〈1|Heff|1〉 = ωCN − 1
2� − jN�, (15a)

〈2|Heff|2〉 = ωC(N − 1) + 1
2� − j (N − 1)�, (15b)

〈1|Heff|2〉 = 〈2|Heff|1〉 = λ
√

N, (15c)

where we introduce the width of the cavity decay rate � =
Lξ 2/vg . The details of the calculation of Eqs. (15a)–(15c) are
given in Appendix B.

Due to the interaction of the Q states (6) with continuum
states (7), the former acquire the resonances whose energies
and widths become dependent on the coupling parameter ξ in
Hamiltonian (5), which defines the width of the cavity decay
rate �. These resonances are given by the complex roots of
Eq. (3). For Heff given by the matrix elements (15a)–(15c)
this equation reads

D(z) = (
z/h̄ + 1

2� − ωcN + jN�
)

× (
z/h̄ − 1

2� − ωc(N − 1) + j (N − 1)�
)

− λ2N = 0, (16)

where the complex energy z is given by (14), where the
frequency of incident photon ω is replaced by the complex
value ω̃.

Every two Q states (6) may decay in two ways: either to
the state |ϕ1,k〉 with the energy E1 or to the state |ϕ2,k〉 with
the energy E2. Accordingly, in both cases (i = 1,2) we obtain

D(Ei) = (ω − ω̃i+)(ω − ω̃i−), (17)

where ωi± are complex roots of Eq. (16):

ω̃1,± = ωC − 1
2

[
�

(N−1)
R + j (2N − 1)�

]
± 1

2

√
(� − j�)2 + 4λ2N, (18a)

ω̃2,± = ωC + 1
2

[
�

(N−1)
R − j (2N − 1)�

]
± 1

2

√
(� − j�)2 + 4λ2N. (18b)

Since ω̃2,± = ω̃1,± + �
(N−1)
R , the dependence of real and

imaginary parts of these resonances on � is the same for both
cases. The dependence of the resonance widths on � is shown
in Fig. 4 for � = 0. The position of splitting corresponds to
the point 2λ

√
N = �.

The real parts of (18a) and (18b) correspond to the energy
spacing between the levels of two manifolds shown in Fig. 2.
The transitions ϕ1 → χ2, ϕ1 → χ1, ϕ2 → χ2, ϕ2 → χ1 corre-
sponds to Re(ω̃1−), Re(ω̃1+), Re(ω̃2−), Re(ω̃2+), respectively.

Figure 5 shows the dependence of resonance energies on �

for � = 0, where for � > 2λ
√

N the resonance energies do

FIG. 4. The dependence of the resonance widths on the cavity
decay rate � for � = 0. For � < 2λ

√
N all widths are the same.

The splitting starts at the point � = 2λ
√

N . Dashed (blue) line
corresponds to ω̃1,−,ω̃2,−. Solid (red) line corresponds to ω̃1,+,ω̃2,+.

not depend on � and are shifted by �
(N−1)
R . For � < 2λ

√
N

there exist all four resonances separately. For nonzero detuning
� the widths are split for any �, as shown in the upper
plot of Fig. 6. The real parts of resonance energies displays
all four components, as shown in the lower plot of Fig. 6.
The dependence of resonances on the photon number N

for weak and strong coupling is shown in Fig. 7 for zero
frequency detuning � = 0. From (18a) and (18b) we can
analyze the dependence of resonance frequencies on the
coupling strength λ. For relatively small coupling λ/� <

1/2
√

N , Re(ω̃1+) = Re(ω̃1−) and Re(ω̃1+) = Re(ω̃1−). The
splitting begins at the point λ/� = 1/2

√
N . As the ratio λ/�

is further increased, the frequencies (18a) and (18b) scale
as follows: Re(ω̃1−) ≈ ωc − 2λ

√
N , Re(ω̃2+) ≈ ωc + 2λ

√
N ,

Re(ω̃1+) ≈ ωc + λ/2
√

N, Re(ω̃2−) ≈ ωc − λ/2
√

N . These
features are shown in Fig. 8 for zero detuning and N = 5.

As we show in Sec. V, the transmission factors scale as
1/D(E1) or 1/D(E2). Therefore, the resonances of these
quantities, which are given by the roots (18a) and (18b), reflect
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FIG. 5. The dependence of resonance energy on � for � = 0.
The upper curve corresponds to ω̃2,±, and the lower one to ω̃1,±. For
� > 2λ

√
N the resonance energies do not depend on � and are shifted

by �R . For � < 2λ
√

N there exist all four resonances separately.

the intrinsic properties of the cavity-qubit system. We will see
below that transmission and reflection factors are peaked at the
energies which correspond to the real parts of (18a) and (18b).

V. THE WAVE FUNCTION OF THE SCATTERING PHOTON

The key notion for the subsequent calculation of photon
transmission and reflection is a transmission matrix

〈j,k′|T |k,i〉 =
2∑

n,m=1

〈ϕj,k′ |HPQ|n〉Rn,m(Ei)〈m|HQP |ϕi,k〉,

(19)

where the matrix Rm,n(E) = [〈m|(E − Heff)|n〉]−1 is calcu-
lated in Appendix C.

In our case the transmission matrix (19) does not depend on
the final momentum k′ (details are given in the Appendices).
The dependence of (19) on initial momentum k is hidden in
the energies Ei (14), which depend on the frequency ω of
incident photon.

FIG. 6. The dependence of imaginary (upper plot) and real (lower
plot) parts of resonances on � for nonzero detuning. The solid (red)
curve at the upper plot corresponds to ω̃1,2+, while the dashed (blue)
curve corresponds to ω̃1,2−.

The quantity (19) describes the process where the incident
photon with momentum k comes into interaction with a
cavity that was initially in the state |ϕi〉 and then escapes with
momentum k′, leaving the cavity in the state |ϕj 〉. Therefore,
four different outcomes of this scattering process for the
transmitted probe signal are possible: two of them correspond
to elastic scattering and two of them correspond to an
inelastic process with the momenta of outgoing photon k′ =
k ± �

(N−1)
R /vg (see Fig. 3). According to these possibilities the

initial state |in〉 in Eq. (4) corresponds to either |ϕ1,k〉 or |ϕ2,k〉:
|�1〉 = |ϕ1,k〉 +

∑
m,n

|n〉Rnm(E1)〈m|HQP |ϕ1,k〉

+
∑
q,i

|ϕi,q〉
E1(k) − Ei(q) + iε

〈i,q|T |1,k〉, (20)

|�2〉 = |ϕ2,k〉 +
∑
m,n

|n〉Rnm(E2)〈m|HQP |ϕ2,k〉

+
∑
q,i

|ϕi,q〉
E2(k) − Ei(q) + iε

〈i,q|T |2,k〉. (21)
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From (20) and (21) we obtain the photon wave functions in the configuration space 〈x|�1〉 and 〈x|�2〉:
〈x|�1〉 = eikx |ϕ1〉 − i�eik|x|t11|ϕ1〉 − i�ei(k+kR )|x|t21|ϕ2〉, (22)

〈x|�2〉 = eikx |ϕ2〉 − i�eik|x|t22|ϕ2〉 − i�ei(k−kR )|x|t12|ϕ1〉, (23)

where kR = �
(N−1)
R /vg .

The quantities tij ,i,j = 1,2 are the probability amplitudes for the spontaneous transitions between the levels of two Rabi
doublets (see Fig. 2). They are related to the transmission matrix as follows: 〈j,k′|T |i,k〉 = 〈ϕj |T |ϕi〉 ≡ ξ 2tj,i . The calculations,
the details of which are given in Appendix D, yield the following expressions for the probability amplitudes:

t11 = 1

4�
(N−1)
R D(E1)

[
N

(
�

(N−1)
R + �

)(
2δ + � + �

(N−1)
R

) + (N − 1)
(
�

(N−1)
R − �

)(
2δ − � + �

(N−1)
R

)
+ 4jN (N − 1)�(N−1)

R �+8λ2N (N − 1)
]
, (24)

t21 = − λ
√

N − 1

2�
(N−1)
R D(E1)

(
2δ + �

(N−1)
R − �

)
, (25)

t22 = 1

4�
(N−1)
R D(E2)

[
N

(
�

(N−1)
R − �

)(
2δ + � − �

(N−1)
R

) + (N − 1)
(
�

(N−1)
R + �

)(
2δ − �

(N−1)
R − �

)
+ 4jN (N − 1)�(N−1)

R � − 8λ2N (N − 1)
]
, (26)

t12 = − λ
√

N − 1

2�
(N−1)
R D(E2)

(
2δ − �

(N−1)
R − �

)
, (27)

where δ = ω − ωc, � = ωc − �.
The positions of resonances are given by the points where

the real parts of the complex roots of D(E1) and D(E2)
are equal to zero. As it follows from (17), every quantity
t11,t21,t22,t12 has two resonant points, while the resonances
of t11 and t21 (or for t22 and t12) lie at the same points. It is
not difficult to find these resonance points for strong coupling
(λ 
 �) and zero detuning (� = 0). The result is as follows:

ω1 = ωc + λ(
√

N − √
N − 1), (28a)

ω2 = ωc − λ(
√

N + √
N − 1), (28b)

for t11 and t21, and

ω1 = ωc − λ(
√

N − √
N − 1), (29a)

ω2 = ωc + λ(
√

N + √
N − 1), (29b)

for t22 and t12.
Equations (22) and (23) are the main results of our paper.

They have a clear physical sense. The transmission signal (at
x > 0) consists of four waves: two elastic scattering waves
with transmission factors T11 = 1 − i�t11, T22 = 1 − i�t22,
and two inelastic scattering waves with transmission fac-
tors T12 = −i�t12, T21 = −i�t21. Accordingly, for reflection
waves (at x < 0) we have Rij = −i�tij .

For every initial state the system was in before the scattering
there are two ways for incoming photons to be scattered
(see Fig. 3). This is seen in Eqs. (22) and (23), where every
scattering route is a superposition of two final states |ϕ1〉 and
|ϕ2〉. The probability amplitudes t11 (24), t21 (25) correspond
to channels A and C in Fig. 3, and the amplitudes t22 (26),
t12 (27) correspond to channels B and D, respectively.

It is worth noting here that the probability amplitudes
in Eq. (22) and (23) describe different output photons. The
amplitudes t11 and t22 are the probabilities to find the output
photon with the same frequency as the frequency of the input
photon, while the amplitudes t21 and t12 are the probabilities
to find the output photon with the frequency which is shifted
from the frequency of the input photon by a Rabi frequency
�

(N−1)
R .
We can show by direct calculation that there exists an exact

condition

|Tii |2 + |1 − Tii |2 + 2|Tji |2 = 1, (30)

where i,j = 1,2 and i �= j in the third term in the left-hand
side of (30). The left-hand side of (30) is a sum of transmitted
and reflected waves for every route shown in Eqs. (22) and (23).
It is tempting to consider Eq. (30) as a condition of the
energy flux conservation. However, in our case, as is seen
from (22) and (23), the energies of the input and output photons
may be different. Condition (30) reflects the conservation of
probability: after the scattering the system must be definitely in
one of the states |ϕ1〉 or |ϕ2〉. Since for every route (22) or (23)
there are two outgoing photons with different frequencies, we
can measure separately all transmission Tij (or reflection Rij )
amplitudes.

VI. TRANSMISSION SPECTRA

As is well known, the classical Mollow fluorescent
spectrum consists of three lines. However, if the number
of cavity photons is small, the distance between the Rabi
levels in neighbor Rabi doublets is not equal to each other:
�

(N)
R > �

(N−1)
R . In this case the fluorescent spectrum for two
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FIG. 7. The dependence of real parts of ω̃1,± and ω̃2,± for weak
(upper plot) and strong (lower plot) coupling on the photon number
N for zero detuning.

FIG. 8. The dependence of the positions of the resonance peaks
on the coupling strength between qubit and cavity photons for � = 0
and N = 5.

adjacent doublets will consist of four spectral lines. These
lines correspond to the spontaneous transitions between states
(see Fig. 2), |χ2〉 → ϕ1〉, |χ2〉 → ϕ2〉, |χ1〉 → ϕ1〉, |χ1〉 → ϕ2〉
with the corresponding frequencies of emitting photons, ωc −
1
2 (�N

R + �N−1
R ), ωc − 1

2 (�N
R − �N−1

R ), ωc + 1
2 (�N

R − �N−1
R ),

ωc + 1
2 (�N

R + �N−1
R ).

The result of our study shows that we obtain the same fre-
quencies for transmitted photons when studying the scattering
of a single photon in 1D geometry via the system shown in
Fig. 1. In addition, we obtained the probability amplitudes
[expressions (24)–(27)] for spontaneous transitions between
levels of two Rabi doublets (see Fig. 2). Below we illustrate the
application of our results to the transmission spectra for N = 2
for strong resonance coupling when the distance between Rabi
levels within N manifolds are given by �

(N)
R (10).

Having in mind to study the effects of adding to a cavity one
extra photon, we find the transmission and reflection factors
for N = 1 where we have either one photon in a waveguide
and no photon in a cavity with a qubit being in its ground
state, or no photons in a waveguide and one photon in a cavity.
In this case, as is seen from Eqs. (24)–(26), the only quantity
which is different from zero is t11, so that for transmission and
reflection we obtain the following:

T
(N=1)

11 = (ω − ω+)(ω − ω−)

(ω − ω+)(ω − ω−) + j�(ω − �)
, (31)

R
(N=1)
11 = −j�(ω − �)

(ω − ω+)(ω − ω−) + j�(ω − �)
, (32)

where

ω± = 1
2 (ωc + �) ± 1

2�
(1)
R . (33)

The expressions (31) and (32) coincide with those known
from the literature [24]. We have here two resonances at the
frequencies ω± with the distance between them being equal to
Rabi frequency �

(1)
R .

If we add one extra photon to the system, we will also have
two resonances for every route (22) or (23). But the picture
is drastically different from the N = 1 case. For example, if
before scattering the system is in |ϕ1〉 state, then each of the
amplitudes t11 and t21 in Eq. (22) has two resonances at the
same frequencies. The first resonance at ωc − 1

2 (�(2)
R + �

(1)
R )

corresponds to the transition from the state |ϕ1〉 to the state
|χ2〉, which subsequently decays either to the initial state |ϕ1〉
[the probability of this process is given by the amplitude
t11 in Eq. (22)] or to the state |ϕ2〉, with the probability
being given by the amplitude t21. The second resonance at
ωc + 1

2 (�(2)
R − �

(1)
R ) corresponds to the transition from the

state |ϕ1〉 to the state |χ1〉, which subsequently decays either to
the initial state |ϕ1〉 with the probability t11 or to the state |ϕ2〉
with the probability t21. Therefore, we see that each resonance
corresponds to two outgoing photons: the frequency of the first
photon is equal to the input frequency, and the frequency of the
second photon is increased as compared with the first one by
the amount �(1)

R . Since the frequencies of these two photons are
different, they can be detected separately and independently
of each other.

In Fig. 9 we compare the transmission coefficients T11 for
N = 1 and N = 2 as a function of the frequency of incident
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FIG. 9. Comparison of transmissions T11 for N = 1 (black, thin
line) and N = 2 (green, thick line) for strong resonant coupling.

photon for the case of strong resonant coupling: λ 
 �, ωC =
�. Two dips which are symmetric relative to ωC are calculated
from expression (31). These dips are located at ωC ± �

(1)
R . The

addition of one extra photon gives rise to the appearance of
two dips, which results from the excitation of the level |ϕ1〉.
These dips are calculated from (24). A shallow dip, which is
located at the frequency ωc − 1

2 (�(2)
R + �

(1)
R ), corresponds to

the transition |ϕ1〉 → |χ2〉 → |ϕ1〉, while a deep dip, which is
located at the frequency ωc + 1

2 (�(2)
R − �

(1)
R ), corresponds to

the transition |ϕ1〉 → |χ1〉 → |ϕ1〉. The distance between two
dips is equal to �

(2)
R . For both cases the frequency of outgoing

photons is equal to the frequency of the input photon.
In Fig. 10 we show the transmission spectrum which is

given by the amplitude t21 in Eq. (22). Here the resonance
points are the same as those in Fig. 9; however, the

FIG. 10. Inelastic transmission spectrum for N = 2 and strong
resonant coupling after the excitation of the |ϕ1〉 state. The outgoing
photon leaves the cavity with the increased frequency ω + �

(1)
R .

FIG. 11. Comparison of transmissions T11 for N = 1 (black,
thin line) and T22 for N = 2 (green, thick line) for strong resonant
coupling.

outgoing photon has the increased frequency ω + �
(1)
R .

After the scattering the cavity is being left in the state
|ϕ2〉. The left peak in Fig. 10 corresponds to transitions
|ϕ1〉 → |χ2〉 → |ϕ2〉 with the frequency of the outgoing
photon ω = ωc − 1

2 (�(2)
R − �

(1)
R ). The right peak corresponds

to transitions |ϕ1〉 → |χ1〉 → |ϕ2〉 with the frequency of the
outgoing photon ω = ωc + 1

2 (�(2)
R + �

(1)
R ).

If initially the system is in the state |ϕ2〉, the scattering wave
function is given by (23). The resonance points are being
shifted on the frequency axis to the right by �

(1)
R . The first

resonance at ωc − 1
2 (�(2)

R − �
(1)
R ) corresponds to the transition

|ϕ2〉 → |χ2〉, while the second one at ωc + 1
2 (�(2)

R + �
(1)
R )

corresponds to the transition |ϕ2〉 → |χ1〉. Each of these
excitations then decays either to the initial state |ϕ2〉 with the
probability amplitude t22 or to the state |ϕ1〉 with the probability
amplitude t12. The transmission spectrum for N = 2 for the
case when the system is left after scattering in the state |ϕ2〉
is shown in Fig. 11. This picture is similar to that shown
in Fig. 9. A deep dip, which is located at the frequency
ωc − 1

2 (�(2)
R − �

(1)
R ), corresponds to the transition |ϕ2〉 →

|χ2〉 → |ϕ2〉, while a shallow dip, which is located at the
frequency ωc + 1

2 (�(2)
R + �

(1)
R ), corresponds to the transition

|ϕ2〉 → |χ1〉 → |ϕ2〉. The distance between two dips is equal
to �

(2)
R . For both cases the frequency of outgoing photons is

equal to the frequency of the input photon.
In Fig. 12 we show in one plot the transmission spectra

which are given by the amplitudes t21 in Eq. (22) and t12

in Eq. (23). The black thin lines show the transmission
spectrum when the system was initially in the state |ϕ1〉 and
after scattering was left in the state |ϕ2〉 with the outgoing
photon with the frequency increased by �

(1)
R . The spectrum

is the same as is shown in Fig. 10. The green thick lines
in Fig. 12 show the transmission spectrum when the system
was initially in the state |ϕ2〉 and after scattering was left in
the state |ϕ1〉 with the outgoing photon with the frequency
reduced by �

(1)
R . The left peak of this spectrum corresponds
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FIG. 12. Inelastic transmission spectra for N = 2 and strong
resonant coupling after the excitation of the state |ϕ1〉 (thin black
line) and the state |ϕ2〉 (thick green line).

to the excitation of the transition |ϕ2〉 → |χ2〉 at the frequency
of ingoing photon ωc − 1

2 (�(2)
R − �

(1)
R ). The state |χ2〉 then

decays to the state |ϕ1〉 with the frequency of outgoing
photon ωc − 1

2 (�(2)
R + �

(1)
R ). The right peak corresponds to the

excitation of the transition |ϕ2〉 → |χ1〉 by the ingoing photon
with the frequency ωc + 1

2 (�(2)
R + �

(1)
R ). The state |χ1〉 then

decays to the state |ϕ1〉 with the frequency of outgoing photon
ωc + 1

2 (�(2)
R − �

(1)
R ).

A. Comparison with the experiment

1. The frequencies of the probing and detected
photons are the same

We show here that our results shown in Figs. 9 and 11
correspond to those measured in Ref. [20], where atom photon
superposition states involving up to two photons have been
studied using a spectroscopic pump and probe technique. The
experiments have been performed in a circuit QED setup in
which a superconducting qubit of transmon type has been
embedded in a high-quality on-chip microwave cavity so that
the frequency of the input (probing) photon and that of the
output (detected) photon coincides. The level diagram of this
system for N = 2 is shown in Fig. 13.

The measurements were performed on resonance (ωc =
�) and under conditions of very strong coupling (λ 
 γ ),
where γ is the qubit dephasing rate. The first and second Rabi
doublets in Fig. 13 are due to the hybridization of the bare
qubit-photon states |g1〉, |e0〉 and |g2〉, |e1〉, respectively.

Our scheme is different from that of Ref. [20] in that
we consider here a side-coupled configuration with the open
broadband waveguide, while in Ref. [20] the measurements
have been performed for a direct-coupled configuration with
a high-Q waveguide. However, the side-coupled transmission
coefficients T11 and T22 can be transformed to direct-coupled
ones by a simple transformation [24]. The transmission
spectra for direct coupling is equal to the side-coupled reflec-
tion spectra: T dc

ii = 1 − Tii,(i = 1,2). Hence, T dc
11 = j�t11,

FIG. 13. Level diagram of a resonant cavity QED system for
N = 2 [20]. Thin blue arrows between |g0〉 and |1±〉 levels are
responsible for the vacuum Rabi mode splitting, which is shown by
black dips in Figs. 9 and 11. Thick solid (red) arrows correspond to
the green dips, and the solid dashed (red) lines correspond to shallow
dips in Figs. 9 and 11.

T dc
22 = j�t22, where t11, t22 are given in Eqs. (24) and (26),

respectively. Therefore, the transmission spectra shown in
Figs. 4(b) and 4(d) in Ref. [20] are the mirror reflection of the
spectra shown in Figs. 9 and 11, respectively. Two dips in these
figures which are symmetric relative to ωc are the signature of
vacuum Rabi mode splitting. For on-resonant strong coupling
these dips are located at ω = ωc ± λ and correspond to the
transitions between ground state |g0〉 and the states |1+〉 and
|1−〉 (thin blue lines in Fig. 13). For on-resonance strong-
coupling conditions these dips give a full extinction of the
transmitted signal. However, if the bandwidth of the uncoupled
waveguide is much smaller than the Rabi mode splitting, the
extinction can be very small (Fig. 4(b) in Ref. [20]).

The original idea in Ref. [20] was to measure the splitting of
a second Rabi doublet. By populating the levels |1+〉 or |1−〉
with a single photon they probed the transitions between |1±〉
and |2±〉 levels. The transitions |1+〉 → |2+〉, |1+〉 → |2−〉
are described by the transmission amplitudes T11, while the
transitions |1−〉 → |2−〉, |1−〉 → |2+〉 are described by the
transmission amplitudes T22. The deep dips, which are shown
by the green lines in Figs. 9 and 11 lie between vacuum Rabi
mode lines. These dips, which are located at the frequencies
ω = ωc + (

√
2 − 1)λ, ω = ωc − (

√
2 − 1)λ and correspond

to the transitions |1+〉 → |2+〉, |1−〉 → |2−〉, were observed
in Ref. [20] [Figs. 4(b) and 4(d)]. However, they failed to
observe the transitions |1+〉 → |2−〉 and |1−〉 → |2+〉, which
are shown by dashed red lines in Fig. 13. As was noted in
Ref. [20], the amplitudes of these transitions were very small
to be observed. These amplitudes can be seen as shallow dips in
Figs. 9 and 11. Using the data from [20], ωc/2π = 6.94 MHz,
λ/2π = 154 MHz, �/2π = 0.9 MHz, we find from Eqs. (24)
and (26) the ratio of the amplitudes of the shallow dip to that
of the main dip. For both cases shown in Figs. 9 and 11 this
ratio is approximately equal to 3 × 10−3.
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FIG. 14. Reflection spectrum for broadband single-photon de-
tection. Black arrows show the frequency of the output photon, the
frequency of which is greater than the frequency of the input photon
by the value of Rabi splitting �

(1)
R . See text for details.

2. The frequencies of the probing and detected
photons are different

It is important that in Ref. [20] the frequencies of the input
and output photons were the same. Thus, as we show above,
the experimental results in Ref. [20] can be explained by the
amplitudes t11 and t22 in Eqs. (22) and (23).

However, the Eqs. (22) and (23) predict another effect,
which to the best of our knowledge has not been observed
in single-photon experiments. We mean the registration of
the output photon with a frequency shifted from that of the
input photon by a Rabi frequency �

(N−1)
R . The amplitudes

responsible for this process are given by the quantities t21 (25)
and t12 (27). The corresponding resonances are shown in
Fig. 12. The resonance frequencies in this figure correspond to
the frequencies of the input photons which excite the transition
in the cavity, but the frequency of the outgoing photons
is different. For example, two peaks in Fig. 10 correspond
to the excitation of transitions (see Fig. 13) |1+〉 → |2−〉
(left peak) and |1+〉 → |2+〉 (right peak) with subsequent
decay to the state |1−〉 (|2±〉 → |1−〉), leaving the output
photon with the frequency increased by 2λ. Therefore, the
amplitude of, for example, the left peak in Fig. 10, should be
interpreted as the probability to find the output photon with
the frequency ωc − (

√
2 − 1)λ if the frequency of the input

photon is ωc − (
√

2 + 1)λ.
The detection of the output photons with the frequency

different from that of the input photons can be realized using
a vector network analyzer at the output of a broadband (low-
Q) waveguide. In order to detune from the input photons, it
is better to measure the reflected spectra. For a broadband
waveguide the reflected coefficient is given by the quantity

|Ri | ≡ |〈x|�i〉 − eikx |ϕi〉| = �

√
|tii |2 + |tj i |2, (34)

where i,j = 1,2 and i �= j in tj i in the right-hand side
of Eq. (14). The quantities R1 and R2 correspond to the
preliminary populated levels |1+〉 and |1−〉, respectively.

The reflection spectrum for the case when the level |1+〉
is preliminary populated is shown in Fig. 14 by a thick blue
line. The left peak at the point ω/ωc ≈ 0.75 is formed mainly
by the contribution of t21. As we explained before, this peak
gives the probability to find the output photon at the frequency
increased by 2λ. This point is shown by the left arrow in Fig. 14.
A central large blue peak is formed mainly by the contribution
of t11. This means that at this input frequency ω ≈ 1.04ωc we
observe the output photon with the same frequency. However, a
small contribution of t21 to the central peak (shown by thin red
line peak at ω/ωc ≈ 1.04) results in the output photon at the
frequency ω ≈ 1.24ωc (shown by the right arrow in Fig. 14).

The same picture exists for the case when the level |1−〉
is preliminarily populated. Here the reflection is given by
the quantity R2, and the output photons with the frequency
decreased by 2λ can be observed.

VII. A SIGNATURE OF THE PHOTON BLOCKADE
IN THE TRANSMISSION SPECTRA

A concept of the photon blockade, in which transmission
of only one photon through a system is possible while excess
photons are absorbed or reflected, was first proposed in
Ref. [29]. Since then there have been published a plethora
of papers devoted to this phenomenon in different atom-
cavity systems (see, for example, recent papers [30,31] and
references therein). The photon blockade is observed when
the atom-photon interaction results in the energy spectrum
with a nonlinear dependence on the number of cavity photons
n. It can be either Kerr-type n2 nonlinearity when the resonance
frequency is largely detuned from the qubit energy (a so-called
dispersive photon blockade [32]), or the resonant photon
blockade with Jaynes-Cummings

√
n dependence [27]. The

photon blockades are usually investigated using the correlation
function measurements of the photon statistics at the cavity
output [16,27]. Alternatively, the signature of the photon
blockade can be found as a staircase pattern in the dependence
of transmitted power on the incident photon bandwidth [32].

Below we show the signature of the photon blockade
in the transmission of a single photon one-by-one through
a waveguide side coupled to the resonance cavity with a
two-level atom (see Fig. 1). In our scheme the photon blockade
manifests as the transmission of a photon at some frequency
ω if the preceding photon with the same frequency ω has been
captured by the cavity. Or, alternatively, it may be observed at
the input: if the input photon at some frequency ω is captured
by the cavity, we first observe the reflected signal, and, second,
the following photon with the same frequency passes through
the waveguide, producing no reflected signal.

Even if initially there are no photons in a cavity, i.e., the first
input photon with the frequency ω = � is blocked to enter the
cavity, it is completely transmitted as follows from Eq. (31). It
can be captured by the cavity with the simultaneous appearance
of the reflected signal only if its frequency is equal to ω± [see
Eq. (32)]. The addition of a second photon with frequencies
ω± cannot excite the cavity since there are no appropriate
energy levels in the cavity with two photons with the energies
2h̄ω±, as shown in Fig. 15. There is a frequency gap within
which a second photon cannot be captured by a cavity.
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FIG. 15. The level structure for on-resonance strong-coupling
limit. Photon blockade manifests as the suppression of two-photon
absorption for a probe field of frequency ωp = ωc − λ or ωp =
ωc + λ (thick red arrows) tuned to excite the transition |g0〉 → |1−〉
or |g0〉 → |1+〉. The frequency gap in both cases is equal to
(2 − √

2)λ.

Below we show that in our scheme the photon blockade
appears as the staircase pattern in the dependence of the
reflected power on the detector bandwidth �ω centered at
ωc. First, we excite the cavity by a single photon with the
energy corresponding to one of the hybridized levels (|Np−〉 or
|Np+〉). This level successively undergoes one-photon decays
to lower hybridized states. Each of these transitions produces a
reflected signal at the corresponding frequency. Hence, under
repeated excitation of the levels |Np±〉 we obtain a reflected
power as a discrete number of peaks, the number of which
depends on Np.

FIG. 16. Reflected power spectral function WN (ω) for N = 1
(solid lines), N = 2 (dotted line), and N = 3 (dashed lines). The
calculations are made for ωc = � = 3 GHz, λ = 0.1ωc,� = 2.66 ×
10−3ωc. �ω is a variable bandwidth of the detector.

FIG. 17. Photon blockade staircase. The calculations are made for
ωc = � = 3 GHz, λ = 0.1ωc: (a) � = 3.33 × 10−5ωc = 0.1 MHz,
and (b) � = 2.66 × 10−3ωc = 8 MHz. |N±〉 denotes the preliminary
pumped doublet, which successively through one-photon emissions
decays to the ground state |g0〉. The steps from |1±〉 and |2±〉
doublet ladders are seen in the |3±〉 doublet ladder. Both plots were
normalized to 10 MHz.

Therefore, we define the reflected power in the detector
bandwidth �ω as follows:

PR(Np,�ω) =
Np∑

N=1

∫ ωc+�ω

ωc−�ω

|WN (ω)|2dω, (35)

where a spectral function WN (ω) = |R1 + R2|2 for N > 1,
with R1,R2 being defined in Eq. (34), and W1(ω) = R

(N=1)
11 ,

where R
(N=1)
11 is defined in Eq. (32). For N > 1 the quantity

WN (ω) corresponds to the transitions |N,±〉 → |N − 1,±〉,
while W1(ω) describes the transitions to the ground state
|1,±〉 → |g,0〉.

The example of a reflected power spectrum for the first
three N ′s is shown in Fig. 16. It is seen that as N is
increased the width of resonance lines is also increased, which
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is understandable from the inspections of expressions (18a)
and (18b).

The application of the prescription encoded in Eq. (35)
to the spectrum shown in Fig. 14 provides a typical photon
blockade ladder depicted in Fig. 17. A higher doublet ladder
includes all steps from the lower doublets. The height of a step
scales as the width of the corresponding resonance. The slope
of a step is increased as the emission rate � of the photons
from the cavity is also increased.

VIII. CONCLUSION

We develop a theoretical method for the calculation of a
microwave transport in a 1D waveguide side coupled to a reso-
nant N -photon cavity with an embedded artificial atom (qubit).
The method is based on the projection operator formalism
and a non-Hermitian Hamiltonian approach, which enables
us to obtain the analytical expressions for the probability
amplitudes of spontaneous transitions between the dressed
levels of adjacent doublets in an N -photon cavity. We show that
if the number of the cavity photons is small, the transmitted
and reflected spectra reveal a quadruplet structure with two
central peaks and two sidebands. As the number of the cavity
photons is increased, the two central peaks merge, giving a
classical Mollow triplet.

We considered in detail a single photon transport for the
cavity with two photons. We showed that our theory is in
accordance with the known experiment [20]. Moreover, it
predicts the detection in a single-photon experiment of the
output photon, the frequency of which is shifted from that
of the input photon by a Rabi frequency �

(N−1)
R . We also

discussed in detail the applications of our results to the
detection of the photon blockade ladder, which is a direct
manifestation of the quantum nature of light that results from
a different space between the levels in adjacent Rabi doublets.

The results obtained in the paper can be applied to the
investigation of microwave photon transport in superconduct-
ing circuits with embedded superconducting qubits based on
Josephson junctions [1,5]. The specific properties of the qubit
are encoded in only two parameters: the qubit energy � and its
coupling to the cavity λ. For example, for a superconducting
qubit � = √

ε2 + �2 where ε = 2Iq

h̄
(�x − �0/2) is an exter-

nal parameter which by virtue of external magnetic flux �X

controls the gap between ground and excited states [33], Iq is
a persistent current along a qubit loop and �0 = h/2e is a flux
quantum. The quantity � is the qubit’s gap at the degeneracy
point (ε = 0). The coupling strength λ = g�/� [21], where
g is the qubit-cavity coupling at the degeneracy point. For a
charge qubit � =

√
ε2
J + ε2

C , where εJ = 2EJ |cos(π�x/�0|,
εC = 4EC(1 − 2ng), where EJ is a coupling energy of the
Josephson junction, EC is a charging energy, and ng is a
dimensionless gate charge which can be tuned by applying
the voltage Vg to the gate capacitance Cg: ng = CgVg/e [34].
In a more general sense our results can be applied to the
investigation of the photon transport in 1D qubit systems with
a small number of cavity photons.
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APPENDIX A: THE CALCULATION OF HXY

With the aid of explicit expressions (11) and (12) for Q and
P we obtain for the parts HXY of the full Hamiltonian (5) the
following expressions:

HQQ = 1
2 h̄�|2〉〈2| − 1

2 h̄�|1〉〈1| + h̄ωc(N − 1)|2〉〈2| + h̄λ
√

N |1〉〈2| + h̄λ
√

N |2〉〈1| + h̄ωcN |1〉〈1|, (A1)

HPP = 1

2
h̄�

∑
k

|k2〉〈k2| + h̄ωc(N − 1)
∑

k

|k1〉〈k1| + h̄λ
√

N − 1
∑

k

|k1〉〈k2| + h̄λ
√

N − 1
∑

k

|k2〉〈k1| +
∑

k

h̄ωk|k1〉〈k1|

+
∑

k

h̄ωk|k2〉〈k2| + h̄ωc(N − 2)
∑

k

|k2〉〈k2| − 1

2
h̄�

∑
k

|k1〉〈k1|, (A2)

HPQ = h̄ξ
√

N − 1
∑

k

|k2〉〈2| + h̄ξ
√

N
∑

k

|k1〉〈1|, (A3)

HQP = h̄ξ
√

N
∑

k

|1〉〈k1| + h̄ξ
√

N − 1
∑

k

|2〉〈k2|. (A4)

APPENDIX B: CALCULATION OF THE EFFECTIVE HAMILTONIAN

From (2) we find the matrix elements of the effective Hamiltonian in Q subspace:

〈m|Heff|n〉 = 〈m|HQQ|n〉 +
2∑

i,j=1
k,k′

〈m|HQP |ϕi,k〉〈ϕi,k| 1

E − HPP + iε
|ϕj,k′ 〉〈ϕj,k′ |HPQ|n〉 = 〈m|HQQ|n〉

+
i=2∑

i=1,k

〈m|HQP |ϕi,k〉〈ϕi,k|HPQ|n〉
E − Ei(k) + iε

. (B1)
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Fortunately, the matrix elements 〈m|HQP |ϕi,k〉 and
〈ϕi,k|HPQ|n〉 do not depend on the photon momentum k. The
direct calculations yield

〈1|HQP |ϕ1,k〉 = a1ξ
√

N,

〈2|HQP |ϕ1,k〉 = b1ξ
√

N − 1 (B2)

〈1|HQP |ϕ2,k〉 = a2ξ
√

N,

〈2|HQP |ϕ2,k〉 = b2ξ
√

N − 1. (B3)

With the use of (A1) and (B2), (B3) we obtain the following
for the matrix elements of (B1):

〈1|Heff|1〉 = ωCN − 1
2� + a2

1ξ
2NJ1(E) + a2

2ξ
2NJ2(E),

(B4a)

〈2|Heff|2〉 = ωC(N − 1) + 1
2� + b2

1ξ
2(N − 1)J1(E)

+ b2
2ξ

2(N − 1)J2(E), (B4b)

〈1|Heff|2〉 = 〈2|Heff|1〉
= λ

√
N + a1b1ξ

2
√

N (N − 1)J1(E)

+ a2b2ξ
2
√

N (N − 1)J2(E), (B4c)

where

Jj (E) =
∑

k

1

E − Ej (k) + iε
= L

2π

∫
dk

E − Ej (k) + iε
.

(B5)

It will be shown below that all quantities Jj (E) in
Eqs. (B4a)–(B4c) are the same and do not depend on the
running energy E:

Jj (E) = −2πi

vg

, (B6)

where vg is the velocity of microwave photons in a waveguide.
Finally, with the use of properties of coefficients ai,bi

from in Eq. (9), a2
1 + a2

2 = 1, b2
1 + b2

2 = 1, a1b1 + a2b2 = 0,
we obtain for the matrix elements of Heff the following
expressions:

〈1|Heff|1〉 = ωCN − 1
2� − jN�, (B7a)

〈2|Heff|2〉 = ωC(N − 1) + 1
2� − j (N − 1)�, (B7b)

〈1|Heff|2〉 = 〈2|Heff|1〉 = λ
√

N, (B7c)

where we introduce the width of the cavity decay rate
� = Lξ 2/vg .

APPENDIX C: CALCULATION OF THE MATRIX R

Here we calculate the matrix Rm,n(E), which is the matrix
inverse of the matrix 〈m|(E − Heff)|n〉:

Rn,m(E) = 〈n| 1

E − Heff
|m〉. (C1)

From (B7a)–(B7c) we find the elements of the R ma-
trix (C1):

R11(E) = 1

D(E)

(
E − ωC(N − 1) − 1

2
� + j (N − 1)�

)
,

(C2a)

R22(E) = 1

D(E)

(
E − ωCN + 1

2
� + jN�

)
, (C2b)

R12(E) = R21(E) = λ
√

N

D(E)
, (C2c)

where D(E) is given in Eq. (16).

APPENDIX D: CALCULATION OF THE TRANSMISSION
MATRIX (19)

As was shown in Sec. V, 〈j,k′|T |i,k〉 = 〈ϕj |T |ϕi〉 ≡ ξ 2tj,i .
With the aid of (B2) and (B3) we obtain for matrix tij the
following expressions:

t11 = [
a2

1NR11(E1) + b2
1(N − 1)R22(E1)

+ 2a1b1

√
N (N − 1)R12(E1)

]
, (D1a)

t12 = [a1a2NR11(E1) + b1b2(N − 1)R22(E1)

+
√

N (N − 1)(a2b1 + a1b2)R12(E1)], (D1b)

t22 = [
a2

2NR11(E2) + b2
2(N − 1)R22(E2)

+ 2a2b2

√
N (N − 1)R12(E2)

]
, (D1c)

t21 = [a1a2NR11(E2) + b1b2(N − 1)R22(E2)

+
√

N (N − 1)(a2b1 + a1b2)R21(E2)]. (D1d)

If we substitute in these expressions ai,bi for their explicit
forms

a1 = 1√
2

√
1 − � − ωc

�
(N−1)
R

, b1 = 1√
2

√
1 + � − ωc

�
(N−1)
R

(D2)

a2 = − 1√
2

√
1 + � − ωc

�
(N−1)
R

, b2 = 1√
2

√
1 − � − ωc

�
(N−1)
R

(D3)

and R from (C2a), (C2c), and (C2b), we obtain the expressions
for tij given in Sec. V in Eqs. (24), (27), (26), and (25).

APPENDIX E: CALCULATION OF THE PHOTON
WAVEFUNCTION

As we show in the main text, there are two possible initial
states (9): |ϕ1〉 and |ϕ2〉. Accordingly, there are two wave
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functions (4):

|�1〉 = |ϕ1,k〉 + 1

E1 − Heff
HQP |ϕ1,k〉 + 1

E1 − HPP + iε
HPQ

1

E1 − Heff
HQP |ϕ1,k〉, (E1a)

|�2〉 = |ϕ2,k〉 + 1

E2 − Heff
HQP |ϕ2,k〉 + 1

E2 − HPP + iε
HPQ

1

E2 − Heff
HQP |ϕ2,k〉. (E1b)

Next we use the properties of completeness of P and Q (P + Q = 1) and their orthogonality (PQ = QP = 0) to obtain the
following from (E1a) and (E1b):

|�1〉 = |ϕ1,k〉 +
2∑

n,m=1

|n〉〈n| 1

E1 − Heff
|m〉〈m|HQP |ϕ1,k〉

+
2∑

i,j=1
k,k′

{
|ϕi,k〉〈ϕi,k| 1

E1 − HPP + iε
|ϕj,k′ 〉〈ϕj,k′ |HPQ|n〉〈n| 1

E1 − Heff
|m〉〈m|HQP |ϕ1,k〉

}
, (E2)

|�2〉 = |ϕ2,k〉 +
2∑

n,m=1

|n〉〈n| 1

E2 − Heff
|m〉〈m|HQP |ϕ2,k〉

+
2∑

i,j=1
k,k′

{
|ϕi,k〉〈ϕi,k| 1

E2 − HPP + iε
|ϕj,k′ 〉〈ϕj,k′ |HPQ|n〉〈n| 1

E2 − Heff
|m〉〈m|HQP |ϕ2,k〉

}
. (E3)

From these equations the expressions (20) and (21) follow immediately, which we write here in the following form:

|�1〉 = |ϕ1,k〉 +
∑
m,n

|n〉Rnm(E1)〈m|HQP |ϕ1,k〉 + ξ 2
∑
q,i

|ϕi,q〉ti1
E1(k) − Ei(q) + iε

, (E4)

|�2〉 = |ϕ2,k〉 +
∑
m,n

|n〉Rnm(E2)〈m|HQP |ϕ2,k〉 + ξ 2
∑
q,i

|ϕi,q〉ti2
E2(k) − Ei(q) + iε

. (E5)

In order to obtain the photon wave function in a configuration space we multiply (E4) and (E5) from the left by bra vector
〈x|, and taking into account that 〈x|n〉 = 0, 〈x|ϕi,k〉 = eikx |ϕi〉, we obtain

〈x|�1〉 = eikx |ϕ1〉 + ξ 2
2∑

i=1

Ji,1ti1|ϕi〉, (E6)

〈x|�2〉 = eikx |ϕ2〉 + ξ 2
2∑

i=1

Ji,2ti2|ϕi〉, (E7)

where

Ji,j =
∑

q

eiqx

Ej (k) − Ei(q) + iε
. (E8)

Below we calculate the quantities Ji,j . The result is as follows:

J11 = J22 = −i
L

vg

eik|x|, (E9)

J12 = −i
L

vg

ei(k−kR)|x|, (E10)

J21 = −i
L

vg

ei(k+kR)|x|, (E11)

where kR = �
(N−1)
R /vg .

With the account of these results we obtain for the photon wave functions (E6) and (E7) the expressions (22) and (23) from
the main text.
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APPENDIX F: CALCULATION OF Ji, j

From (14) we find the energy difference in the denominator of (E8):

Ei(k) − Ei(q) = ωk − ωq = vg(k − q),

E1(k) − E2(q) = ωk − ωq + �
(N−1)
R = vg(k − q + kR),

E2(k) − E1(q) = ωk − ωq − �R = vg(k − q − kR). (F1)

As an example we calculate below the quantity J12 (E10), where we substitute the summation over q for the integration:

J12 = L

2π

∫ +∞

−∞

eiqx

ωk − ωq − �
(N−1)
R + iε

dq. (F2)

The main contribution to this integral comes from the region where ωq ≈ ωk − �
(N−1)
R . Since ωq is the even function of q, it

can be approximated away from the cutoff frequency as ωq ≡ vg|q|. In this case the poles of the integrand (F2) in the q plane are
located near the points q ≈ ±q0, where q0 = (k − kR). From the denominator in Eq. (F2) we see that one pole is located in the
upper half of the q plane, q = q0 + iε, and the other pole is located in the lower half of the q plane, q = −q0 − iε. For positive
x, when calculating the integral (F2) we must close the path in the upper plane. For negative x the path should be closed in lower
plane. Thus, we obtain

J12 = −i
L

h̄vg

ei(k−kR )|x|. (F3)

The quantities J11, J22 (E9) and J21 (E11) can be calculated by the same procedure.
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