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Solving the challenging problem of the amplification and generation of an electromagnetic field in
nanostructures enables us to implement many properties of the electromagnetic field at the nanoscale in practical
applications. A first-principles quantum-mechanical consideration of such a problem is sufficiently restricted by
the exponentially large number of degrees of freedom and does not allow the electromagnetic-field dynamics
to be described if it involves a high number of interacting atoms and modes of the electromagnetic field.
Conversely, the classical description of electromagnetic fields is incorrect at the nanoscale due to the high level
of quantum fluctuations connected to high dissipation and noise levels. In this paper, we develop a framework
with a significantly reduced number of degrees of freedom, which describes the quantum spatial dynamics of
electromagnetic fields interacting with atoms. As an example, we consider the interaction between atoms placed in
a metallic subwavelength groove and demonstrate that a spontaneously excited electromagnetic pulse propagates
with the group velocity. The developed approach may be exploited to describe nonuniform amplification and
propagation of electromagnetic fields in arbitrary dispersive dissipative systems.
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I. INTRODUCTION

The study of the interaction between light and matter is
a key problem in physics [1]. Progress in nanotechnologies
[2–5] has made it possible to enhance light-matter interaction
at the nanoscale. Such an enhancement plays a crucial role
in investigating the influence of the electromagnetic environ-
ment, such as photonic crystals and metallic and dielectric
plasmonic structures, on the atomic dynamics [6,7]. In such
structures, engineering of the electromagnetic-field density
of states allows light-matter interaction to be controlled [8].
This control enables conditions for excitation and coherent
generation of the electromagnetic field to be achieved. This
allows devices like distributed feedback (DFB) lasers [9–21],
nanolasers, and spasers [22–35] to be created.

Consistent consideration of the dynamics of electromag-
netic fields and atoms is based on quantum electrodynamics.
The quantum properties of light arise in theory after the
procedure of field quantization, which implies that the electro-
magnetic field is expanded in a series of system eigenmodes
[6,36–38]. With excitation of the mode, the electromagnetic
field appears in the entire mode volume. Thus, if it is essential
to consider the temporal evolution of the electromagnetic field
in a finite volume, then it is necessary to take into account the
infinite number of modes with an appropriate phase relation
[6,36–38].

Accurate description of the temporal evolution of electro-
magnetic field is necessary in the problem of map coherent
superposition from one quantum bit to another by means
of an electromagnetic field [39–42], the study of ultrafast
active plasmonics [34,43–45], the study of laser dynamics with
pulsed pumping [11,16], and lasers with an inhomogeneous
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distribution of gain medium or cavity-free lasers [30,35,46,47].
For example, in the cavity-free lasers the generation threshold
depends on the time an electromagnetic pulse emitted by an
active atom stays inside the active region and interacts with
other active atoms. This time depends on the group velocity.
In nanostructures it may be four orders of magnitude smaller
than the speed of light [11,46]. This makes the time of mode
propagation along the structure comparable with characteristic
nanolaser times [48]. Thus, the effects of retardation should be
taken into account when considering operations of nanolaser
devices.

In a full quantum-mechanical consideration, the increase
in the number of modes leads to the exponential increase in
the number of degrees of freedom [49]. The same increase
takes place when the number of atoms increases. As a
result, a first-principles consideration of the problem of the
interaction between atoms and modes of electromagnetic field
is impossible for many practical applications. It should be
underlined that even in the simplest cases, the first-principles
quantum-mechanical consideration of spatial dynamics is
complicated. For example, the problem of the finiteness of the
propagation speed of an electromagnetic signal between two
atoms (the so-called Fermi problem [50]) has a long history
and was solved only recently [51–59].

Effects related to the quantum nature of the electromagnetic
field and atoms in many practical problems can be addressed
without involving exact quantum-mechanical calculations.
There are mean-field theories describing the dynamics of
a finite number of physical values, neglecting quantum-
mechanical correlations [60–62]. Among these theories, the
most extensively used are the rate equations and the Maxwell-
Bloch equations [60–62]. The rate equations can be imple-
mented for laser description, accounting for the spontaneous
decay of atoms [60–62]. They are in good agreement with
the experimental data for lasers with high-quality cavities at
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large time scales when the stationary regime is set. However,
the rate equations do not take into account the phase relations
between electromagnetic waves; thus, they are not appropriate
for describing many important effects in modern physics,
e.g., the propagation of an electromagnetic pulse [60]. In
the Maxwell-Bloch equations, the classical description of an
electromagnetic field is used [60–62]. Although this approach
uses the wave equation for the field and the finiteness of the
propagation speed of the electromagnetic field, it does not take
into account the spontaneous decay of atoms [60]. To describe
the process of the spontaneous decay, the noise operators
are added to the Maxwell-Bloch equations [63–67]. For large
numbers of photons and atoms that collectively participate in
coherent and fluctuation dynamics, operator equations may be
translated into c-number equations [64]. However, even in this
case, the numerical simulation of these equations requires large
computational resources [34,68,69]. Moreover, this approach
is not suitable for nanosize systems, where the number of
photons in the cavity and atoms is small [64].

The aim of this work is to develop a method to describe atom
and electromagnetic mode interaction, taking into account
the process of spontaneous emission and the finiteness of
the propagation speed of electromagnetic fields in dispersive
dissipative media. For this purpose, we obtained an equation
system in which the number of equations is a quadratic
function of the number of modes and a linear function of
the number of atoms. In the case of a full quantum-mechanical
calculation through master equations for the density matrix, the
number of equations increases exponentially with the number
of atoms or modes [49]. Implementing our approach makes
the consideration of quantum systems with a large number
of interacting atoms and modes possible. It is shown that the
developed formalism correctly describes the propagation of an
electromagnetic pulse with the group velocity. We show that
the finiteness of the pulse propagation arises from interference
between the electromagnetic fields of the different modes.
We demonstrate that the rate equations describe interference
erroneously and do not correctly describe ultrafast dynamics.
We show that the electromagnetic pulse that is spontaneously
emitted by an atom takes the form of a δ function at the
initial time because the rate of spontaneous emission in
different cavity modes at the initial time does not depend
on the difference between atom transition frequency and the
eigenfrequency of the mode. We also investigate the influence
of the retardation effects on the multimode lasing and show
that they substantially modify the laser threshold.

II. DESCRIPTION OF INTERACTION BETWEEN
LIGHT AND MATTER

The dynamics of an interacting electromagnetic field and
atoms in a Markov approximation is described by the master
equation in the Lindblad form [49,63]:

∂ρ̂

∂t
= − i

h̄
[Ĥa + Ĥσ + V̂ ,ρ̂]

+ L̂a[ρ̂] + L̂e
σ [ρ̂] + L̂ph

σ [ρ̂] + L̂pump
σ [ρ̂], (1)

where Ĥa = ∑
j h̄ωa

j â
+
j âj is the Hamiltonian of the

electromagnetic field after mode decomposition, Ĥσ =

∑
m h̄ωσ

mσ̂+
m σ̂m is the Hamiltonian of the two-level atoms,

and V̂ = ∑
j,m (h̄�jmâ+

j σ̂m + h̄�∗
jmâj σ̂

+
m ) is the interaction

between modes and atoms in the Jaynes-Cummings form.
Here â+

j and âj are, respectively, the creation and annihi-
lation operators of photons in the j th mode, σ̂+

m and σ̂m

are, respectively, the raising and lowering operators for the
transition of the mth two-level atom, �jm is a coupling
constant between the photons in the j th cavity mode and
the mth atom, ωa

j is an eigenfrequency of the j th cavity
mode, and, finally, ωσ

m is the transient frequency of the mth

atom. The term L̂a[ρ̂] = ∑
j

γ a
j

2 (2âj ρ̂â+
j − â+

j âj ρ̂ − ρ̂â+
j âj )

[49,63] describes energy relaxation in each j th mode with

rate γ a
j , L̂e

σ [ρ̂] = ∑
m

γ D
m

2 (2σ̂mρ̂σ̂+
m − σ̂+

m σ̂mρ̂ − ρ̂σ̂+
m σ̂m), and

L̂
ph
σ [ρ̂] = ∑

m
γ

ph
m

4 (D̂mρ̂D̂m − ρ̂), corresponding to the en-
ergy and phase relaxations in each atom with the rates
γ D

m and γ
ph
m , respectively [49,63]; the term L̂

pump
σ [ρ̂] =∑

m
γ

pump
m

2 (2σ̂+
m ρ̂σ̂m − σ̂mσ̂+

m ρ̂ − ρ̂σ̂mσ̂+
m ) describes pumping

of a two-level atom with the rate γ
pump
m [49,63].

The Markov approximation is applicable when the time
scale of the reservoir degrees of freedom is much shorter than
the relaxation time of the system [49]. The characteristic corre-
lation time of a reservoir which is in thermal equilibrium may
be estimated as h̄/kT [49] and at room temperature is of the
order of 10−14 s. To determine the applicability of the Markov
approximation we need to compare this correlation time with
the characteristic relaxation time of the system. For an active
medium the relaxation time of the energy is 10−11–10−9 s; the
time of the phase relaxation is 10−13 s. For nanocavity modes
the relaxation time is 10−13–10−11 s. So we see that for both
resonator modes and an active medium the relaxation time
is at least one order of magnitude larger than the correlation
time of the reservoir; that is, the Markovian approximation
is applicable. An overwhelming majority of experiments
with a metallic nanocavity confirm the Markovian model for
describing the losses showing exponential decay [70].

Using the identity 〈Ȧ〉 = Tr(ρ̇A) and master equation (1),
it is possible to derive a closed system of equations on
operator average Dm = 〈σ̂+

m σ̂m − σ̂mσ̂+
m 〉, ϕjm = 〈−iâ+

j σ̂m〉,
and njl = 〈â+

j âl〉. To this end, we make two approximations.
The first one is the splitting correlations between the average
values of the number of photons and the population inversion,
〈n̂j lD̂m〉 = 〈n̂j l〉〈D̂m〉. It is valid when the number of atoms
Na � 1 [49], which takes place in nanolaser experiments
[48]. Under this condition all operators behave like c-numbers.
Such uncoupling is used in the derivation of rate equations to
take into account spontaneous emission [61,71]. The second
approximation neglects quantum-mechanical correlations be-
tween different atoms, i.e., 〈σ̂+

m σ̂m′ 〉 = δmm′(〈D̂m〉 + 1)/2 [60].
Such correlations are important in a system of entangled ions
[72], superconducting qubits [73], Bose-Einstein condensates
[74,75], and light sources based on alkaline-earth atoms
[76,77]. The rate of destroying such correlations increases
with the temperature and the number of atoms [72,78]. Such
correlations appear only at temperatures of the order of K

and a number of atoms of the order of 10 [72,78]. Such
correlations are not exhibited in nanolasers, which usually
operate at room temperature and at a high number of atoms of
the active medium, and below we will neglect them.
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This results in the following equations:

dnjl

dt
= −γ n

jlnjl + i
(
ωa

j − ωa
l

)
njl

+
∑
m

(�lmϕjm + �∗
jmϕ∗

lm), (2)

dDm

dt
= −γ D

m (1 + Dm) + γ pump
m (1 − Dm)

− 2
∑

j

(�jmϕjm + �∗
jmϕ∗

jm), (3)

dϕjm

dt
= −γ

ϕ

jmϕjm + i
(
ωa

j − ωσ
m

)
ϕjm

+ �∗
jm

2
(Dm + 1) +

∑
l

�∗
lmnjlDm. (4)

In Eqs. (2)–(4), Dm is the average value of the operator of
the population inversion of the mth atom [61,62], while ϕjm =
〈−iâ+

j σ̂m〉 is the average value of the operator that describes the
interaction between the electromagnetic field in the j th cavity
mode and the mth atom, γ

ϕ

jm = (γ a
j + γ D

m + γ
pump
m + γ

ph
m )/2.

Here njl is the average value of the operator of the number
of photons in the j th cavity mode when j = l, and njl is
the average value of the operator that describes the transition
of photons from the lth cavity mode to the j th cavity mode
when j �= l, γ n

jl = (γ a
j + γ a

l )/2. This operator arises from the
interference between the electromagnetic field in the j th and
lth cavity modes. Below, we will demonstrate that neglecting
these terms (i.e., interference between the electromagnetic
fields of different cavity modes) results in instant propagation
of the electromagnetic field. We will name the variables njl

cross terms.
Note that the rate equations may be obtained from

Eqs. (2)–(4) [60]. First, neglecting the phase relations between
electromagnetic modes 〈â+

j âl〉 = δjl〈n̂jj 〉, it is possible to
reduce Eqs. (2)–(4) to

dnj

dt
= −γ a

j nj +
∑
m

(�jmϕjm + �∗
jmϕ∗

jm), (5)

dDm

dt
= −γ D

m (1 + Dm) + γ pump
m (1 − Dm)

− 2
∑

j

(�jmϕjm + �∗
jmϕ∗

jm), (6)

dϕjm

dt
= −γ

ϕ

jmϕjm + i
(
ωa

j − ωσ
m

)
ϕjm

+ �∗
jm

2
(Dm + 1) + �∗

jmnjDm, (7)

where nj = njj is the average value of the number of photons
in the j th cavity mode. These equations have been used to
describe the emission properties of micro- and nanolasers
[79–81].

Second, in most types of lasers, the rate of transverse relax-
ation is larger than that of longitudinal relaxation and the decay
rate of the number of photons (i.e., γ

ph
m � γ D

m , γ
pump
m ,γ a

j ). In

this case, ϕjm can be adiabatically eliminated from Eqs. (5)–(7)
[61], which results in

dnj

dt
= −γ a

j nj

+
∑
m

γ
ϕ

jm|�jm|2(
γ

ϕ

jm

)2 + (
ωσ

m − ωa
j

)2 (2njDm + Dm + 1),

(8)

dDm

dt
= −γ D

m (1 + Dm) + γ pump
m (1 − Dm)

− 2
∑

j

γ
ϕ

jm|�jm|2(
γ

ϕ

jm

)2 + (
ωσ

m − ωa
j

)2 (2njDm + Dm + 1).

(9)

Equations (8) and (9) are the rate equations, also known as the
balance equations. They can also be derived from the energy
balance [61]. We show below that both Eqs. (5)–(7) and Eqs.
(8) and (9) are incorrect for the description of the propagation
of electromagnetic pulses.

III. PROPAGATION OF ELECTROMAGNETIC FIELD
BETWEEN TWO ATOMS

To demonstrate the main features of Eqs. (2)–(4) and
their advantages over the rate equations, we consider
two two-level atoms placed in the subwavelength groove
in metal [Fig. 1(a)]. In the case of a groove that is
straight along the z axis with the profile function y =
ζ (x), the eigenmodes of such systems may be presented
in the form E(r,t) = Ekω(x,y) exp (ikz − iωt), H(r,t) =
Hkω(x,y) exp (ikz − iωt), where Ekω(x,y) and Hkω(x,y) are
determined through the following equation:

[∂2/∂x2 + ∂2/∂y2 − β2(k,ω)]

{
Ekω(x,y)

Hkω(x,y)

}
= 0, (10)

where β(k,ω) =
√

k2 − ω2/c2 in a vacuum and β(k,ω) =√
k2 − ε(ω)ω2/c2 in the metal [explicit expressions for

Ekω(x,y), Hkω(x,y), and the dispersion relation may be found
in [82]].

After the quantization procedure, the electric and magnetic
fields are expressed through creation and annihilation opera-
tors for each mode:

Ê(r,t) =
∑

j

A0
(
ka
j

)
Eka

j ωa
j
(x,y)

× exp
(
ika

j z − iωa
j t

)
âj + H.c., (11)

Ĥ(r,t) = i
∑

j

A0
(
ka
j

)
Hka

j ωa
j
(x,y)

× exp
(
ika

j z − iωa
j t

)
âj + H.c. (12)

The operators âj satisfy the boson commutation relations
[âj ,â

+
l ] = δjl 1̂; the dimensional constant A0(ka

j ) is determined
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FIG. 1. (a) Dispersion curve of the eigenmodes of the metallic
groove with the profile ζ (x) = −A exp (−x2/R2). Inset: schemat-
ically illustrated metallic groove. (b) Dependence of population
inversion of the first (blue solid line) and second (green dashed line)
atoms and the dependence of the population inversion of the first
atom with time in the absence of the second atom (red dot-dashed
line) obtained from Eqs. (2)–(4). The distance between the atoms
is l = 500λσ , the groove length is L = 2000λσ , and the atoms are
placed symmetrically with respect to the groove center. Here t0 is
equal to 102λσ /vg , where λσ is the wavelength of the atom transition;
vg = (∂ω/∂k)|ω=ωσ

is group velocity.

by the following condition [83–86]:

A2
0

(
ka
j

) L

8π

∫
dxdy

[
∂(εω)/∂ω

∣∣Eka
j ωa

j
(x,y)

∣∣2

+ ∣∣Hka
j ωa

j
(x,y)

∣∣2] = h̄ωa
j , (13)

where L is the groove length.
The interaction between electromagnetic fields and atomic

dipole moments in the rotating-wave approximation takes the
form of the Jaynes-Cummings Hamiltonian:

V̂ =
∑
j, m

(h̄�jmâ+
j σ̂m + h̄�∗

jmâj σ̂
+
m ), (14)

with the Rabi frequency

�jm = −dm
egA0

(
ka
j

)
Eka

j ωa
j
(xm,ym) exp

(
ika

j zm

)
/h̄

= �j0 exp
(
ika

j zm

)
, (15)

where rm = {xm,ym,zm} and dm
eg are coordinate and matrix

elements of the dipole transition of the mth atom, respectively.
In the last equality we suppose that each atom has the same
lateral coordinates, {xm,ym} = {x,y}.

The decay rate of each mode with wave vector ka
j is

determined by the part of electromagnetic energy inside the
metal and may be evaluated as [87,88]

γ a
j = ωa

j

∫
metal dxdy

(
ε′′∣∣Eka

j ωa
j
(x,y)

∣∣2)
∫

dxdy
(

∂(εω)
∂ω

∣∣Eka
j ωa

j
(x,y)

∣∣2 + ∣∣Hka
j ωa

j
(x,y)

∣∣2) . (16)

Let us consider a system of two identical atoms with ωσ
m =

ωσ = 0.6ωp (ωp is the plasma frequency of metal), γ D
m =

10−6ωσ , and γ
ph
m = 10−2ωσ that are placed at a distance of

l from each another in the groove with the profile ζ (x) =
−A exp (−x2/R2), whose dispersion curve is calculated in
[82] [see Fig. 1(a)]. The first atom at the initial time is in the
excited state [i.e., D1(0) = 1]; the second atom at the initial
time is in the ground state [i.e., D2(0) = −1], and the number
of photons in the cavity is equal to zero. As the operators n̂j l

(j �= l) and ϕ̂jm change the number of photons in the cavity
modes, the average values of these operators njl and ϕjm are
equal to zero when the system is in the Fock state (e.g., when
the number of photons is equal to zero).

Using Eqs. (2)–(4), we calculated the dependence of the
population inversion of the first and second atoms with time
[Fig. 1(b)]. As follows from Eqs. (2)–(4), the population
inversion of the first atom starts to decay at the initial time
[Fig. 1(b)]. The population inversion of the second atom is
constant and equal to −1 until the time is less than propagation
time τpr . After the electromagnetic pulse has reached the
second atom, its population inversion begins to increase. The
presence of the second atom has no effect on the population
inversion of the first atom, until the time is less than two
propagation times 2τpr [see the blue solid and red dot-dashed
lines in Fig. 1(b)]. We investigate the dependence of the
propagation time τpr on the distance between atoms and
show that τpr is a linear function of the distance between
atoms [Fig. 2(a)]. This means that the electromagnetic pulse
propagates with constant velocity. To investigate the physical
nature of this velocity, we change the transition frequency ωσ

of the atoms. This leads to a change in the group and phase
velocities of the spontaneously emitted electromagnetic pulse
at the frequency ωσ [Fig. 2(b), blue solid and dashed lines]. The
numerical simulation of Eqs. (2)–(4) shows that the population
inversion of the second atom begins to increase after the time
τpr = l/vg , where vg = (∂ω/∂k)|ω=ωσ

is the group velocity
of the electromagnetic (EM) pulse for the system under
consideration [see the coincidence of τpr = l/vg (blue line)
and the time of atom excitation (the bright region) in Fig. 2(b)].
Note that there is an apparent difference between τpr = l/vg

(blue line) and the time of atom excitation (the bright region)
at the bottom of Fig. 2(b). The reason is the rate of increase
of the population inversion is determined by the constant of
interaction with the EM pulse, which is proportional to the
density of states at the atomic transition frequency ωσ . Because
the density of states is inversely proportional to the group
velocity [89,90], when the latter is small, the atom population
inversion reaches its maximum value earlier. We emphasize
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FIG. 2. (a) Dependence of the population inversion of the second
atom on time and distance between atoms obtained from Eqs. (2)–(4).
The blue dashed line is determined by group velocity z = vgt . Here
z0 is equal to 102λσ , and t0 is equal to 102λσ /νg . (b) Dependence of
the population inversion of the second atom on time and the transition
frequency of the atoms obtained from Eqs. (2)–(4). The solid line is
the curve t = l/vg[vg = (∂ω/∂k)|ω=ωσ

is group velocity], the dashed
line is the curve t = l/vφ[vφ = (ω/k)|ω=ωσ

is phase velocity], and
the dashed-dot line is the curve t = l/c.

that neither the phase velocity nor the speed of light in a
vacuum affects the atomic population inversion.

Thus, Eqs. (2)–(4) take into account the process of
spontaneous emission and the finiteness of the propagation
speed of electromagnetic waves. The propagation speed of the
electromagnetic signal is equal to the group velocity on the
transition frequency of the atom.

IV. EQUATIONS WITHOUT CROSS TERMS

If we assume that 〈â+
j âl〉 = δjl〈n̂jj 〉, then Eqs. (2)–(4)

reduce to the equation system (5)–(7). When Eqs. (5)–(7) are
implemented, the population inversion of the second atom
begins to increase with no delay (Fig. 3), and the dynamics of

FIG. 3. Dependence of the population inversion of the second
atom on time and distance between atoms obtained from Eqs. (5)–(7).
The blue dashed line is determined by group velocity z = vgt . Here
z0 is equal to 102λσ where λσ is the wavelength of the atom radiation;
vg = (∂ω/∂k)|ω=ωσ

is group velocity.

the population inversions of both atoms do not depend on the
distance between them.

The reason for the incorrect dynamics description from
Eqs. (5)–(7) can be explained by means of classical elec-
trodynamics. The variables �jmϕjm describe the interaction
between the electromagnetic field and the atoms [see Eq. (6)].
They are proportional to the intensity I of the electromagnetic
field in the atom location, which is proportional to the square
of the magnitude of the electric field. The electric field can be
expanded in the following Fourier series:

E(z,t) =
∑

j

[
aj exp

(
ika

j z
) + a∗

j exp
(−ika

j z
)]

× exp
(−iωa

j t
)
. (17)

The amplitudes of the Fourier harmonics aj and a∗
j are classical

analogs of the annihilation and creation operators âj and â+
j .

The intensity of the electromagnetic field is written as

I (z) =
∑

j

∑
l

{
aja

∗
l exp

[
i
(
ka
j − ka

l

)
z
]

+ a∗
j al exp

[−i
(
ka
j − ka

l

)
z
]}

exp
[−i

(
ωa

j − ωa
l

)
t
]

+
∑

j

∑
l

{
ajal exp

[
i
(
ka
j + ka

l

)
z
]

+ a∗
j a

∗
l exp

[−i
(
ka
j + ka

l

)
z
]}

exp
[−i

(
ωa

j + ωa
l

)
t
]
.

(18)

The terms in the first sum of Eq. (18) are the classical analogs
of operators of n̂j l = â+

j âl . Elements of the sum with j �= l

describe classical mode interference. The terms in the second
sum of Eq. (18) oscillate with double frequency. In the rotating-
wave approximation, these terms are neglected.

Neglecting the cross terms (〈â+
j âl〉 = δjl〈n̂jj 〉) in Eqs.

(2)–(4) is the equivalent of neglecting the interference terms
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because Eq. (18) takes the following form:

Ĩ (z) = 2
∑

j

|aj |2. (19)

The variable Ĩ (z) does not depend on the coordinate, which
leads to independence of the atomic interaction from the
distance between atoms. This behavior is observed when we
use Eqs. (5)–(7) to describe atomic interaction (Fig. 3).

Thus, neglecting the cross terms translates Eqs. (2)–(4)
into Eqs. (5)–(7) and results in instant propagation of the
electromagnetic field. As a result, Eqs. (5)–(7) do not allow for
the finiteness of the propagation speed of the electromagnetic
field. The rate equations (8) and (9) are derived from Eqs.
(5)–(7) by the adiabatic elimination of the variables of ϕjm.
Therefore, the rate equations do not take into account the
finiteness of the propagation speed of the electromagnetic field.

V. FORM OF THE ELECTROMAGNETIC PULSE
AT THE INITIAL TIME OF SPONTANEOUS DECAY

Based on an analogy with classical electrodynamics, we
determine the following variable:

I (z,t) =
∑

j

∑
l

[�∗
l (z)�j (z)njl(t)

+�l(z)�∗
j (z)n∗

j l(t)], (20)

which is proportional to the intensity of the electromagnetic
field at the point z. Here we used the notation

�j (z) = �j0 exp
(
ika

j z
)
, (21)

which is similar to determining the coupling constant between
the photons in the cavity modes and the atoms �jm [see
Eq. (15)].

As follows from Eqs. (2)–(4), the electromagnetic pulse
that was emitted by the first atom propagates with the group
velocity of the EM field and, at the initial time, has the form
of a δ function (i.e., the electromagnetic field is different from
zero only at the location of the first atom; Fig. 4).

The Fourier harmonics of the δ function are equal to one
another:

δ(z) = 1

2π

∫ +∞

−∞
exp(ikz)dk. (22)

Thus, at the initial time of spontaneous decay, the electro-
magnetic pulse has Fourier harmonics equal to one another.
This may be achieved only if all rates of spontaneous decay
�sp in every cavity mode are equal and independent of their
eigenfrequencies.

In Eqs. (2)–(4), the rate of spontaneous decay of the mth
atom in the j th cavity mode is proportional to the variable
�jmϕjm [see Eq. (6)]. Time integration of Eq. (4) results in

ϕjm(t) = [
i
(
ωa

j − ωσ

) − γ
ϕ

jm

] ∫ t

0
ϕjmdτ

+ �∗
jm

2

∫ t

0
(Dm + 1)dτ +

∑
l

�∗
lm

∫ t

0
njlDmdτ.

(23)

At the beginning of the spontaneous decay, the number of
photons is equal to zero. As the operators n̂j l (j �= l) and

FIG. 4. Dependence of the intensity of the electromagnetic field
in the cavity on time and coordinates obtained from Eqs. (2)–(4).
The white dashed lines are determined by group velocity z = vgt .
The first atom is located at z = 0, and the second atom is located at
z = 400 λσ . Here z0 is equal to 102λσ , and t0 is equal to 102λσ /vg ,
where λσ is the wavelength of the atom radiation; vg = (∂ω/∂k)|ω=ωσ

is group velocity.

ϕ̂jm change the number of photons in the cavity modes the
average values of these operators njl and ϕjm are equal to zero
when the system is in the Fock state (e.g., when the number of
photons is equal to zero). As a result,∫ t

0
ϕjmdτ ≈ 0 (24)

when the decay time t is less than the characteristic time of
the problem.

Therefore, at the initial time, the rate of spontaneous decay
does not depend on the difference between the eigenfrequency
of the cavity mode and the frequency of the atom transition:

�jmϕjm(t) ≈ |�jm|2
2

∫ t

0
(Dm + 1)dτ

= |�0|2
2

∫ t

0
(Dm + 1)dτ , (25)

where we used the determination of variables �jm [see
Eq. (15)]. As a result, the initial amplitudes of all cavity modes
are equal to one another, and the electromagnetic pulse forms
a δ function.

Note that in the rate equations (8) and (9), the rate of the
spontaneous decay in the cavity mode is proportional to

�sp ∼ γ
ϕ

jm|�jm|2(
γ

ϕ

jm

)2 + (
ωσ − ωa

j

)2 . (26)

This factor depends on the difference between the eigenfre-
quency of the cavity mode and the frequency of the atom
transition. Therefore, when the rate equations are used, the
electromagnetic pulse does not form a δ function at the
initial time. This is another reason why the rate equations
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do not describe the finiteness of the propagation speed of an
electromagnetic pulse.

VI. INFLUENCE OF CROSS TERMS
ON MULTIMODE LASING

In this section we consider another example of the appli-
cation of our approach. Namely, we investigate the generation
of the plasmons in a parabolic waveguide with open ends. As
the gain medium we consider 100 identical atoms which are
placed symmetrically with respect to the center of the gold
parabolic groove; the distance between atoms is δl = 0.8λσ

(all other parameters are the same as in Sec. III). Similar
systems have been proposed as a nanosize source of coherent
radiation [9,30,35,47,91,92] and for enhancing light-matter
interaction in nanowaveguides [93–95].

Using Eqs. (2)–(4) we calculate the dependence of the
electromagnetic-field intensity and the distribution on the
pump intensity (see Fig. 5). It is shown that the intensity has an
S-shaped dependence on the pumping. The electromagnetic-
field distribution has a maximum at the edges of the gain

FIG. 5. (a) The dependence of the number of photons on the
pumping obtained from Eqs. (2)–(4) (blue solid line) and from
Eqs. (8) and (9) (red dashed line). The black vertical line corresponds
to the lasing threshold. (b) The dependence of the normalized
electromagnetic-field intensity on the coordinate obtained from
Eqs. (2)–(4) (blue solid line) and from rate equations (8) and (9)
(red dashed line). Vertical dashed lines correspond to the edges of the
gain medium.

medium. The same behavior has been observed in recent exper-
imental studies (see Figs. 2 and 4 in [35] and [9,30,47,91,92]).
We leave more detailed comparison for future works.

It is interesting to note that the solution of the rate equations
(8) and (9) does not exhibit the S-shaped dependence and
show a uniform distribution of the electromagnetic field (see
Fig. 5). The reason for this is that a spontaneously excited elec-
tromagnetic pulse instantly leaves the gain medium without
interacting with other atoms. This results in a decrease in light-
matter interaction and suppression of lasing [see Fig 5(a)]. This
demonstrates the inapplicability of rate equations (8) and (9)
for such laser systems and the necessity of taking into account
cross terms.

At the same time the full quantum consideration of
this system requires enormous computational resources. The
dimension of the density matrix is 22Na × N2Nm [49], where
Na and Nm are the numbers of atoms and modes, respectively,
and N is the number of photons in each mode. Thus, if the
system consists of 100 atoms and 30 modes and the maximum
possible photon number in every mode is limited by 10, then
the dimension of the density matrix is (2100 × 1030)

2 ≈ 10120.
This number coincides with the number of equations needed
to be solved [49] so the full quantum description of the system
is challenging. The approach developed in this paper based on
Eqs. (2)–(4) requires solving Nm × (Nm + Na) + Na = 4000
equations for the same system.

VII. CONCLUSIONS

We have developed a framework to treat the interaction
of the electromagnetic field of arbitrary structures and atoms
which takes into account the process of spontaneous decays
and the finiteness of the propagation speed of the electro-
magnetic pulse. As a result, we derive Eqs. (2)–(4) with
operator averages Dm = 〈σ̂+

m σ̂m − σ̂mσ̂+
m 〉, ϕjm = 〈−iâ+

j σ̂m〉,
and njl = 〈â+

j âl〉, which allow us to describe the process of
spontaneous decays and the finiteness of the propagation speed
of the electromagnetic pulse. Unlike the master equations for
the density matrix in which the number of equations increases
exponentially with the number of atoms or modes - in our
approach, the number of equations is a quadratic function of
the number of modes and a linear function of the number
of atoms. This opens the possibility to study open quantum
systems consisting of a large number of interacting atoms and
modes.

We have demonstrated that when our equations are used,
the electromagnetic pulse propagates with the group velocity
of the electromagnetic field and takes the form of a δ function
at the initial time of spontaneous decay. It was shown that
accounting for the cross terms 〈n̂j l〉 = 〈â+

j âl〉 is necessary for
a valid description of the propagation of the electromagnetic
pulse in space. Neglecting these terms results in instantaneous
propagation of electromagnetic waves in space.
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