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Quantum-optical description of losses in ring resonators based on field-operator transformations
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In this work we examine loss in ring resonator networks from an operator valued phasor addition approach which
considers the multiple transmission and cross coupling paths of a quantum field traversing a ring resonator coupled
to one or two external waveguide buses. We demonstrate the consistency of our approach by the preservation
of the operator commutation relation of the out-coupled bus mode. We compare our results to those obtained
from the conventional quantum Langevin approach which introduces noise operators in addition to the quantum
Heisenberg equations in order to preserve commutation relations in the presence of loss. It is shown that the two
expressions agree in the neighborhood of a cavity resonance where the Langevin approach is applicable, whereas
the operator valued phasor addition expression we derive is more general, remaining valid far from resonances.
In addition, we examine the effects of internal and coupling losses on the Hong-Ou-Mandel manifold discussed
in Hach et al. [Phys. Rev. A 89, 043805 (2014)] that generalizes the destructive interference of two incident
photons interfering on a 50:50 beam splitter (HOM effect) to the case of an add-drop double bus ring resonator.
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I. INTRODUCTION

It is difficult to overstate the importance of the control of
fields at the single or few photon level in the realization of op-
tical architectures for quantum computation, communication,
and metrology. In order to optimize the functionality of next-
generation quantum information processing systems, devices
need to be scaled to the level of micro- or even nanointegration.
Notable persistent challenges to advancement of efficient,
scalable quantum information processing systems include
the identification of useful physical qubits, the discovery of
materials for use in quantum circuits, and the development
of system architectures based on those qubits and materials.
Light-speed transmission and high resilience to noise in
comparison with other possible physical systems identifies
photons as a very promising realization of the carriers of
quantum (and classical) information. Further, several degrees
of freedom, for example, presence or absence of a photon or
mutually orthogonal optical polarization states, can be used to
encode quantum information [1].

One potential platform is silicon, which has desirable
optical properties for integrated optical systems at the telecom-
munication wavelength of 1550 nm. In addition, silicon
is a candidate for fabricating sub-Poissonian single-photon
sources relying on its high third-order nonlinearity χ3 [2].
Using such sources, several diverse and exciting quantum
phenomena can be explored, including time bin entanglement
[3], polarization entanglement [4], and NOON reduced de
Broglie wavelength [5]. Pioneered largely by the early work of
Yariv [6], silicon microring resonators evanescently coupled
to silicon wave guides [7] find an ever-growing range of
applications as the bases for devices and networks that are
at the heart of the phenomena underpinning many quantum
technologies [5,8–13]. In particular, our collaboration has
recently demonstrated theoretically a particular enhancement
of the Hong-Ou-Mandel Effect [11] and experimentally a
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two-photon interference effect in down converted photons
generated on-chip in a silicon microring resonator [5,10].

Naturally paralleling the increased interest in silicon mi-
croring resonator networks, a significant body of theoretical
analysis has developed into a reasonably sophisticated de-
scription of the quantum-optical transport behaviors exhibited
in various simple topologies and environments. Two basic
approaches have emerged in formulating the theoretical
description of such systems. One that we shall refer to as
the Langevin approach is based upon Lippmann-Schwinger
style scattering theory at the localized couplers between
components (i.e., microrings and waveguides) along with
photonic losses modeled via noise operators representing a
thermal bath of oscillators [9,14–18]. The second approach,
which we describe below, which we will loosely call “operator
valued phasor addition” or the OVPA approach, is based upon
the construction of field transformations for the optical mode
operators by considering a linear superposition of transition
amplitudes through all possible paths of the optical system
[11,19–23].

The Langevin approach [24–27] is advantageous with
respect to its natural incorporation of quantum noise and
its seamless incorporation of finite coherence times and
bandwidths. The significant disadvantages of the Langevin
approach are that it is difficult to apply to photonic input
states that are more exotic than one or two-photon Fock states
and that it oversimplifies to some degree the topology of the
ring, potentially creating stumbling blocks in the analysis of
larger quantum networks of microrings and waveguides. Our
OVPA approach is based on input and output states of the
quantum-optical system which are related by working in an
effective Heisenberg picture [28]. This approach is easy to
generalize to all network topologies and arbitrary photonic
input states. Previous works along this line of analysis have
focused almost entirely upon lossless operation of the networks
[11,19,22]. These previous works have yielded interesting
results, even within the confines of such idealized conditions.
The principal result of this present work is to extend the
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analysis of silicon microring resonator networks to larger and
more general devices. We formulate an approach capable of
capturing the advantages of both of the Langevin and previous
operator multipath approaches in this area.

The paper is organized as follows. In Sec. II we derive the
internal cavity and output mode of an all through ring resonator
(often called a single bus ring resonator) from the conventional
quantum Langevin approach which entails the inclusion of
quantum noise bath operators. We relate the expression for the
out-coupled mode (exiting the bus) to the expression found
by considering the phasor addition of multiple transmission
and cross coupling paths of a classical field traversing the
ring resonator. This latter classical approach is equivalent to
considering the junction of the bus to the ring resonator as an
effective transmission-reflection beam splitter interaction with
cross coupling acting analogously as an effective “reflection”
of the external bus driving field into the ring resonator.

In Sec. III we quantize the OVPA approach. Unlike other
multipath approaches considered in literature, we explicitly
include quantum noise using Loudon’s expression for atten-
uation loss of a traveling-wave mode [29,30], now adapted
to the ring resonator or bus geometries. The expression for
the single bus resonator output mode is compared to the
corresponding expression derived from the Langevin approach
in Sec. II. It is shown that the two expressions agree in
the neighborhood of a cavity resonance where the Langevin
approach is applicable. The OVPA expression we derive is
more general, remaining valid far from resonance. We also
generalize our OVPA approach to the case of the add-drop (or
double bus) ring resonator.

In Sec. IV we examine the effects of internal and coupling
losses on the Hong-Ou-Mandel manifold discussed in Hach
et al. [11] that generalizes the destructive interference of
two incident photons interfering on a 50:50 beam splitter
(HOM effect [31]) to the case of an add-drop double bus ring
resonator. In Sec. V we state our conclusions and outlook for
future work.

To make this paper self-contained we relegate many of
the algebraic and background details to the Appendixes. In
Appendix A we review the classical derivation of the input-
output formalism that is used in this work. In Appendix B we
review the quantum derivation of the input-output formalism,
where the emphasis is on the preservation of the operator
commutation relations. In Appendix C we review Loudon’s
quantum formulation of traveling-wave attenuation in a beam
that we adapt in the main body of the text to the ring resonator
geometries. In Appendix D we explicitly demonstrate the
quantum commutation relation for the expression for the
out-coupled single bus mode.

II. DERIVATION OF OUTPUT FIELD OF AN ALL
THROUGH (SINGLE BUS) RING RESONATOR

A. Langevin approach derivation

In this section we follow a conventional Langevin approach
[24–27] for the derivation of the output field of an single
bus ring resonator. In Fig. 1 we show a microring resonator
with input (quantized) field â, output field ĉ, and internal ring
resonator cavity mode âint. Here, γc is the coupling coefficient

â ĉ

R

intâ

cγ

intγ

FIG. 1. An all through (single bus) ring resonator.

between the input and internal mode and γint represents internal
losses.

Following the derivation in Eq. (B13) in Appendix B the
equation of motion for the driven internal field âint undergoing
coupling and internal losses is given by

˙̂aint(t) = − i

h̄
[âint,Hsys] − (γc + γint)

2
âint(t) + √

γc â(t)

+√
γint f̂ (t), (1)

where f̂ (t) are the quantum Langevin noise operators satis-
fying the white-noise commutation relations [f̂ (t),f̂ †(t ′)] =
δ(t − t ′). As discussed in Appendix B their presence is required
by quantum mechanics to ensure that the commutation
relations for the internal field are satisfied. In addition to
Eq. (1), a boundary condition between the input, output, and
internal field is given by

â + ĉ = √
γc âint. (2)

This boundary condition follows from the widely used input-
output formalism [24–27,32], a quantum-optical instantiation
of the S matrix theory, relating early time input fields to
late time output fields in scattering problems. We present
the derivation of (2) classically in Appendix A, and quantum
mechanically in Appendix B. In quantum optics, this boundary
condition is used to related the internal cavity mode âint to the
external driving â and out-coupled ĉ modes.

For simplicity we take Hsys = h̄ω0â
†
intâint to be the free

field Hamiltonian for the internal ring resonator mode of
frequency ω0. Transforming to the frequency domain via
âint(t) = ∫ ∞

−∞ dω âint(ω) e−iωt yields

âint(ω) = 1

(γc + γint)/2 − i(ω − ω0)
(
√

γc â + √
γint f̂ (ω)).

(3)
Use of the boundary condition (2) then yields the desired
relationship between the output field ĉ and the input field â,

ĉ(ω) = √
γc âint(ω) − â(ω)

=
(

γ− + iδ

γ+ − i δ

)
â(ω) +

√
γc γint

γ+ − iδ
f̂ (ω), (4)

053828-2



QUANTUM-OPTICAL DESCRIPTION OF LOSSES IN RING . . . PHYSICAL REVIEW A 95, 053828 (2017)

a c*κ− κ
τ

*τ
PQ

Qa Pa

R

FIG. 2. An all through ring resonator.

where we have defined γ± = (γc ± γint)/2 and δ = ω − ω0.
Note that Eq. (4) has the form of

ĉ = Aa→c â + B f̂ , (5)

with |Aa→c|2 + |B|2 = 1. Since the input â and noise field f̂

are independent, they commute and this latter condition en-
sures that [ĉ(ω),ĉ†(ω′)] = δ(ω − ω′). The inclusion of loss for
the internal ring resonator mode âint requires the introduction
of noise operators f̂ to ensure the preservation of quantum
commutations relations. This is the essence of the quantum
Langevin approach. Note that without internal loss (γint = 0),
|Aa→c| = 1 and the output field ĉ is just a phase-shifted version
of the input field â [23–27].

B. Transmission-cross-coupling
coefficient derivation: Classical

In Fig. 2 we follow the multiple transmission and cross
coupling paths in the ring resonator. We use the notation of
[5,11] in which τ is the transmission from the input (classical)
mode a to output c along the straight waveguide (i.e., a → c)
bus and −κ∗ is the cross coupling from mode a into the ring
resonator (i.e., from a → P ). Similarly, κ is the cross coupling
[33] from inside the ring resonator to the waveguide bus (i.e.,
Q → c) and τ ∗ is the internal transmission within the ring (i.e.,
from Q → P ). The output mode c is obtained as the coherent
sum of all possible round trip “Feynman paths” circulating
inside the resonator including a round-trip amplitude loss α =
e−(1/2)	 L [6] and phase accumulation eiθ where θ = β(ω)L =
n(ω) ω/c L, with L = 2πR the perimeter of a ring resonator
of radius R,

c = τ aa→c + a (−κ∗)a→P (α eiθ )P→Q (κ)Q→c, (6a)

+ a (−κ∗)a→P (α eiθ )P→Q (τ ∗)Q→P (α eiθ )P→Q (κ)Q→c,

(6b)

+ a (−κ∗)a→P (α eiθ )P→Q (τ ∗)Q→P (α eiθ )P→Q

× (τ ∗)Q→P (α eiθ )P→Q (κ)Q→c, (6c)

+ · · · ,

=
(

τ − |κ|2 α eiθ

∞∑
n=0

(τ ∗ α eiθ )n
)

a, (6d)

=
(

τ − α eiθ

1 − τ ∗ α eiθ

)
a. (6e)

In the above, the first term in Eq. (6a) is the direct transmission
of mode a → c (zero round trips), and in the last line we
have used |τ |2 + |κ|2 = 1, which states conservation of energy
(power). The notation used in the second term of Eq. (6a)
indicates the factors picked up by the mode a as it undergoes
one round trip in the resonator, namely (−κ∗)a→P as it cross
couples with strength −κ∗ from the external bus to a point P

just inside the ring, (α eiθ )P→Q as it circulates once around
the cavity from point P to point Q just before exiting the ring
where it out couples (κ)Q→c with strength κ to the external
mode c. Equations (6b) and (6c) explicitly track two and three
circulations respectively around the ring resonator. The sum
of all possible circulations is given in Eq. (6d) which reduces
to the final expression (6e), which is the classical result as
derived in [6,34,35].

C. Conventional matrix “beam splitter” derivation

The derivation in the previous section is equivalent to the
matrix “beam splitter” formulation of Rabus [35], with τ, τ ∗
acting as transmission coefficients and κ, − κ∗ acting as a
“reflection” coefficients between the input modes a and aQ

and output modes c and aP ,(
c

aP

)
=

(
τ κ

−κ∗ τ ∗

)(
a

aQ

)
, (7a)

aQ = α eiθ aP . (7b)

Here, aP can be considered as the (classical) field cross coupled
from the input mode a to just inside the ring resonator at
point P . The mode aQ is the field aP propagated around the
ring once, which suffers a round-trip loss α ≡ e−(1/2) 	L, with
combined coupling and internal loss 	 and ring circumference
L = 2πR, and a single round-trip phase accumulation of θ . By
solving for aP from Eq. (7a) and using the internal round-trip
boundary condition (7b) we obtain the solution

aP = −κ∗

1 − τ ∗ α eiθ
, (8a)

which upon using the boundary condition (7b) yields

aQ = −κ∗ α eiθ

1 − τ ∗ α eiθ
. (8b)

Finally, the first equation in (7a) c = τ a + κ aQ yields the
same solution as in Eq. (6e).

III. QUANTUM TRANSMISSION-CROSS-COUPLING
COEFFICIENT DERIVATION OF OUTPUT FIELD(S)

OF A RING RESONATOR

A. Quantum derivation

For the quantum derivation, we use the expression (C10) in
Appendix C (see Fig. 10) for the attenuation loss of a traveling
wave, modeled from a continuous set of beams splitters acting
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as scattering centers due to Loudon [29,30],

âL(ω) = eiξ (ω)L â0(ω) + i
√

	(ω)
∫ L

0
dz eiξ (ω)(L−z) ŝ(z,ω),

(9)

where for convenience we have introduced the shorthand
notation for the input field at z = 0 , â0(ω) ≡ â(z,ω)|z=0 and
the output field at z = L , âL(ω) = â(L,ω). In Eq. (9) we
have defined the complex propagation constant as ξ (ω) ≡
β(ω) + i	(ω)/2, with β(ω) ≡ n(ω)(ω/c) for a medium of
index of refraction n(ω) and attenuation constant 	(ω). Note
that since ŝ(z,ω) are input noise operators, and â0(ω) is the

input field before any interactions with the scattering centers,
these operators commute,

[â0(ω),ŝ(z′,ω′)] = [â0(ω),ŝ†(z′,ω′)] = 0, (10)

with commutation relations,

[â0(ω),â†
0(ω′)] = δ(ω − ω′),

[ŝ(z,ω),ŝ†(z′,ω′)] = δ(z − z′) δ(ω − ω′). (11)

Thus, if we explicitly form the commutation relation
[âL(ω),â†

L(ω′)] we obtain two terms,

[âL(ω),â†
L(ω′)] = ei[ξ (ω)−ξ∗(ω′)]L [â0(ω),â†

0(ω′)]

+
√

	(ω)	(ω′)
∫ L

0
dz

∫ L

0
dz′ ei[ξ (ω)(L−z)−ξ∗(ω′)(L−z′)] [ŝ(z,ω),ŝ†(z′,ω′)],

= δ(ω − ω′)
(

e−	(ω)L + 	(ω)
∫ L

0
dz e−	(ω)z

)
,

= δ(ω − ω′), (12)

where in the second equality we have used i[ξ (ω) − ξ ∗(ω′)] = −	(ω) and the commutation relations for a0(ω) and s(z,ω) in
Eq. (11), and that the integral in the second to last line yields (1 − e−	(ω)L)/	. Thus, the expression for the attenuated traveling
wave âL(ω) in Eq. (9) explicitly preserves the output field commutation relations.

In analogy with the classical field derivation in Sec. II B, we track the operator input field â ≡ â0 as it couples into the ring
resonator cavity making an arbitrary number of circulations around the cavity before it couples out to the output mode ĉ (see
Fig. 2),

ĉ = τ â0 (13a)

+ (−κ∗)a→P (â0
P→Q−→ â1)(κ)Q→c, (13b)

+ (−κ∗)a→P (â0
P→Q−→ â1

Q→P−→ τ ∗â1
P→Q−→ τ ∗â2)(κ)Q→c, (13c)

+ (−κ∗)a→P (â0
P→Q−→ â1

Q→P−→ τ ∗â1
P→Q−→ τ ∗â2

Q→P−→ τ ∗2
â2

P→Q−→ τ ∗2
â3)(κ)Q→c, (13d)

+ · · · ,

= τ â0 − |κ|2
∞∑

n=0

(τ ∗)n ân+1, (13e)

=
(

τ − |κ|2
∞∑

n=0

(τ ∗αeiθ )n
)

â0 − i|κ|2
√

	

∞∑
n=0

(τ ∗)n
∫ (n+1)L

0
dz eiξ (ω)[(n+1)L−z]ŝ(z,ω), (13f)

=
(

τ − α eiθ

1 − τ ∗ α eiθ

)
â − i|κ|2

√
	

∞∑
n=0

(τ ∗)n
∫ (n+1)L

0
dz eiξ (ω)[(n+1)L−z]ŝ(z,ω). (13g)

In Eq. (13a) we have the direct transmission of the input mode â0 ≡ â into the output mode ĉ, while in Eqs. (13b)–(13d) we follow
the round-trip evolution of the internal ring resonator mode with ân ≡ ânL after n round trips through the cavity. In Eq. (13f) we
have used the definition

ân+1 ≡ â((n + 1)L,ω) = eiξ (ω)(n+1)Lâ0(ω) +
∫ (n+1)L

0
dz eiξ (ω)[(n+1)L−z]ŝ(z,ω) (14)

with eiξL ≡ α eiθ with α = e−(1/2)	L and θ = βL. The above
notation is meant to be similar to Eq. (6a) with the added

annotation â0
P→Q−→ â1 indicating that the operator mode â0

is transformed into the operator mode â1 after one internal

circulation within the ring from point P to point Q. The

notation â1
Q→P−→ τ ∗â1 indicates that the mode â1 picks up a

factor τ ∗ as it internally transmits from point Q to point P

for the start of an additional circulation within the ring [as
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opposed to out coupling with strength (κ)Q→c from the ring
resonator at point Q into the external bus mode ĉ].

As derived in Appendix D, an explicit calculation of the
output field commutation relation yields

[ĉ(ω),ĉ†(ω′)] = δ(ω − ω′). (15)

The coefficient of the first term in Eq. (13g) [6] is identical
in form to the classical transmission coefficient in Eq. (6e),
while the second operator term in Eq. (13g) is the Langevin
noise term required to preserve the commutation relation (15).
Note that in Eq. (13g) we assumed without loss of generality
a single uniform propagation wave vector β(ω) and loss 	(ω)
throughout the ring resonator. As shown in Appendix D this
assumption can be relaxed and the commutation relations
(15) still hold for multiple, piecewise defined propagation
wave vectors and losses along the ring resonator of perimeter
length L.

B. Comparison with quantum Langevin approach

We now wish to compare the two expressions for the
transmission amplitude Aa→c from the input mode â to the
output mode ĉ in the single bus ring resonator given by
Eq. (4) for the Langevin approach and by Eq. (13g) for the
OVPA approach. The power transfer from â to ĉ is given by
Pa→c = |Aa→c|2/TR , where TR = L/vg is the round-trip time
in the ring resonator of perimeter L = 2πR, and vg is the
group velocity within the ring.

For the Langevin case (4), the expression for
P

(Langevin)
a→c TR = (γ−2 + δ2)/(γ+2 + δ2) has validity around

a single resonance at frequency ω0 (see Appendixes A
and B). By construction, the expression using Eq. (13g)
for P (OV PA)

a→c TR = |(|τ | − α eiθ ′
)/(1 − |τ | α eiθ ′

)|2 for the
“reflection-transmission” derivation (defining τ = |τ | eiθτ and
total phase θ ′ = θ − θτ ) is valid for all resonances as a function
of θ = β(ω) L = ω TR . Thus, in a neighborhood of a particular
resonance at frequency ω0 we have �θ ′ = TR δ with δ =
ω − ω0 for which we approximate cos �θ ′ ≈ 1 − �θ ′2/2 =
1 − T 2

R δ2/2. Substituting this approximation into P (OV PA)
a→c TR ,

keeping terms to order δ2, and equating this to P
(Langevin)
a→c TR

yields

Pa→c TR =
(α − |τ |)2

α |τ | T 2
R

+ δ2

(1 − α |τ |)2

α |τ | T 2
R

+ δ2

= γ−2 + δ2

γ+2 + δ2
, (16)

from which we can read off the expressions

γ+ TR = 1 − α |τ |√
α |τ | , γ− TR = α − |τ |√

α |τ | , (17)

or equivalently,

γc TR = (1 + α) (1 − |τ |)√
α |τ | , γint TR = (1 − α) (1 + |τ |)√

α |τ | ,

(18)

a c*κ− κ
τ

*τ

R

d bη

*η

γ *γ−

ie θα
ie θα −

− ie θα +
+

PQ

P′ Q′

FIG. 3. An add-drop ring resonator.

where we recall that α = e−(1/2)	 L. The expressions in (18)
are consistent in the limit of zero coupling and internal losses
γc = 0 and γint = 0 respectively, i.e., 	 = 0, which yields α =
|τ | = 1. Following [34] we can define a distributed loss for the
OVPA case as

|τ | ≡ e−	τ L/2, α ≡ e−	 L/2. (19)

In the limit of weak losses, we can expand these exponentials
to first order in 	 L and 	τ L and substitute into (18) to obtain

γc TR ≈ 	τ L, γint TR ≈ 	 L. (20)

Thus, in the OVPA approach, the magnitude of the trans-
mission coefficient |τ | for power flowing from mode â to
ĉ represents a distributed loss at rate γc, the cavity decay
rate, and round-trip ring loss α represents a distributed
internal loss at the rate 	 = γint. In general, the 	 in (20)
is frequency dependent and are applicable in the proximity of
each resonance δ = ω − ω0 = 0.

C. Add-drop ring resonator

We can extend the formalism of the previous section to
consider the quantum derivation of the input-output relations
for an add-drop ring resonator as illustrated in Fig. 3.

Here b is the (classical) mode injected at the add port and
d is mode emitted at the drop port. We label as P ′ the point
just inside the ring resonator at which b enters the cavity,
and similarly Q′ as the point just before the exit to the external
mode d. We now divide the internal losses and phase shifts into
two half-ring portions via α+ eiθ+ from P → Q′ and α− eiθ−

from P ′ → Q such that α = α+ α− and θ = θ+ + θ−.
Let us first consider the output mode c of the form

c = Aa→c a + Ab→c b, (21)

generalizing Eq. (6e) for the case of the all through (single bus)
ring resonator. Comparison of Figs. 2 and 3 as well as Eq. (6a)
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shows that the classical loss and phase accumulation factor α eiθ is replaced by α eiθ → (α+ eiθ+ ) (η∗) (α− eiθ− ) = α eiθ η∗ in the
single bus amplitude Aa→c in Eq. (6e).

Correspondingly, in the quantum derivation we have ân+1 → (η∗)n+1ân+1 in Eq. (13e) such that the contribution to ĉ from the
input port mode â in Eq. (21) is given by τ â0 − |κ|2 η∗ ∑∞

n=0(τ ∗ η∗)n ân+1 where ân+1 is given by Eq. (14). For the add port we
have classically

Ab→c = (−γ ∗)b→P ′ (α− eiθ− )P ′→Q (κ)Q→c (22a)

+ (−γ ∗)b→P ′ (α− eiθ− )P ′→Q (τ ∗)Q→P (α+ eiθ+ )P→Q′ (η∗)Q′→P ′ (α− eiθ− )P ′→Q (κ)Q→c (22b)

+ · · · ,

= −γ ∗ κ α eiθ/2
∞∑

n=0

(τ ∗η∗ α eiθ )n, (22c)

= − γ ∗ κ α eiθ/2

1 − τ ∗η∗ α eiθ
., (22d)

where in Eq. (22a) the internal mode picks up a “half-circulation” loss α− eiθ− = √
α eiθ/2 [35] in traveling from the insertion

point P ′ to the exit point Q a distance L/2 away [36]. In the quantum derivation, this corresponds to a contribution in Eq. (21) to ĉ

from the add port mode b̂ given by −γ ∗ κ
∑∞

n=0(τ ∗ η∗)n b̂n+1/2. Here b̂n+1/2 is given by an analogous expression in Eq. (14) with
â → b̂ and n + 1 → n + 1/2, corresponding to the classical half-circulation loss. Thus, Eq. (21) takes the form (with â0 ≡ â

and b̂0 ≡ b̂ indicating modes just inside the ring resonator experiencing zero round trips)

c = Aa→c a + Ab→c b,

⇒ ĉ = τ â0 − |κ|2 η∗
∞∑

n=0

(τ ∗ η∗)n ân+1 − γ ∗ κ

∞∑
n=0

(τ ∗ η∗)n b̂n+1/2, (23a)

=
(

τ − η∗ α eiθ

1 − τ η∗ α eiθ

)
â −

(
γ ∗ κ

√
α eiθ/2

1 − τ η∗ α eiθ

)
b̂ − i

√
	(|κ|2 η∗f̂a + γ ∗ κf̂b), (23b)

where we have defined the noise operators as

f̂a =
∞∑

n=0

(τ ∗η∗)n ŝn+1, f̂b =
∞∑

n=0

(τ ∗η∗)n ŝn+1/2, ŝm =
∫ mL

0
dz eiξ (ω)[mL−z] ŝ(z,ω). (24)

A similar analysis can be carried out for the drop port mode d̂ in terms of the input â and add port b̂ modes, yielding

d = Aa→d a + Ab→d b, ⇒ d̂ = −
(

κ∗ γ
√

α eiθ/2

1 − τ η∗ α eiθ

)
â +

(
η − τ ∗ α eiθ

1 − τ η∗ α eiθ

)
b̂ − i

√
	(κ∗ γ f̂a + |γ |2 τ ∗f̂b). (25)

Note that for the zero loss case α = 1 the transition
amplitudes Aa→c, Ab→c, Aa→d , Ab→d are the same ones
derived classically in [35] and quantum mechanically in
[11] for the add-drop ring resonator. The preservation of
the commutation relations [ĉ(ω),ĉ†(ω′)] = [d̂(ω),d̂†(ω′)] =
δ(ω − ω′) and [ĉ(ω),d̂(ω′)] = [ĉ(ω),d̂†(ω′)] = 0 can be ex-
plicitly demonstrated straightforwardly (though with some-
what more involved algebra) through the approach used in
Appendix D for explicitly proving the all through commutation
relation (15).

IV. HONG-OU-MANDEL MANIFOLD WITH LOSS

In this section we re-examine the Hong-Ou-Mandel mani-
fold (HOMM) introduced by Hach et al. [11] for the lossless
add-drop double bus ring resonator in the previous Sec. III C,
but now using the expressions for the output modes c (23a)

and and d (25) which includes the effects of internal and
coupling losses. The HOMM is defined by the level surface
Pc,d (1,1) = 0 for the destructive interference of the coincident
output photon state |1c,1d〉 (given the input state |1a,1b〉)
containing one photon in each system output mode c and d

(see Fig. 3) as a function of the through-coupling parameters τ

and η (for modes c and d respectively), and the internal single
round-trip phase accumulation θ . In Fig. 4 we plot the region
0 � Pc,d (1,1) � 0.001 corresponding to 99.9% destructive
interference [37] of the quantum amplitude for the state |1c,1d〉
for the real parameters 0 � τ,η � 1 (with the cross-coupling
parameters giving by κ = √

1 − τ 2 and γ =
√

1 − η2) and
−π � θ � π .

As discussed in Hach et al. [11], the two-dimensional
(three parameter) HOMM arising in the lossless add-drop ring
resonator generalizes the zero-dimensional (one parameter)
Hong-Ou-Mandel effect [31] where the single adjustable
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FIG. 4. Hong-Ou-Mandel manifold (HOMM) for Pc,d (1,1) �
0.001 for zero loss α = 1, as a function of through-coupling
parameters 0 � τ � 1 and 0 � η � 1 for the system output modes c

and d respectively of Fig. 3, and the internal single round-trip phase
accumulation −π � θ � π [compare with Fig. 5(b) of [11]].

parameter is the transmissivity of the 50:50 beam splitter upon
which the two photons interfere.

To examine the effects of coupling and intrinsic loss on
the HOMM in the add-drop ring resonator, we begin with

the input state |1a,1b,0env〉 ≡ |1a,1b〉 ⊗ |0〉env where |0〉env

represents the (for simplicity, zero temperature) initial vacuum
state of the noise modes which are acted upon by the noise
operators f̂a and f̂b defined in Eq. (24). Let us write Eqs. (23a)
and (25) for the output modes c and d in terms of the system
input modes a and b formally as

�̂cout =
(

ĉ

d̂

)
=

(
Aa→c Ab→c

Aa→d Ab→d

) (
â

b̂

)
+

(
F̂c

F̂d

)

≡ M �̂ain + �̂F, (26)

where we have defined the collective noise
operators F̂c = −i

√
	 (|κ|2 η∗f̂a + γ ∗ κf̂b), and F̂d =

−i
√

	 (κ∗ γ f̂a + |γ |2 τ ∗f̂b). From the definition (24) we see
that f̂a depends on an integer number of round-trip losses
in the ring resonator [i.e., mode â → ĉ or b̂ → d̂ involving
the noise operator ŝn+1(z,ω)], while f̂b depends on an integer
plus half number of round-trip losses [i.e., mode â → d̂ or
b̂ → ĉ involving the noise operator ŝn+1/2(z,ω)]. Thus, while
[f̂a,f̂b] = 0, we have [f̂a,f̂

†
b ] = 0. This is to be expected

[17,38] due to the feedback (sum over multiple round trips)
provided by the ring resonator. While the commutator [f̂a,f̂

†
b ]

could be explicitly computed directly as in Appendix D
(for the single bus ring resonator) we can now invoke (as is
typically done) the unitarity of the input modes and output
modes commutators to determine the value of the noise
commutators. Returning to Eq. (26) in terms of the collective
noise modes F̂c and F̂d we can infer that

[ĉ(ω),ĉ†(ω′)] = δ(ω − ω′) ⇒ [F̂c(ω),F̂ †
c (ω′)] = [1 − (|Aa→c|2 + |Ab→c|2)] δ(ω − ω′), (27a)

[d̂(ω),d̂†(ω′)] = δ(ω − ω′) ⇒ [F̂d (ω),F̂ †
d (ω′)] = [1 − (|Aa→d |2 + |Ab→d |2)] δ(ω − ω′), (27b)

[ĉ(ω),d̂†(ω′)] = 0 ⇒ [F̂c(ω),F̂ †
d (ω′)] = −(Aa→c A∗

a→d + Ab→c A∗
a→d ) δ(ω − ω′). (27c)

The input state |�〉in = |1a,1b,0env〉 = â†b̂†|0a,0b,0env〉 is converted to the output state |�〉out by rewriting the input modes
operators â† and b̂† in terms of the output mode operators ĉ† and d̂†. Inverting Eq. (26) as

�̂a†
in = M (�̂c†out − �̂F †), M = M−1∗ (28)

yields the output state

|�〉out ≡ |�(2)〉c,d ⊗ |0〉env + |φ(1)〉c,d ⊗ F̂ †
c |0〉env + |ϕ(1)〉c,d ⊗ F̂

†
d |0〉env + |0,0〉c,d ⊗ |�(2)〉env, (29)

where

|�(2)〉c,d =
√

2M11 M21|2,0〉c,d + Perm(M) |1,1〉c,d +
√

2M12 M22|0,2〉c,d , (30a)

|φ(1)〉c,d = −(2M11 M21|1,0〉c,d + Perm(M) |0,1〉c,d ), (30b)

|ϕ(1)〉c,d = −(Perm(M) |1,0〉c,d + 2M12 M22|0,1〉c,d ), (30c)

|�(2)〉env = (M11F̂
†
c + M12F̂

†
d ) (M21F̂

†
c + M22F̂

†
d ) |0〉env, (30d)

where we have defined

Perm(M) ≡ M11 M22 + M12 M21 (31)

as the permanent [39] of the matrix M.
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FIG. 5. Hong-Ou-Mandel manifold (HOMM) for 0 � P
(α)
c,d (1,1) � 0.001 as a function of the loss parameter α = e−	L/2, the through-

coupling parameters 0 � τ � 1 and 0 � η � 1 for the system output modes c and d respectively of Fig. 3, and the internal single round-trip
phase accumulation −π � θ � π . (a) α = 1.0 (lossless), (b) α = 0.95, (c) α = 0.90, (d) α = 0.85, (e) α = 0.80, (f) α = 0.75 (compare with
Fig. 4).

Ultimately we are interested in the observable reduced
system density matrix ρc,d = Trenv[|�〉out〈�|] of the output
modes c and d. The trace over the environment is facilitated
by the observation that, e.g., Trenv[F̂ †

i |0〉env〈0|F̂j ] =
env〈0|F̂j F̂

†
i |0〉env = env〈0|[F̂j ,F̂

†
i ] + F̂

†
i F̂j |0〉env = [F̂j ,F̂

†
i ]

for i,j ∈ {c,d} and where the use of Eqs. (27a)–(27c) can be
made.

The reduced system density matrix has the form

ρc,d =
∑

k={0,1,2}
pk ρ

(k)
c,d , Trc,d [ρ(k)

c,d ] = 1,
∑

k={0,1,2}
pk = 1,

(32)

where the index k labels the number of photons in the modes
c and d. The two-system-photon sector ρ

(2)
c,d is spanned by

the states {|2,0〉c,d ,|1,1〉c,d ,|0,2〉c,d}, the one-system-photon
sector ρ

(1)
c,d is spanned by the states {|1,0〉c,d ,|0,1〉c,d}, and

the the zero-system-photon sector ρ
(0)
c,d is the vacuum state

|0〉c,d〈0|.
Finally, P

(α)
c,d (1,1) ≡ c,d〈1,1|ρ(2)

c,d |1,1〉c,d is the probability,
as function of the loss parameter α = e−	L/2, that a coinci-
dence detection will contain one output photon in mode c and
one output photon in mode d for the diagonal density matrix
ρ

(2)
c,d . (Such events occur randomly with probability p2.) From

Eq. (30a) we see that P
(α)
c,d (1,1) = |Perm(M)|2 as has been

recently noted in the theory of generalized multiphoton (i.e.,
HOM) quantum interference effects, especially in regard to the
problem of boson sampling [40]. The expression for P

(α)
c,d (1,1)

is given by

P
(α)
c,d (1,1) = (|τ |2 + α2 |η|2 − α r) (|η|2 + α2 |τ |2 − α r) + α2 |κ|4 |γ |4 + α |κ|2 |γ |2 [(1 + α2) r − 2α(|τ |2 + |η|2)]

(|τ |2 + α2 |η|2 − α r) (|η|2 + α2 |τ |2 − α r) + α2 |κ|4 |γ |4 − α |κ|2 |γ |2 [(1 + α2) r − 2α(|τ |2 + |η|2)]
, (33)

where we have defined r ≡ 2 Re(τη e−iθ ). Equation (33) reduces in the lossless case α = 1 to

P
(α=1)
c,d (1,1) =

( |τ |2 + |η|2 − r − |κ|2 |γ |2
|τ |2 + |η|2 − r + |κ|2 |γ |2

)2

(34)
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FIG. 6. Hong-Ou-Mandel manifold (HOMM) for P
(α)
c,d (1,1) = 0 for the important special case of critical coupling τ = η = 1/

√
2 (i.e., 3-dB

couplers) vs the internal single round-trip phase accumulation −π � θ � π for various loss parameters α = e−	L/2. Left: 0.75 � α � 1.0;
right: 0.50 � α � 0.75 [compare Fig. 6(b) of [11]].

whose numerator (set equal to zero) was examined in [11] for
the case of the lossless HOMM.

In Fig. 5 we plot the region 0 � Pc,d (1,1) � 0.001 corre-
sponding to 99.9% [37] destructive interference of the quantum
amplitude for the state |1c,1d〉 for the real parameters 0 �
τ,η � 1 (with the cross-coupling parameters giving by κ =√

1 − τ 2 and γ =
√

1 − η2) and −π � θ � π . The HOMM
begins to break up at approximately 5% loss (α = 0.95), and
reduces to essentially a lower dimension manifold for loss
greater than 10% (α < 0.90). Currently, loss in silicon ring
resonators at 1550 nm can be as low as 1% [5,23] so that the
observation of the HOMM appears experimentally feasible.

In Fig. 6 we plot P
(α)
c,d (1,1) = 0 for the important special

case of critical coupling τ = η = 1/
√

2 (i.e., 3-dB couplers)
versus the internal single round-trip phase accumulation θ

for various loss parameters 0.5 � α � 1.0. As the internal and
coupling loss (	) increases (α = e−	L/2 decreases) we observe
the expected disappearance of the HOM dip (zero minima
for the lossless case α = 1.0) and the decrease in visibility
[difference between maximum value at θ = 0 and minimum
values of P

(α)
c,d (1,1) = 0]. Again, we can see that for up to 5%

loss (0.95 � α � 1.0) the observation of the HOMM appears
experimentally feasible.

It is also interesting to examine the one system photon
sector ρ

(1)
c,d of the reduced density matrix ρc,d spanned by the

basis states {|1,0〉c,d ,|0,1〉c,d}. Let us define the un-normalized
state ρ̃

(1)
c,d as

ρ̃
(1)
c,d = |φ(1)〉c,d〈φ(1)| [F̂c,F̂

†
c ]+|φ(1)〉c,d〈ϕ(2)| [F̂d ,F̂

†
c ]

+|ϕ(2)〉c,d〈φ(1)| [F̂c,F̂
†
d ]+|ϕ(2)〉c,d〈ϕ(2)| [F̂d ,F̂

†
d ], (35)

and p1 = Tr[ρ̃(1)
c,d ], then ρ

(1)
c,d = ρ̃

(1)
c,d/p1. Note that ρ

(1)
c,d =

Tr[|�(1)〉out 〈�(1)|] arises from the trace over the environment
of the (postselected) one system photon portion of |�out〉 in
(29) where

|�(1)〉out ≡ 1√
p1

(|φ(1)〉c,d ⊗F̂ †
c |0〉env + |ϕ(1)〉c,d ⊗ F̂

†
d |0〉env),

(36)

and hence |�(1)〉out could be considered as the (system-
environment) purification of the (postselected, with proba-
bility p1) system state ρ

(1)
c,d . As such, the entropy S(1) =

−Tr[ ρ
(1)
c,d log2 ρ

(1)
c,d ] indicates a measure of the bipartite

entanglement between the system and environment for the
postselected state |�(1)〉out. In Fig. 7 we plot level surfaces
of S(1) as a function of τ , η, and θ for various values of
the loss parameter α. Values of S(1) closer to unity indicate
greater entanglement between single system photon (in mode
c and d), and the single photon lost to the environment
in the postselected state |�(1)〉out. These regions of larger
entanglement are diminished as loss is increased (α decreased).

Last, it is interesting to note that from the definition
of |φ(1)〉c,d in Eq. (30b) and |ϕ(1)〉c,d in Eq. (30c) that
both states are suppositions of the one system photon basis
states {|1,0〉c,d ,|0,1〉c,d}. These superpositions are completely
destroyed precisely at the condition that HOMM is strongest,
namely P

(α)
c,d (1,1) = |Perm(M)|2 = 0.

V. SUMMARY AND OUTLOOK

In this paper we have examined quantum-optical losses in
ring resonators using field-operator transformations. Specif-
ically, we have demonstrated the equivalence between our
operator valued phasor addition of “Feynman paths” circu-
lating within the resonator and the more standard Langevin
approach. In fact, we have shown that the OVPA approach
we present here is slightly more general in that it is valid
for all frequencies of light while the Langevin only holds
near a resonance of the system. This result represents an
important “unification” of the description of such networks
based upon scattering theory with that based upon quantum
transfer functions (matrices). With the results of this paper in
place, we can now investigate the quantum-optical response of
ring resonator networks to exotic states of light in the presence
of losses. We will apply the techniques developed here and
elsewhere in the references to design and optimize silicon
nanophotonic networks for quantum information processing,
optical metrology, and communication.
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FIG. 7. Contour plots of the von Neumann entropy S(1) = −Tr[ ρ
(1)
c,d log2 ρ

(1)
c,d ] for the one system photon sector of ρc,d as a function

of through-coupling parameters 0 � τ � 1 and 0 � η � 1, and the internal single round-trip phase accumulation −π � θ � π , for
various loss parameters α = e−	L/2. (a) α = 0.95, (b) α = 0.75, (c) α = 0.50, (d) α = 0.25. [Surface manifolds for contour values
of S(1) ∈ {0.99,0.95,0.75,0.50,0.25,0.10} retain the same nested relative orientation (from left to right) for all subplots (a)–(d) as that
labeled in (a)].

Note added. Recently, the authors were made aware of
the paper by Raymer and McKinstrie (2013) [41] which
considered a generalization of the standard Langevin input-
output formalism that explicitly takes into account circulation
factors accounting for the multiple round trips of the fields
inside a cavity or ring resonator. That work considered an
equation of motion for one round trip of a single bus cavity field
with no internal losses, along with auxiliary beam-splitter-like
boundary conditions relating the input and output fields to the
circulating cavity field. While not explicitly including internal
propagation losses, the authors indicated how they would be
included in a Langevin approach. The current work discussed
in this paper is similar in spirit, but considers directly the total
summation of all round trip circulations of the field(s) in a
lossy (coupling and propagation) single bus and dual bus ring
resonator without the use of boundary conditions. The two
approaches are equivalent to each other. Both works consider
the agreement of the formalism with the standard Langevin
approach in the high cavity Q limit.
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APPENDIX A: CLASSICAL DERIVATION
OF INPUT-OUTPUT FIELDS

In the interest of making this paper as self-contained as
possible, we review in this Appendix the classical derivation
of the input-output formalism by Haus [42–44], relating the
coupling of an internal cavity (complex) amplitude aint to
an external input ain and output field aout as illustrated in
Fig. 8. Since the optical system considered here is linear, the
classical equations will also hold in the quantum regime, as
will be reviewed in the next Appendix, where consideration
of commutation relations must be additionally taken into
account. The phenomenological derivation by Haus relies on
three principles: (i) energy conservation, (ii) time reversibility,
and (iii) perturbation theory to formulate a dynamical and
boundary condition relation between the internal cavity and
the external driving and out-coupled modes.

1. A single cavity resonance

The equation of motion for the internal field aint in a one-
sided lossy Fabry-Perot cavity, as illustrated in Fig. 8, driven
by an external field ain and out-coupled to the external field
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ina

outa

inta

cγ

intγ

FIG. 8. One-sided cavity with classical input field amplitude ain,
output field aout, and internal cavity field aint. γc is the (power) decay
rate of the internal field to the external field through the mirror. γint

represents internal losses within the cavity.

aout is given by

ȧint = −(i ω0 + γc/2 + γint/2) aint + √
γc ain. (A1)

Here, ω0 is the resonance frequency of the undriven cavity,
γc is the power decay rate of the internal field through the
partial mirror to the external mode (d|aint|2/dt = −γc aint),
and γint describes internal (e.g., scattering) losses within the
cavity. The term

√
γc ain describes the in-coupling of the

form κ ain of the external field of complex amplitude ain with
coupling constant κ . One can relate the coupling constant κ to
the cavity decay rate γc through energy conservation and time
reversal as κ2 = γc (for detailed derivation see Haus [42–44]).
For a driving field excitation ain proportional to e−iω t , the
internal field has the solution

aint = κ ain

γc/2 + γint/2 − i (ω − ω0)
, (A2)

describing a complex Lorentzian form of width (γc + γint)/2.
One can relate the output field aout to the input ain

and internal cavity field aint through power conservation (in
appropriately normalized units of energy and power),

|ain|2 − |aout|2 = d|aint|2
dt

= −γc |aint|2 + √
γc (ain a∗

int + a∗
in aint). (A3)

Since the system is linear we can write formally the ansatz
aout = cin ain + cint aint, for some complex constants cin and
cint. From the case of the undriven cavity with no internal
losses (ain = γint = 0), energy conservation d|aint|2/dt =
−γc |aint|2 = −|aout|2 yields aout = √

γc aint so that cint =√
γc. Substituting aout = cin ain + √

γc aint into the left-hand
side of the above ansatz produces |ain|2 (cint + 1) − γc |aint|2 −√

γc (cin ain a∗
int + c∗

in a∗
in aint) which on comparison with the

right-hand side of Eq. (A3) yields the real solution cint = −1.
Thus, we obtain

aout = −ain + √
γc aint, or ain + aout = √

γc aint, (A4)

which can be considered as a boundary condition for the fields
at the lossy mirror.

Using Eq. (A2) and the boundary condition (A4) we can
calculate the reflection coefficient r as

r = aout

ain

=
√

γc aint − ain

ain

= (γc − γint)/2 + i(ω − ω0)

(γc + γint)/2 − i(ω − ω0)

≡ γ− + iδ

γ+ − iδ
, (A5)

where in the last equality we have defined γ± = (γc ± γint)/2
and δ = ω − ω0, as in the main body. Note that when the
internal losses are zero γint = 0 one has |r| = 1, otherwise
|r| < 1. Equation (A1) and the boundary condition (A4)
describe the internal classical field amplitude aint of the
resonator near a single resonance and relates it to the input
driving field ain and the external traveling-wave mode aout

that it couples to. Since the systems are linear, these equations
also hold in the quantum regime, as will be shown in the next
Appendix, where consideration of commutation relations must
be taken into account.

2. Extension to internal losses and multiple resonances

The generalization to multiple resonances is achieved by
writing Eq. (A1) for each internal cavity mode aint,j near
resonance frequency ω0,j , with individual coupling γc,j and
internal losses γint,j ,

ȧint,j = −(i ω0,j + γc,j /2 + γint,j /2) aint,j + √
γc,j ain.

(A6)

The boundary condition (A4) generalizes to

aout = cin ain +
∑

j

√
γc,j aint,j . (A7)

The reflection coefficient similarly generalizes to

r = aout

ain

= cin +
∑

j

γc,j

(γc,j + γint,j )/2 − i(ω − ω0,j )
,

≡ cin +
∑

j

Lj , (A8)

where we have defined the complex Lorentzian Lj =
γc,j /[γc,j + γint,j )/2 − i(ω − ω0,j )]. Again, for zero internal
losses γint,j = 0 we must have |r|2 = 1 which leads to a
quadratic equation for cin (taken as real),

(cin + 1) (cin − 1) + (cin + 1)
∑

j

|Lj |2

+ 2
∑
j =k

Re(Lj L∗
k) = 0. (A9)

We see that cin is now a function of ω. For a single resonance
j = 1 there is only one term in the sum

∑
j Lj and hence the

last term in Eq. (A9) is not present. By inspection, cin = −1
in this case. For the general case, near a particular resonance
ω = ωj + � such that �,γc,j � |ωj − ωk| for k = j (i.e.,
well separated resonances, large free spectral range) |Lk =j | ≈
γc,k/|ωj − ωk| � 1 so that the last cross term in Eq. (A9) is
negligible and only the single |Lj |2 term contributes to the
middle sum. Hence, as in the single resonance case, Eq. (A9)
becomes approximately (cin + 1) (cin − 1) + (cin + 1) |Lj | ≈
0 with solution cin(ωj + �) ≈ −1. Thus, near each individual
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FIG. 9. Same one sided cavity as in Fig. 8, except now classical
amplitudes have been changed to quantum fields.

resonance, the single resonance boundary condition (A4)
holds.

APPENDIX B: QUANTUM DERIVATION
OF INPUT-OUTPUT FIELDS

The quantum derivation of the input-output relations for
optical fields in a cavity is attributed to the work of Collett and
Gardiner [32]. Here we follow the often cited texts of Walls
and Milburn [24] and of Orszag [27]. In this formulation a
Hamiltonian is prescribed to yield dynamics of the same form
given classically in Eq. (A1) due to the linearity of the system.
The quantum version of the classical boundary condition (A4)
arises from the difference between the equations of motion for
the noise operators considered in the far past and far future,
which couples the internal cavity mode to the external modes
of the cavity (see Fig. 9). The essentially different feature of
the quantum derivation is the preservation of the commutation
relations of all involved operators, which is required by the
unitarity of the quantum evolution. While this material is
now standard in quantum optics canon, we include it here
for completeness, and for comparison to the OVPA coupling
derivation used in the main body of the text.

The quantum input-output relations are instantiations of the
S (scattering) matrix which relates input fields to output fields.
Here we assume linear interactions between the system and the
bath, the rotating wave approximation and that the spectrum
of the bath is flat, independent of frequency. The Hamiltonian
is given by

H = Hsys + HB + HINT, (B1a)

HB =
∫ ∞

−∞
dω h̄ ω b̂†(ω) b̂(ω), (B1b)

Hint = i h̄

∫ ∞

−∞
dω κ(ω) (b̂†(ω) âint − b̂(ω) â

†
int). (B1c)

Here âint is the internal cavity mode, b̂†(ω), b̂(ω) are the
creation and annihilation operator for the bath modes assumed
to have a white-noise spectrum such that [b̂(ω), b̂†(ω′)] =
δ(ω − ω′), and κ(ω) is the coupling constant. Though the
frequencies are positive, the integration range can be extended
from (−ω0,∞) in a rotating frame of frequency ω0. The lower
limit of the integral can then be extended to −∞ for ω0 � �ω

where �ω is the bandwidth of frequencies under consideration
(say, near a particular resonance).

The Heisenberg equations of motion yield

˙̂b(ω,t) = −i ω b̂(ω,t) + κ(ω) âint, (B2a)

˙̂aint(ω,t) = − i

h̄
[âint,Hsys] −

∫ ∞

−∞
dω κ(ω) âint. (B2b)

We can solve Eq. (B2a) for b̂(ω,t) depending on two different
choices of the initial conditions:

b̂(ω,t) = e−iω(t−t0) b̂(ω,t0) +
∫ t

t0

dt ′ κ(ω) e−iω(t−t ′) âint(t
′),

(B3a)

b̂(ω,t) = e−iω(t−t1) b̂(ω,t1) −
∫ t1

t

dt ′ κ(ω) e−iω(t−t ′) âint(t
′).

(B3b)

In Eq. (B3a) the initial condition has been chosen at a time
in the far past t0 < t such that b(ω,t0) represents the bath
operators at very early times (often taken to be t0 = −∞),
whereas in Eq. (B3b) the initial condition has been chosen to
be in the far future t1 > t such that b(ω,t1) represents the bath
operators at very late times (often taken to be t1 = ∞). We
also assume that in the far past, the bath and the system are
uncorrelated so that the operators commute, [aint,b(ω,t0)] =
[aint,b

†(ω,t0)] = 0.
We first consider the substitution of Eqs. (B3a) into (B2b)

to obtain the exact equation,

ȧint(t) = − i

h̄
[âint,Hsys]

−
∫ ∞

−∞
dω κ(ω) e−iω(t−t0) b̂(ω,t0), (B4a)

−
∫ ∞

−∞
dω κ2(ω)

∫ t

t0

dt ′ e−iω(t−t0) âint(t
′). (B4b)

We now invoke the Markov approximation that coupling κ(ω)
is constant over the bandwidth �ω so that we can pull it out
from under the integral in term (B4a). As in AppendixA we
relate the coupling constant κ(ω) to the cavity decay rate γc

via κ2(ω) = γc/(2π ). We further define the remaining integral
in term (B4a) as

âin(t) ≡ − 1√
2π

∫ ∞

−∞
dω e−iω(t−t0) b̂(ω,t0), (B5)

using the sign convention that incoming fields to the cavity
have a minus sign, while outgoing fields have a plus sign [see
aout(t) below). Thus, the term (B4a) becomes

√
γc âin(t). By

use of the definition and properties of the δ function,

1

2π

∫ ∞

−∞
dω e−iω(t−t ′) = δ(t − t ′), (B6a)

∫ t

t0

dt ′ f (t ′) δ(t − t ′) =
∫ t1

t

dt ′ f (t ′) δ(t − t ′)

= 1

2
f (t), t0 < t < t1, (B6b)

and the initial bath operator equal time commutation relations
[b̂(ω,t0),b̂†(ω′,t0)] = δ(ω − ω′), one has

[âin(t),â†
in(t ′)] = δ(t − t ′). (B7)
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By again pulling out κ(ω) = γc/(2π ) from under the integral in
Eq. (B4b) and using Eqs. (B6a) and (B6b) the term in Eq. (B4b)
becomes −γc/2 aint(t). Gathering these results together yields
the equation for the internal cavity mode âint(t),

˙̂aint(t) = − i

h̄
[âint,Hsys] − γc

2
âint(t) + √

γc âin(t). (B8)

This is the exact same form as the classical equation of motion
for aint in Eq. (A1) if we take Hsys = h̄ω0 â

†
int âint as the

free-field, empty cavity Hamiltonian, and consider no internal
losses γint = 0. Equation (B8) is the quantum Langevin
[24–27] equation of motion for the internal cavity mode âint

coupled to the input driving field âin. It is an embodiment
of the fluctuation-dissipation theorem [25] which states that
effect of loss (dissipation) in the system is accompanied by
the presence of noise sources (fluctuations) as the cause of
the loss. These noise operators must be present quantum
mechanically in order to preserve the system commutation
relations [âint(t),â

†
int(t

′)] = δ(t − t ′). Otherwise, without the
presence of the term âin(t) in Eq. (B8) the system commutator
would decay to zero as e−γc(t−t ′).

We can repeat the above development of the equation of
motion for âint, this time using the solution for b̂(ω,t) in
Eq. (B3b) in terms of the far-future modes b̂(ω,t1) to obtain

˙̂aint(t) = − i

h̄
[âint,Hsys] + γc

2
âint(t) − √

γc âout(t), (B9)

where we have defined âout(t) analogous to Eq. (B5) as

âout(t) ≡ 1√
2π

∫ ∞

−∞
dω e−iω(t−t1) b̂(ω,t1), (B10)

which straightforwardly yields the commutation relations,

[âout(t),â
†
out(t

′)] = δ(t − t ′), (B11)

analogous to Eq. (B7). Last, the boundary condition between
the input, output, and internal cavity mode is obtained by
subtracting the two equations of motion for âint(t) (B8) and
(B9) to obtain

âin(t) + âout(t) = √
γc âint(t), (B12)

which has the exact same form as the classical boundary
condition obtained in Eq. (A4).

Although the above analysis pertains to cavities driven by
a bath, it is not necessarily a theory about noise, since the only
properties assumed about the bath is flat spectral response
[27]. Similar to Eq. (A1), we can explicitly include internal
losses, treating âin as an external (non-noise) driving field by
explicitly including noise operators f̂ (t) that are δ correlated
in time [f̂ (t),f̂ †(t ′)] = δ(t − t ′),

˙̂aint(t) = − i

h̄
[âint,Hsys] − (γc + γint)

2
âint(t)

+√
γc âin(t) + √

γint f̂ (t). (B13)

APPENDIX C: LOUDON’S QUANTUM
TRAVELING-WAVE ATTENUATION

One of the primary expressions we use in the main body
of the paper is Loudon’s formulation for traveling-wave
attenuation by an infinite series of discrete beam splitters. Here

1â 2â
( )
1̂
ins

(out)
1̂s

( )
2ˆ
ins

(out)
2ŝ

( )ˆ inrs

(out)ˆrs

( )ˆ inNs

(out)ˆNs

1ˆNa +ˆna 1ˆna +

L
zΔ

FIG. 10. Loudon’s traveling-wave attenuation by an infinite set
of discrete beam splitters.

we summarize Loudon’s derivation [29,30] and note several
important points on the commutation relations for the effective
noise operator expressions.

To model loss in a quantized traveling wave field â, Loudon
considers successive propagation through an infinite series of
fictitious beam splitters as illustrated in Fig. 10. For the rth
beam splitter, ŝ(in)

r represents noise that is scattered into the
beam by scattering centers, while ŝ(out)

r represents light that is
scattered out of the beam. Each beam splitter (i.e., scattering
center) is modeled by a frequency dependent transmission and
reflection coefficient T (ω), R(ω), respectively, such that

âr+1(ω) = T (ω) âr (ω) + R(ω) ŝ(in)
r (ω), (C1a)

ŝ(out)
r (ω) = R(ω) âr (ω) + T (ω) ŝ(in)

r (ω). (C1b)

Here we assume that the pairs of input and output operators
satisfy the usual boson commutation relations,

[âr (ω),â†
r (ω′)] = [âr+1(ω),â†

r+1(ω′)] = [
ŝ(out)
r (ω),

ŝ†(out)
r (ω′)

] = δ(ω − ω′). (C2)

and that operators for the different scattering sites are inde-
pendent and obey[

ŝ(in)
r (ω),ŝ†(in)

r ′ (ω′)
] = δr,r ′ δ(ω − ω′). (C3)

Successive iteration of (C1a) yields

âN+1(ω) = T N (ω) â1(ω) + R(ω)
N∑

r=1

T N−r (ω) ŝ(in)
r (ω).

(C4)

We now take the continuum limit N → ∞, �z = L/N → 0
and |R(ω)|2 → 0 and define the attenuation constant 	(ω) =
|R(ω)|2/�z. Using |T (ω)|2 + |R(ω)|2 = 1 we have

|T (ω)|2N = [1 − |R(ω)|2]N = [1 − 	(ω)L/N]N → e−	(ω)L,

(C5)
for which we take

T (ω) = ein(ω)(ω/c)−(1/2)	(ω) �z ≡ eiξ (ω)�z,

ξ (ω) ≡ β(ω) + i	(ω)/2, β(ω) ≡ n(ω)(ω/c). (C6)

In Eq. (C6) we have chosen the phase of T (ω) to incorporate
the free propagation constant β(ω) ≡ n(ω)(ω/c) through a
medium of index of refraction n(ω), and defined the complex
propagation constant as ξ (ω) ≡ β(ω) + i	(ω)/2. We use
(N − r)�z = L − z and convert from discrete to continuous
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modes through the identification

ŝ(in)
r (ω) → (�z)1/2ŝ(z,ω), δr,r ′ → �z δ(z − z′), (C7)

with commutation relations

[ŝ(z,ω),ŝ†(z′,ω′)] = δ(z − z′) δ(ω − ω′). (C8)

The continuous noise operators ŝ(z,ω) are assigned the
expectation values

〈ŝ(z,ω)〉 = 〈ŝ†(z,ω)〉 = 0, (C9a)

〈ŝ†(z,ω) ŝ(z′,ω′)〉 = FN (ω) δ(z − z′) δ(ω − ω′), (C9b)

where FN (ω) is the position-independent mean flux of
noise photons per unit angular frequency. Using

∑N
r=1 →

(�z)−1
∫ L

0 dz we arrive at Loudon’s expression for an attenu-
ated traveling beam,

âL(ω) = eiξ (ω)L â0(ω) + i
√

	(ω)
∫ L

0
dz eiξ (ω)(L−z) ŝ(z,ω),

(C10)

where for convenience we have introduced the shorthand
notation for the input field at z = 0 , â0(ω) = â(z,ω)|z=0

and the output field at z = L , âL(ω) = â(L,ω). Note that
since ŝ(z,ω) are input noise operators, and â0(ω) is the input
field before any interactions with the scattering centers, these
operators commute,

[â0(ω),ŝ(z′,ω′)] = [â0(ω),ŝ†(z′,ω′)] = 0. (C11)

Thus, if we explicitly form the commutation relation
[âL(ω),â†

L(ω′)] we obtain two terms,

[âL(ω),â†
L(ω′)]

= ei[ξ (ω)−ξ∗(ω′)]L [â0(ω),â0(ω′)]

+
√

	(ω)	(ω′)
∫ L

0
dz

∫ L

0
dz′ ei[ξ (ω)(L−z)−ξ∗(ω′)(L−z′)]

× [ŝ(z,ω),ŝ†(z′,ω′)]

= δ(ω − ω′)
(

e−	(ω)L + 	(ω)
∫ L

0
dz e−	(ω)z

)
= δ(ω − ω′), (C12)

where in the second equality we have used i[ξ (ω) − ξ ∗(ω′)] =
−	(ω), the commutation relations for a0(ω) in Eq. (C2), and
s(z,ω) in Eq. (C8), and that the integral in the second to last line
yields (1 − e−	(ω)L)/	. Thus, the expression for the attenuated
traveling wave âL(ω) in Eq. (C10) explicitly preserves the
output field commutation relations. We can rewrite Eq. (C10)
in a Langevin form as

âL(ω) = eiξ (ω)L â0(ω) + i
√

1 − e−	(ω)L f̂ (ω), (C13a)

f̂ (ω) ≡ 1√
1 − e−	(ω)L

∫ L

0
dzeiξ (ω)(L−z) ŝ(z,ω), (C13b)

where the Langevin noise operators f̂ (ω) satisfy the δ

correlated commutation relations,

[f̂ (ω),f̂ †(ω′)] = δ(ω − ω′). (C14)

Note that in the absence of loss 	 = 0 Eq. (C13a) reduces
to the unattenuated free propagating field expression âL(ω) =
eiβ(ω)L â0(ω), which is unitary since |eiβ(ω)L| = 1. One could
deduce Eq. (C13a) by phenomenologically introducing loss as
âL(ω) ∼ e[iβ(ω)−	(ω)]L â0(ω), assuming âL(ω) takes the form of
âL(ω) = A â0(ω) + B f̂ (ω), with [f̂ (ω),f̂ †(ω′)] = δ(ω − ω′),
and requiring by quantum mechanics that [âL(ω),â†

L(ω′)] =
δ(ω − ω′), which implies that |B| =

√
1 − |A|2 with freedom

to choose the phase of B. This deduction is the essence of the
Langevin approach, where the inclusion of loss requires the
introduction of additional noise operators f̂ (ω) to ensure that
the quantum-mechanical commutation relations are preserved.
What is not obtained from this procedure is the functional
from of f̂ (ω) as given by Eq. (C13b). The above derivation
of âL(ω) by Loudon preserves the commutation relations
[âL(ω),â†

L(ω′)] = δ(ω − ω′) by explicit construction.
In the derivation of Eq. (C10) and subsequent commutation

relation (C12) a single loss 	 was assumed throughout the
whole length L of the ring resonator. This was not an essential
assumption. If the ring resonator had loss 	1 over length L1

and loss 	2 over the remaining length L2 = L − L1 one can
easily derive

âL(ω) = eiξ2(ω)L2 eiξ1(ω)L1 â0(ω)

+ eiξ2(ω)L2 i
√

	1(ω)
∫ L1

0
dz eiξ1(ω)(L1−z) ŝ(z,ω)

+ i
√

	2(ω)
∫ L

L1

dz eiξ2(ω)(L−z) ŝ(z,ω). (C15)

The commutation relation then yields a sum of terms given by
[compare to Eq. (C12)]

[âL(ω),â†
L(ω′)] = δ(ω − ω′)

(
e−	2(ω)L2 e−	1(ω)L1

+ e−	2(ω)L2 	1(ω)
∫ L1

0
dz e−	1(ω)(L1−z)

+	2(ω)
∫ L

L1

dz e−	2(ω)(L−z)

)
,

= δ(ω − ω′). (C16)

This result can be straightforwardly generalized to an arbitrary
number of sections of the ring resonator of length Li with
corresponding losses 	i such that

∑
i Li = L.

APPENDIX D: DERIVATION OF SINGLE BUS
COMMUTATION RELATION (15)

In Eq. (13g) we derived an expression for the output field ĉ

in terms of the input field â and ring resonator noise operators
ŝ(z,ω),

ĉ(ω) =
(

τ − α eiθ

1 − τ ∗ α eiθ

)
â(ω) − i|κ|2

√
	

∞∑
n=0

(τ ∗)n

×
∫ (n+1)L

0
dz eiξ (ω)[(n+1)L−z]ŝ(z,ω), (D1)

where we have used the definition an+1 = eiξ (n+1)Lâ0 +∫ (n+1)L
0 dz eiξ (ω)[(n+1)L−z]ŝ(z,ω) with ξ (ω) = β(ω) + i	(ω)/2
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such that eiξL ≡ α eiθ with α = e−(1/2) 	L and θ = βL. In
this Appendix we wish to show explicitly that output field
commutation relation (15) yields

[ĉ(ω),ĉ†(ω′)] = δ(ω − ω′), (D2)

where the input field and noise operators satisfy

[â(ω),â†(ω′)] = δ(ω − ω′),

[ŝ(z,ω),ŝ†(z′,ω′)] = δ(z − z′) δ(ω − ω′), (D3)

and

[â(ω),ŝ(z′,ω′)] = [â(ω),ŝ†(z′,ω′)] = 0. (D4)

Let us define

Aa→c =
(

τ − α eiθ

1 − τ ∗ α eiθ

)
≡ eiθτ

(
|τ | − α eiθ ′

1 − |τ | α eiθ ′

)
,

τ = |τ |eiθτ ,

θ ′ ≡ θ − θτ , (D5)

where we have defined τ = |τ |eiθτ and the total phase angle
θ ′ ≡ θ − θτ , so that we can write Eq. (D1) as

ĉ(ω) = Aa→c â(ω) − i F̂ (ω). (D6)

The goal is to then show that

[F̂ (ω),F̂ †(ω′)] = (1 − |Aa→c|2) δ(ω − ω′). (D7)

Forming the commutator (D2) we obtain

[ĉ(ω),ĉ†(ω′)] = δ(ω − ω′)

(
|Aa→c|2 +

∞∑
n=0

∞∑
m=0

In,m

)
,

(D8)
where we have defined

In,m = 	 |κ|4(τ ∗)n τm

∫ (n+1)L

0
dz

∫ (m+1)L

0
dz′

× eiξ (ω)[(n+1)L−z] e−iξ∗(ω′)[(m+1)L−z′] δ(z − z′), (D9)

where the spatial δ function in Eq. (D9) arises from using the
commutators for the noise operators ŝ(z,ω) in Eq. (D3). The
last term in Eq. (D8) can be written as

∞∑
n=0

∞∑
m=0

In,m =
∞∑

n=0

In,n + 2
∞∑

n=0

n−1∑
m=0

Re(In,m), (D10)

where we have used Im,n = I ∗
n,m. The diagonal sum in

Eq. (D10) is straightforwardly computed as
∞∑

n=0

In,n = 	 |κ|4
∞∑

n=0

|τ |2n

∫ (n+1)L

0
dz e−	[(n+1)L−z],

= |κ|4
∞∑

n=0

|τ |2n [1 − (α2)n+1],

= |κ|2(1 − α2)

1 − |τ |2 α2
, (D11)

where we have used i(ξ − ξ ∗) = −	 and α2 = e−	L. For the
off-diagonal sum in Eq. (D10) we use the fact that for n > m

and for some arbitrary function f (z,z′),∫ (n+1)L

0
dz

∫ (m+1)L

0
dz′f (z,z′) δ(z − z′)

=
∫ (m+1)L

0
dz′f (z′,z′), (D12)

since the integration over the longer interval (n + 1)L ensures
the contribution of the δ function on the shorter interval (m +
1)L. We then obtain

2
∞∑

n=0

n−1∑
m=0

Re(In,m)

= 2 |κ|4 α2
∞∑

n=0

(τ ∗αeiθ )n
n−1∑
m=0

(ταe−iθ )m
(

1

(α2)m+1
−1

)
,

(D13)

where eiξL ≡ α eiθ . The above finite and infinite geometric
sums can be computed using

∑n−1
m=0 xm = (1 − xn)/(1 − x)

and
∑∞

n=0 xn = 1/(1 − x). After some lengthy but straight-
forward algebra one obtains

2
∞∑

n=0

n−1∑
m=0

Re(In,m) = 2
|κ|2 (1 − α2)

1 − |τ |2 α2

(|τ |α cos θ ′ − |τ |2α2)

|1 − |τ | α eiθ ′ |2 .

(D14)
Adding Eq. (D11) to Eq. (D14) yields

∞∑
n=0

∞∑
m=0

In,m = |κ|2(1 − α2)

|1 − |τ | α eiθ ′ |2 , (D15a)

≡ 1 − |Aa→c|2, (D15b)

where the last line follows from the use of the expression for
Aa→c in Eq. (D5) and |τ |2 + |κ|2 = 1.

Finally, the commutation relation (D2) can be extended
(though the algebra would be somewhat tedious) to the case of
a ring resonator with an arbitrary number of sections of length
Li with corresponding losses 	i such that

∑
i Li = L by using

the results and generalizations of Eqs. (C15) and (C16) at the
end of the previous Appendix.
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