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Characteristic spectra of circuit quantum electrodynamics systems from the ultrastrong- to the
deep-strong-coupling regime
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We report on spectra of circuit-quantum-electrodynamics (QED) systems in an intermediate regime that lies
between the ultrastrong- and the deep-strong-coupling regimes, which have been reported previously in the
literature. Our experimental results, along with numerical simulations, demonstrate that as the coupling strength
increases, the spectrum of a circuit-QED system undergoes multiple qualitative transformations, such that several
coupling regimes are identified, each with its own unique spectral features. The different spectral transformations
can be related to crossings between energy level differences and to changes in the symmetries of the energy
eigenstates. These results allow us to use qualitative spectral features to infer certain properties and parameters
of the system.
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I. INTRODUCTION

Cavity quantum electrodynamics (QED), which describes
the interaction between atoms or atomlike emitters and an
electromagnetic cavity or, more generally, any harmonic
oscillator, has been an active research area for several decades
[1]. The realization of superconducting circuits in which a
single qubit is coupled to a superconducting resonator in the
field now known as circuit QED has resulted in remarkable
advances in this field. The strong-coupling regime, where
the qubit-oscillator coupling strength g exceeds the relevant
decay rates, was realized in 2004 [2,3]. Several years later,
the ultrastrong-coupling regime was realized [4,5], where
g was around 10% of the oscillator’s frequency ω and
deviations from the predictions based on the rotating-wave
approximation were observed. Very recently, the deep-strong-
coupling regime has also been realized [6]. In this new regime,
g, ω, and the qubit’s minimum gap frequency � satisfy the
relation [g � max(ω,

√
�ω/2)] and the energy eigenstates

including the ground state are highly entangled. This highly
entangled ground state is of interest for its physical novelty,
its implications about the limits of the light-matter interaction
strength, and its potential use as a quantum resource, e.g., as
a robust source of entangled pairs. Ultrastrong coupling could
also be used to implement ultrafast quantum gates [7]. It should
be noted that the term deep strong coupling was introduced
recently [8], before which this regime was treated as part of
the ultrastrong-coupling regime. The experimental progress
towards stronger coupling has been accompanied by numerous
theoretical studies on the behavior of circuit-QED systems
in this regime [8–29]. Related recent experimental studies
investigated the coupling of a qubit ensemble to a single cavity
[30], the coupling of a single qubit to a continuum of modes
in a superconducting transmission line [31], and the coupling
of a single qubit to a resonant mode of two superconducting
resonators [32].

*fumiki@nict.go.jp

The deep-strong-coupling spectra reported in Ref. [6] are
quite different from those seen in the conventional spectra of
previously studied circuits, e.g., those in Ref. [5]. One of the
remarkable features is that the |0〉 → |2〉 transition has a dip
rather than a peak when the qubit is biased at the symmetry
point. Here, |0〉 stands for the ground state and |n〉 with
n � 1 stands for the nth excited state of the combined system.
Another remarkable feature is that the |0〉 → |2〉 and |1〉 → |3〉
transitions disappear at the symmetry point. This observation
raises the questions of how the different features in the spectra
are related to the exact value of the coupling strength g and
the physical origin of each feature. In order to address these
questions we investigate circuits with intermediate values of
g, and we complement this experimental investigation with
a systematic theoretical analysis of the spectra for the full
range of coupling strength values. We find that there are five
coupling regimes with qualitatively different spectral features,
each having a different physical origin. In particular, the
intermediate-coupling-strength circuits on which we report
here display their own unique spectral features that are
different from those of both weaker- and stronger-coupling
circuits.

II. HAMILTONIAN AND EXPERIMENTAL RESULTS

The circuit that we have used for this work can be described
as a composite system that comprises one flux qubit inductively
coupled to a lumped-element LC oscillator via Josephson
junctions. The circuit design is similar to that in Ref. [6],
except for the following two differences: (i) To study the
intermediate-coupling-strength regime, the persistent current
of the flux qubit is designed to be somewhat smaller than
those investigated in Ref. [6]. (ii) To increase the size of
the spectral features around the oscillator frequency ω while
keeping the qualitative features of the spectra unchanged, the
qubit’s minimum gap � is designed to be around ω/4.

The qubit-oscillator circuit is described by the Hamiltonian

Ĥ = −�

2
σ̂x − ε

2
σ̂z + ωâ†â + gσ̂z(â + â†). (1)
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FIG. 1. Measured transmission spectra for the qubit-oscillator
circuit at three bias points with the parameters (a) �/(2π ) =
2.08 GHz, ω/(2π ) = 6.305 GHz, g/(2π ) = 4.08 GHz; (b) �/(2π ) =
1.85 GHz, ω/(2π ) = 6.275 GHz, g/(2π ) = 4.44 GHz; and (c)
�/(2π ) = 1.31 GHz, ω/(2π ) = 6.203 GHz, g/(2π ) = 5.31 GHz.
These parameters give g/ω = 0.65 (a), g/ω = 0.71 (b), and g/ω =
0.86 (c). The left-hand side of each panel shows the central
frequencies of the different spectral lines as functions of the qubit
bias ε, calculated from the eigenvalues of the Hamiltonian. Solid
red, dashed green, and dotted cyan lines correspond to the transitions
|0〉 → |1〉, |0〉 → |2〉, and |1〉 → |3〉, respectively. The right-hand
side of each panel shows the measured transmission amplitude as a
function of ε and the probe frequency ωp. The color scheme is chosen
such that the lowest point in each spectrum is red and the highest point
is blue. The dotted black lines correspond to the same transitions as
shown on the left-hand side.

The parameter ε represents the qubit’s bias point measured
relative to the symmetry point. The operators σ̂x,z are qubit
Pauli operators, and â and â† are the oscillator’s lowering and
raising operators, respectively. Note that we have set h̄ = 1
here, and we do so throughout this paper. We also ignore any
higher-order terms in the Hamiltonian, such as the so-called A2

term [33]. As discussed in Ref. [6], the A2 term would simply
renormalize the system parameters and would therefore not
result in spectra that look qualitatively different from those that
we present here. Any given experimentally observed spectrum
can, however, be used to set an upper bound for the A2 term
in the Hamiltonian.

Figure 1 shows the normalized amplitudes of the transmis-
sion spectra |S21(ε,ωp)|/|S21(ωp)|max that we have measured
around three bias points that all correspond to half-integer
values of the qubit loop’s flux but, because of our tunable
coupling circuit design [6], have different values of qubit-
oscillator coupling strength (see Appendix A). Here, ωp is
the probe frequency and |S21(ωp)|max = maxε |S21(ε,ωp)|. The
three points correspond to g/ω = 0.65, 0.71, and 0.86. The
parameters are obtained from fitting the experimentally mea-
sured resonance frequencies to those calculated theoretically

by diagonalizing the Hamiltonian given in Eq. (1) with �, ω,
and g treated as fitting parameters.

When g/ω = 0.65, the spectral line for the |0〉 → |2〉
transition has a /\ shape and the (barely visible) |1〉 → |3〉
transition has a \/ shape around ε = 0. When g/ω = 0.86,
the situation is reversed: the spectral line of the |0〉 → |2〉
transition has a \/ shape and that of the |1〉 → |3〉 transition
has a /\ shape around ε = 0. When g/ω = 0.71, there seems
to be only one spectral line between ε = −ω and ε = ω, and
this line has a broad U shape between ε = −ω and ε = ω, with
a small gap at ε = 0. We show below that all of these features
are characteristic features of the respective coupling regimes.

III. CALCULATED SPECTRA

In this section we use theoretical and numerical calculations
to explain the different features in the measured spectra. In
particular, we show that the range 0 < g/ω < ∞ can be
divided into five intervals, namely, [0, 0.38], [0.38, 0.5],
[0.5, 0.71], [0.71, 0.92], and [0.92, ∞], with each one of
these intervals having its own characteristic spectrum. These
characteristic spectra can be understood from the dependence
of the energy levels on the coupling strength as well as the
symmetry of the energy eigenstates. The experimental spectra
shown here, in combination with those in Refs. [5] and [6],
cover four of these five intervals and in all cases the features
that can be resolved by simple visual inspection of the spectra
are consistent with the exact parameter values extracted from a
systematic fitting of the full spectra. Unfortunately, none of our
circuits turned out to have 0.38 < g/ω < 0.5, and therefore
we do not have an experimental example of the corresponding
pattern.

For calculation of the spectra, we start by considering the
transmission and reflection of a two-level quantum system that
is kept at a sufficiently low temperature and probed sufficiently
weakly that it can be assumed to be in its ground state most
of the time. The dynamics and steady state of such a system
can be described using the optical Bloch equations [34]. The
system partially reflects an external driving probe field, and
the reflection coefficient is described by the formula

R(ωp) = R0
�2

01

�2
01 + (ωp − ω01)2 + �2

, (2)

where

�01 = |Ap × 〈1|x̂|0〉|,
(3)

ω01 = E1 − E0,

R0 sets the maximum value of the reflection coefficient at
ωp = ω01, Ap is the amplitude of the driving probe field,
x̂ is the system operator that is driven by the probe field,
which in our experiment is (â + â†) (such that the interaction
with the probe field can be described by the Hamiltonian
Ĥp = Apx̂ cos [ωpt]/2), and En is the energy of state |n〉.
The transmission coefficient is given by T = 1 − R. The
parameter � represents the overall decoherence rate in the
system. The above formula can be seen as resulting from
a simplified description of the interplay between multiple
physical processes, and more complex expressions could
be derived using alternative derivations (e.g., separating the
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effects of zero-, low-, and high-frequency noise into different
decoherence channels). However, this formula gives all of the
overall features of the transmission spectra that interest us in
this work, and we therefore do not complicate the picture with
any additional elements. The main role of the decoherence
parameter � in our calculations is to set the width of the
spectral lines, assuming a small value of �01.

Generalizing Eq. (2) to a multilevel quantum system, we
obtain for the reflection coefficient

R(ωp) = R0

∑
i,j (j>i)

Pi

�2
ij

�2
ij + (ωp − ωij )2 + �2

, (4)

where the indices i and j run over all the quantum states of the
system (with j > i), Pi is the thermal-equilibrium occupation
probability of state |i〉, and the definitions of �ij and ωij

follow straightforwardly from Eq. (3). Note that in general
� will not be the same for all the transitions, but calculating
accurate values for the different transitions will not affect the
main phenomena that we wish to study here, and we therefore
ignore this point for simplicity.

We now present theoretically calculated spectra that illus-
trate the different transformations in the spectral features. As
we explain below, the features can be understood from the
dependence of the energy levels on the coupling strength, in
particular, crossings between energy levels and other crossings
between transition frequencies, as well as the symmetry of the
energy eigenstates. Some of our calculations were performed
using the QuTiP simulation package [35].

For definiteness we set �/ω = 0.1, which is sufficiently
small that various results can be understood in terms of our
knowledge about the small �/ω limit without losing any of
the relevant features in the spectra. For the calculation of the
occupation probabilities Pi , we use the temperature setting
kBT /ω = 0.5, which is a relatively high temperature compared
to what can be achieved in state-of-the-art experiments, but it
makes certain spectral features more easily visible. With such
temperatures, states |0〉 and |1〉 are generally both significantly
populated in the bias range of interest, while the occupation
probabilities of higher levels are negligible. This situation is
consistent with the majority of the data sets reported here and
in Ref. [6]. We set Ap = 2 × 10−3 and � = 3 × 10−3. These
parameters set the amplitudes and widths of the spectral lines.
We focus on the frequency range around ωp = ω, because this
range gives the strongest spectroscopic response, although in
principle one could probe the system at other frequencies in
order to obtain more information about the system parameters.

Figure 2 shows the theoretically calculated spectra for six
values of the coupling strength g that are representative of the
qualitatively different regimes that can be obtained with this
system. To directly compare the calculated spectra with the
experimentally measured transmission spectra, we plot 1 − R

assuming R0 = 1.
When g/ω = 0.3 [Fig. 2(a)], the spectral line of the |0〉 →

|2〉 transition has a W shape in the range −ω < ε < ω, while
that of the |1〉 → |3〉 transition has an M shape. The only
qualitative change that takes place upon going from g/ω =
0 to g/ω ∼ 0.3 is that the distances of these spectral lines
from the central frequency ωp = ω increase with increasing
g/ω. The transition from the weak-coupling regime to the

strong-coupling regime of circuit QED usually occurs in this
interval. Furthermore, as mentioned in Sec. I, recently the
term ultrastrong coupling has come to be used for the regime
with g ∼ 0.1ω, such that the ultrastrong-coupling regime also
exhibits this spectral pattern. Indeed, the spectrum observed
in Ref. [5] resembles that shown in Fig. 2(a), although in that
experiment the signal from the |1〉 → |3〉 transition was too
weak and its exact ε dependence cannot be inferred from the
experimental data.

When g/ω changes from 0.3 to 0.45 [Figs. 2(a) and 2(b)] a
more serious change occurs, in the sense that the change can
be seen plainly without an examination of the exact values of
the different frequencies. The sides of the M-shaped |1〉 → |3〉
spectral line go up and the line transforms into a V shape, which
is most clearly seen in the plots of the central frequencies [i.e.,
the left-hand sides of Figs. 2(a) and 2(b)]. This qualitative
change in the shape of the spectral line occurs at g/ω ∼ 0.383
and can therefore be used as an indicator of whether the ratio
g/ω is lower or higher than 0.383. This transformation in the
spectrum can be understood as follows: at the bias point ε = ω

(and assuming a small value of �), the energy level ladder has
a nondegenerate ground state |0〉 followed by pairs of nearly
degenerate energy levels. The pair {|1〉,|2〉} has energies given
by [14]

E1,2 − E0 = ω ± e−2g2/ω2 2g

ω
L1

0

[
4g2

ω2

]

= ω ± e−2g2/ω2 2g

ω
, (5)

while the pair {|3〉,|4〉} has energies given by

E3,4 − E0 = 2ω ± e−2g2/ω2 2g

ω

1√
2
L1

1

[
4g2

ω2

]

= 2ω ± e−2g2/ω2 2g

ω

1√
2

(
2 − 4g2

ω2

)
. (6)

Here Lm
n (x) are associated Laguerre polynomials, and we

have used the facts that L1
0(x) = 1 and L1

1(x) = 2 − x. In
Eq. (5) the plus sign gives E2 − E0, while the minus sign
gives E1 − E0. In Eq. (6), for g/ω < 1/

√
2 the plus sign gives

E4 − E0, while the minus sign gives E3 − E0, and the sign
assignment is reversed for g/ω > 1/

√
2. Combining Eqs. (5)

and (6), we find that the frequency of the transition |1〉 → |3〉
is given by

E3 − E1 = ω + e−2g2/ω2 2g

ω

[
1 ± 1√

2

(
2 − 4g2

ω2

)]
. (7)

For g/ω < 1/
√

2 a minus sign should be used. The second
term in this formula changes sign from negative to positive at

g/ω =
√

2 − √
2/2 = 0.383, which explains why the dip in

the spectrum turns into a peak at this value of g/ω.
Another feature in the spectrum that can exhibit different

properties depending on the coupling strength is the continuity
of the spectral lines at the symmetry point ε = 0. From
g/ω = 0 up to g/ω = 0.5, the |0〉 → |2〉 and |1〉 → |3〉
spectral lines are continuous across the point ε = 0, indicating
that the transitions are allowed at the symmetry point. In
the same interval, both of these lines move away from the
central frequency ωp = ω with increasing g/ω. Meanwhile,
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FIG. 2. Calculated transmission spectra with increasing coupling strength for �/ω = 0.1. The different panels correspond to (a) g/ω = 0.3,
(b) g/ω = 0.45, (c) g/ω = 0.6, (d) g/ω = 0.8, (e) g/ω = 1.0, and (f) g/ω = 1.5. The left-hand side of each panel shows the central frequencies
of the different spectral lines as functions of the qubit bias ε, calculated from the eigenvalues of the Hamiltonian. Solid red, dashed green,
dotted black, dotted cyan and dashed magenta lines correspond to the transitions |0〉 → |1〉, |0〉 → |2〉, |0〉 → |3〉, |1〉 → |2〉 and |1〉 → |3〉,
respectively. The right-hand side of each panel shows the transmission coefficient 1 − R (with R calculated using Eq. (4), where we assume
R0 = 1) as a function of ε and probe frequency ωp.

the spectral line of the |0〉 → |3〉 transition, which has a V
shape, approaches the |0〉 → |2〉 line from above, and the
|0〉 → |3〉 line vanishes at the symmetry point, indicating that
it corresponds to a forbidden transition at the symmetry point.
The transition is forbidden because states |0〉 and |3〉 have
different symmetries. The states are given by

|0〉 = 1√
2

(|L〉q ⊗ D̂(−α)|0〉o + |R〉q ⊗ D̂(α)|0〉o),

(8)

|3〉 = 1√
2

(|L〉q ⊗ D̂(−α)|1〉o − |R〉q ⊗ D̂(α)|1〉o),

where states |L〉q and |R〉q are the eigenstates of σ̂z, states |0〉o
and |1〉o are, respectively, the oscillator states containing zero
and one photons, and D̂(α) = exp(αâ† − α∗â). Because the
first and second lines in Eq. (8) have opposite signs between
the two terms of each one, the matrix element 〈0|(â + â†)|3〉
vanishes and the transition |0〉 → |3〉 is forbidden. Similarly,
the spectral line of the |1〉 → |2〉 transition, which has a

 shape, approaches the |1〉 → |3〉 line from below, and it
vanishes at the symmetry point. At g/ω = 0.5, which is the
point where E2 = E3, states |2〉 and |3〉 undergo an energy
level crossing such that they swap their physical properties. At
the point of the energy level crossing, the frequencies of the
two transitions in each pair described above coincide with each
other, and the corresponding spectral lines touch each other.
Above g/ω = 0.5, the pairs of lines separate again and the
inner two lines start to move back towards the central frequency
ωp = ω. Importantly, above g/ω = 0.5 the |0〉 → |2〉 and

|1〉 → |3〉 transitions are forbidden at the symmetry point,
while the |0〉 → |3〉 and |1〉 → |2〉 transitions are allowed.
This property is shown plainly on the right-hand sides of
Figs. 2(c)–2(f) by observing that the |0〉 → |2〉 and |1〉 → |3〉
lines are now discontinuous at ε = 0. All the experimental
spectra presented here and in Ref. [6] exhibit this feature, and
we can therefore say that in all of these cases g/ω > 0.5.

As we increase g/ω above 0.5, the peak in the |0〉 → |2〉
line at ε = 0 continues to go down and the dip in the |1〉 → |3〉
line continues to go up until the two lines cross each other at
g/ω = 1/

√
2 ≈ 0.71. This point corresponds to the condition

E3 − E2 = E1 − E0, which explains the degeneracy in the
frequencies of the |0〉 → |2〉 and |1〉 → |3〉 spectral lines. The
spectrum plotted in Fig. 1(b) has all the features expected
for a coupling strength that is close to this point, and indeed
the parameters that we obtain from fitting the full spectrum
give g/ω = 0.71, which is very close to the transformation
point. Note that there are no energy level crossings or avoided
crossings at this point. It is just the energy level differences
that cross each other. When g/ω > 0.71 [e.g., as in Fig. 2(d)],
the |0〉 → |2〉 line has a V shape, while the |1〉 → |3〉 line has a
W shape in the range −ω < ε < ω. The spectrum in Fig. 1(c)
displays this pattern and we can therefore say that g/ω > 0.71
in this case, in agreement with what we obtain from fitting the
full spectrum.

If we increase g/ω further, we find that at g/ω = 0.924
the two edges of the W-shaped |1〉 → |3〉 line go down
and the line transforms into a 
 shape. This transformation
can be understood from Eq. (7) with a plus sign. Now the
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second term changes sign from positive to negative at g/ω =√
2 + √

2/2 = 0.924, and hence the |1〉 → |3〉 transition line
exhibits a transformation from having a peak to having a dip
at ε = ω. Note that although the peaks and dips in Figs. 2(d)
and 2(e) look small, suggesting that they might be difficult to
observe experimentally, this appearance is a result of the fact
that we use the same range for the y axis in all the panels.
The spectrum in Fig. 2d of Ref. [6] clearly exhibits a dip in
the |1〉 → |3〉 spectral line as ε approaches ω as would be
expected for its very strong coupling (g/ω = 1.34). As the
coupling strength is increased in the regime g/ω > 0.92, no
further qualitative changes occur in the spectrum, except for
the fact that the features decrease in size as g/ω increases,
such that eventually for very strong coupling we recover
only an ε-independent spectral response at the bare oscillator
frequency, i.e., at ωp = ω. In Fig. 2(f), the |0〉 → |2〉, |0〉 →
|3〉, |1〉 → |2〉, and |1〉 → |3〉 spectral lines all collapse to
ωp/ω = 1 at ε = 0, and the discontinuity of the |0〉 → |2〉 and
|1〉 → |3〉 spectral lines at ε = 0, where these transitions are
forbidden, is covered by the |0〉 → |2〉 and |1〉 → |3〉 spectral
lines, which are both allowed at ε = 0. The reason behind this
behavior is that in the limit of large g/ω, the qubit-oscillator
correlations in low-lying states become extremely strong, such
that no effect of the superpositions involving different values
of σ̂z can be observed. In other words, the first term in the
Hamiltonian (proportional to σ̂x) can be ignored. In this case,
regardless of the value of σ̂z, the system behaves as a qubit in a
fixed state imparting a constant force on a harmonic oscillator,
which does not affect the spectral response of the oscillator.

The above discussion leads to a quick and simple method
for obtaining a rough estimate of the parameter g/ω and
identifying in which of the five intervals it lies simply by
looking at the overall features in the spectrum. We also note
that since the central frequency in the spectrum gives the
oscillator’s bare frequency ω, the estimate that we obtain for
the ratio g/ω immediately gives us an estimate for g.

IV. CONCLUSION

We have measured spectra of a circuit-QED system that
exhibits unique features different from those observed in
previous experiments. We have also performed a systematic
analysis of the expected spectra for different values of the
coupling strength and demonstrated that there are several
possible spectral patterns depending on the coupling strength.
In other words, the features in the spectrum undergo several
qualitative transformations as the qubit-oscillator coupling
strength is increased. The various features can be used to
identify the coupling regime and estimate certain parameters
with reasonable accuracy, even without any quantitative fitting
of experimental data. Furthermore, it could happen that
technical issues such as high dissipation rates could broaden
spectral lines to the extent that fitting the data becomes
unreliable for extracting the values of multiple parameters. In
such cases, one could nevertheless use the qualitative method
that we have presented here to estimate the parameters based on
the shapes of a few overall features in the spectrum. Our results
are a further demonstration of the richness of the physics that
results from the simple circuit-QED Hamiltonian and can find

(a)

C
L0

Lc

n q

p

FIG. 3. (a) Circuit diagram. A superconducting flux qubit (red
and black) and a superconducting LC oscillator (blue and black) are
inductively coupled to each other by sharing a tunable inductance
(black). (b) Scanning electron microscope image of the qubit
including the coupler junctions located at the orange rectangle in
(a). Josephson junctions are represented by magenta rectangles. The
coupler, consisting of four parallel Josephson junctions, is tunable
via the magnetic flux bias through its loop.

applications in future experiments that push the parameters of
such systems farther into yet unexplored regimes.
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APPENDIX A: EXPERIMENTAL SETUP

Figure 3(a) shows a diagram of the qubit-oscillator circuit.
The flux bias through the qubit loop nφ is normalized in units
of the superconducting flux quantum, �0 = h/2e. The energy
bias between two persistent current states of a flux qubit is
given as ε = 2Ip�0(nφ − nφ0), where Ip is the maximum
persistent current, nφ0 = 0.5 + kq , and kq is the integer that
minimizes |nφ − nφ0|. One may think that higher energy levels
of the flux qubit might contribute the energy spectra of the
qubit-oscillator circuit as discussed in Ref. [36], especially in
the case of very strong coupling to the oscillator. The energy
of the second excited state in the typical flux qubit is more than
20 GHz, much higher than the energies of the qubit and oscil-
lator. Together with the fact that the energy spectra involving
up to the third excited states of the qubit-oscillator circuit are
well fit by the Hamiltonian in Eq. (1), the contribution from
the second or higher excited states might modify the sample
parameters but does not change the shape of the Hamiltonian.
Note that the bare sample parameters in the case of zero
coupling cannot be experimentally determined, and the amount
of modifications of the sample parameters cannot be evaluated.

Figure 3(b) shows a scanning electron microscope image
of the qubit including the coupler. The coupler consists of four
parallel Josephson junctions. The critical current of the coupler
is given as

Ic(coup) = 4Ic cos(2πnφc) cos(πnφc), (A1)

where Ic is the critical current of each Josephson junction,
and nφc is the normalized flux bias through each coupler loop
defined by two neighboring parallel junctions. An external
superconducting magnet produces uniform magnetic field,
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FIG. 4. Calculated transmission spectra with increasing coupling strength for �/ω = 0.6. As in Fig. 2, (a) g/ω = 0.3, (b) g/ω = 0.45, (c)
g/ω = 0.6, (d) g/ω = 0.8, (e) g/ω = 1.0, and (f) g/ω = 1.5. The color scheme is chosen such that the lowest point in each spectrum is red
and the highest point is blue.

and magnetic fluxes are applied to the qubit and the coupler
proportional to the area of their loops. The area ratio of
the loops rc = Acoupler/Aqubit is approximately 0.05, where
Acoupler and Aqubit are the loop areas of the qubit and the
coupler, respectively. The flux bias through each coupler loop
nφc = rcnφ depends on nφ , which in most cases is around the
symmetric point, i.e., nφ = ±0.5, ± 1.5, ± 2.5, and so on.

Spectroscopy was performed by measuring the transmis-
sion spectrum through a coplanar transmission line that is

inductively coupled to the LC oscillator. When the frequency
of the probe signal ωp matches the frequency of a transition be-
tween two energy levels, the transmission amplitude decreases,
provided that the transition matrix element is not 0. The line
width of the |0〉 → |3〉 transition at ε = 0 for g/ω = 0.86
(not shown) is 6.9 MHz ×2π , which can be related to �. The
maximum value of the reflection coefficient R0 depends on the
quality factor ratio Q/Qe, where Q is the total quality factor of
the qubit-oscillator circuit, and Qe is the external quality factor
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FIG. 5. Calculated transmission spectra with increasing coupling strength for �/ω = 3. The different panels correspond to (a) g/ω = 0.4,
(b) g/ω = 0.8, (c) g/ω = 1.2, and (d) g/ω = 2. Because the frequency range that we cover in this case is larger than those in the other two
cases, here we set Ap = 0.02 and � = 0.03. The color scheme is chosen such that the lowest point in each spectrum is red and the highest
point is blue. In (d) we have removed an unphysical large peak at ωp = ε = 0.
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FIG. 6. Energy level separations (E2n+1 − E2n)/� with n = 0
(solid red line), n = 1 (dashed green line), and n = 2 (dotted blue line)
at ε = 0 as functions of the ratio g/ω for �/ω = 0.1. Zeros in E3 −
E2 and crossings between E3 − E2 and E1 − E0 mark qualitative
transformations in the shape of the spectrum as discussed in Secs. II
and III. The larger number of zeros in E5 − E4 and the larger number
of crossings between E5 − E4 and E3 − E2 suggest that spectral lines
involving higher energy levels will exhibit a larger number of shape
transformations as the coupling strength is varied.

of the qubit-oscillator circuit to the coplanar transmission line
[37]. The samples are measured in a dilution refrigerator with
a nominal base temperature of 20 mK.

APPENDIX B: HIGHER GAP QUBIT

In Fig. 4 we plot spectra similar to those plotted in Fig. 2
for a somewhat larger value of �, namely, �/ω = 0.6, which
is comparable to the value in circuit III of Ref. [6]. The general

description and shape transformations that we have described
for the case of small � are also observed in this case, but the
fact that the peaks and dips around the symmetry point become
larger distorts some of the features discussed in the text. In
particular, we no longer have the M-shaped |1〉 → |3〉 line
at g/ω = 0.3, making the transformation around g/ω = 0.4
difficult to identify as easily as in the case of small �. All
of the other shape transformations discussed in Secs. II and
III are still visible with this value of �/ω. In particular, the
spectrum in Fig. 4(e) (where g/ω = 1) resembles that in circuit
III of Ref. [6], which had g/ω = 1.01. Hence we could have
obtained a good estimate for g/ω in that circuit by simply
comparing the measured spectrum with the different spectra
plotted in the different panels in Fig. 4. Rather surprisingly,
the pattern transformations that occurred at 0.5 and 0.71 in
the small-� case still occur at almost the same points, being
shifted to 0.477 and 0.694, respectively.

In Fig. 5 we plot a few spectra for the case of large �,
specifically for �/ω = 3. The avoided crossings at ε = ±ω

that one can expect when � < ω are clearly lost, and the
spectrum has fewer shape transformations compared to the two
cases discussed above. Nevertheless, there are a few quantities
that one can easily read off from the spectrum, such as ω01

far away from the symmetry point (which gives ωo), ω01 and
ω12 at the symmetry point, and the value of ε at which ω01

and ω12 cross. One can then use these quantities to obtain the
values of g and �. In general there are no analytic expressions
that can be used to calculate g and � from the above-
mentioned quantities, but a numerical calculation should be
straightforward.
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FIG. 7. Central frequencies of the different spectral lines involving higher energy levels as functions of the qubit bias ε, calculated from
the eigenvalues of the Hamiltonian with �/ω = 0.1. Solid red line, |2〉 → |4〉; dashed blue line, |3〉 → |4〉; dotted magenta line, |3〉 → |5〉;
and dashed green line, |2〉 → |5〉. The different panels correspond to different values of g/ω, and these values are displayed in the panels. The
different panels show that the spectral lines can exhibit different patterns depending on the coupling strength. The correspondence between the
coupling strength values and specific features in the spectrum is reported in Table I.
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TABLE I. Classification of the |2〉 → |4〉 and |3〉 → |5〉 spectral line properties according to four criteria. Each of the 16 values of g/ω

shown in Fig. 7 is assigned to one combination of features, based on the spectra shown in Fig. 7 and on the matrix elements 〈4|(â + â†)|2〉
and 〈5|(â + â†)|3〉 (which cannot be immediately inferred from Fig. 7). We now have nine possible patterns that can be resolved relatively
straightforwardly, compared to only five patterns that we obtained when we analyzed the shapes of the |0〉 → |2〉 and |1〉 → |3〉 spectral lines.

24 & 35 allowed at ε = 0 24 & 35 forbidden at ε = 0

24 peak at ε = 0 24 dip at ε = 0 24 peak at ε = 0 24 dip at ε = 0

24 peak at ε = ±ω

35 peak at ε = ±ω 0.3 1.0, 1.1 1.2, 1.3
35 dip at ε = ±ω 0.1, 0.2 1.4, 1.5, 1.6

24 dip at ε = ±ω

35 peak at ε = ±ω 0.4 0.5, 0.6
35 dip at ε = ±ω 0.8, 0.9 0.7

APPENDIX C: HIGHER ENERGY LEVELS

We have shown that the shapes of the spectral lines
corresponding to the |0〉 → |2〉 and |1〉 → |3〉 transitions can
be used to give a rough estimate for the coupling strength g. In
this Appendix we show that the spectral lines corresponding
to transitions among higher energy levels can give a more
accurate estimate. In practice, these higher levels could be
populated by artificially heating up the system to higher
temperatures. The thermal energy should be comparable
to the photon energy in the oscillator h̄ω. In the case
ω/2π = 6.0 GHz, the corresponding temperature is given
as T = h̄ω/kB = 290 mK. Perhaps a more realistic way to
populate the higher levels is to pump transitions from the
lowest energy levels to certain targeted energy levels that then
serve as the initial states for transitions to even higher energy
levels.

The idea behind the possibility of gaining extra accuracy
from utilizing higher levels can be understood based on Fig. 6,
where we plot the energy differences E1 − E0, E3 − E2, and
E5 − E4 at ε = 0 as functions of g/ω. Inspecting E1 − E0

and E3 − E2, we can see that two of the four spectrum
transformations that we discuss in Secs. II and III (specifically
the shape transformations that occur at ε = 0) correspond to
either a 0 in E3 − E2 or a crossing of E1 − E0 and E3 − E2

at ε = 0. The two other transformations occur at ε = ±ω and
therefore do not correspond to any special feature in Fig. 6 (in
fact these two features seem to coincide with zeros of E5 − E4

at ε = 0, but we suspect that this is a coincidence that does not
have a deep physical origin).

Noting that E5 − E4 has more features than E1 − E0 and
E3 − E2, we can expect that the transitions from states |2〉
and |3〉 to states |4〉 and |5〉 will exhibit a larger number of
qualitative transformations (in comparison to the transitions
from states |0〉 and |1〉 to states |2〉 and |3〉) as we increase
g/ω. Furthermore, Fig. 6 shows that the zeros and crossings
of E3 − E2 and E5 − E4 not only are larger in number but
also start at a smaller value of g/ω and end at a larger value
of g/ω, suggesting that utilizing the higher levels will expand
the range of coupling strength values in which the qualitative-
identification technique can be applied. Figure 7 and Table I
show that the range 0 < g/ω < ∞ can now be divided into
nine smaller intervals by observing the features at ε = 0 and
ε = ±ω (with slightly finer divisions possible if we include
features at ε = ±2ω).

One must of course note that the spectral lines from these
higher energy levels lie around the same central frequency
ωp = ω as the spectral lines discussed in Secs. II and III, which
could complicate attempts at using these higher energy levels
in practice. On the other hand, transitions involving higher
levels exhibit features up to values of ε that are farther away
from the symmetry point than transitions among the lowest
levels. Indeed, in one of the data sets in Ref. [6] the signal
from the |2〉 → |4〉 transition could be clearly seen between
ε = ±ω and ε = ±2ω because in that region the |0〉 → |2〉 and
|1〉 → |3〉 lines do not show any significant deviation from
ωp = ω. Therefore, in spite of some technical difficulties, it
could be possible to utilize these additional spectral lines for
further identification of the coupling strength.
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