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We explore the dynamics of spontaneous breakdown of mirror symmetry in a pair of identical optomechanical
cavities symmetrically coupled to a waveguide. Large optical intensities enable optomechanically induced
nonlinear detuning of the optical resonators, resulting in a pitchfork bifurcation. We investigate the stability
of this regime and explore the possibility of inducing multistability. By injecting proper trigger pulses, the
proposed structure can toggle between two asymmetric stable states, thus serving as a low-noise nanophotonic

all-optical switch or memory element.
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I. INTRODUCTION

Symmetry is a tantalizing concept in modern physics, gov-
erning many of its fundamental laws [1]. Beyond its crucial role
in the context of theoretical physics, symmetry is important
in several areas of applied physics, including photonics, as
symmetry and its breaking can be fruitfully utilized to design
photonic structures with desired properties. The symmetry
groups of the eigenfunctions in photonic crystals, for example,
directly affect their optical responses [2]. Such spatial symme-
tries thus have been exploited to design optical cavities and
channel drop filters [3,4]. Symmetry and symmetry-breaking
principles have also been explored in chiral metamaterials [5]
and in designing micro and nano lasers [6,7]. In general,
symmetry breaking can occur in explicit or spontaneous forms.
In the latter scenario, an initially symmetric state evolves
into an asymmetric one even though the governing dynamical
equations remain invariant under symmetry transformations.
Spontaneous breaking of symmetry has proven a particularly
powerful concept with wide implications in physics, ranging
from the Higgs mechanism to Josephson junctions [8,9].

One of the simplest and most explored examples of sym-
metry in quantum mechanics is the spatial mirror symmetry
associated with two identical and closely spaced quantum
wells. Due to the underlying parity, the eigenstates associated
with such a system are symmetrically distributed around the
center of the two wells. In the presence of nonlinearities,
however, the situation can be made very different. In this
case, as a result of pitchfork bifurcation arising at high
enough intensities, the system undergoes spontaneous sym-
metry breaking, and the wave function amplitudes are no
longer evenly distributed [10]. This concept is not limited
to quantum mechanics and has been investigated theoretically
and experimentally in a range of nonlinear optical systems,
such as Fabry-Perot resonators, coupled waveguides, and
photonic crystal defect cavities [7,11-20]. Despite different
structures and geometries, the symmetry-breaking phenomena
reported so far have been all based on utilizing intrinsic
material nonlinear responses.

Here we explore how spontaneous mirror symmetry break-
ing between two optical modes can be initiated by the
back-action of optical radiation on the mechanical degrees of
freedom. Spurred by advances in fabrication of high-quality
optical and mechanical resonators, cavity optomechanics
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has recently attracted considerable attention [21,22]. Cavity-
optomechanical systems enable exploiting strong interactions
between optical fields and mechanical vibrations mediated
through radiation pressure. The mutual interaction between
light and motion has led to the observation of phenomena af-
fecting light propagation such as electromagnetically induced
transparency and slow light [23,24], as well as mechanisms
to control mechanical motion such as dynamical back-action
cooling and parametric amplification [25-28]. It has been
long known that optomechanical coupling can mimic an
effective Kerr-type nonlinearity [29], which can result in
classical and quantum nonlinear phenomena such as optical
bistability [30] and sub-Poissonian light [31]. Such strong and
concentrated nonlinear effects, which can exceed even thermal
nonlinearities in strength [32,33], paired with a low-noise
platform, opens useful applications for light manipulation in
nanophotonic devices [34].

In the following we explore how the optomechanical
nonlinearity can serve to induce the spontaneous breakdown
of the mirror symmetry between two identical coupled optical
cavities that are symmetrically excited via a bus waveguide.
Importantly, the triggering of symmetry breaking by optome-
chanical interactions can lead to rich physical responses, due to
their highly resonant and dynamic nature of this multiphysics
coupling. In the following we show that optical frequency de-
tuning and losses play an important role in symmetry breaking,
and we analytically find the conditions under which symmetry
may be broken and optimally induced in these systems. In
addition, we show how the proposed structure can support
multistability for certain parameter ranges. The stability of
the steady-state solutions is investigated, showing that the
proposed structure can exhibit bistability between a degenerate
pair of asymmetric states in a regime where the symmetric
eigenstate is unstable. Finally, the associated dynamics of the
proposed structure is explored and potential applications for
low-noise nanophotonic switching and memory are discussed.

II. SPONTANEOUS SYMMETRY BREAKING

Figure 1 schematically shows an arrangement of two
identical optomechanical resonators symmetrically coupled
through a bus waveguide. Although this figure shows micror-
ing resonators, the following formulation is quite general, and
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FIG. 1. (a) A symmetric arrangement of coupled optomechanical
cavities. (b) Schematic representation of bifurcation and mirror
symmetry breaking.

it can be applied to other types of optomechanical systems.
We assume each cavity to support a single optical resonance.
In the case of microrings, we consider only one of the
clockwise or counterclockwise rotating modes in each cavity,
neglecting any perturbation that can excite the counter-rotating
mode. In the absence of mechanical effects, temporal coupled
mode equations for the waveguide-cavity geometry can be

written as £(0) = iO() + D siy and sou = —sin + D),
where a;, represent the modal amplitudes of the fields
stored in the two cavities and sj, is the amplitude of the
input port excitation [35]. Following the standard coupled
mode treatment of optomechanical cavities, we normalize
the optical field such that |a;,|* represent the intracavity
photon numbers and |si,|?> is the input photon flux [22].
The 2x2 evolution matrix ® = O + %(K ¢ + K,) involves the
resonance frequencies of the two cavities (O), as well as the
intrinsic (K;) and external losses (K,). Given that there is
no direct coupling between the cavities in the geometry of
Fig. 1, the off-diagonal elements of O are identically zero,
while the diagonal elements are A = w;, — wy, which is the
detuning of the excitation laser frequency w; with respect
to the resonance frequency of each cavity wy. Similarly, the
matrix of internal losses K, is diagonal, and its diagonal
elements k, represent the total of absorption and radiation
losses in each cavity. The 1x2 matrix D and its transpose D7
describe mutual coupling of the ports and cavity fields. Given
that both cavities are symmetrically excited by the input port,
we take D = ,/k.(1 1). On the other hand, in the absence
of internal losses, energy conservation requires the field
developed in the cavity to leak out entirely to the output ports.
This results in the condition K, = DD, which in this case
requires all elements of K, to be identical to «, [35]. Therefore,
the photonic circuit of Fig. 1 can be described through
coupled mode equations ‘% = (A — 5a; — Far + /KeSin
and % = (iA — 5)ay — Fa; + /KeSin in conjunction with
the input/output relations soy = —Sin + 1/ke(a1 + a2). Con-
sidering the mechanical effects in each cavity, the dynamics
of the coupled optomechanical system can thus be described
through

d
a (i(A +Gxp) — g)al - &612 + /KeSin, (1a)

dr 2
dle 2 dx1 hG 2
T -2 X — me + ?|al| ) (1b)
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% = (i(A + Gxy) — §>a2 — %al + VKesin,  (10)
d2x2 dx, hG

dr 2 ar T 1l (19

where G represents the optical frequency shift per unit of
displacement, x; » shows the mechanical displacements of the
two cavities, and €2, I',,, and m represent the resonance
frequency, decay rate, and effective mass of the mechanical
modes, respectively. It is worth noting that this formalism is
entirely classical, and the appearance of the Planck’s constant
(h) is due to the normalization choice for the modal field
amplitudes. Alternatively, one can always renormalize |a; »|?
to represent the energy stored in the two cavities, which
instead results in a different expression for the radiation
pressure in terms of macroscopic cavity parameters (see for
example [36]).

Under steady state conditions, we consider fixed point
solutions (a;,X;) and (a,,%;) for the two optomechanical
systems, where a, , represent the steady state solution of the
optical modes a; » inside the two cavities and X; » represent
their associated mechanical displacements. By ignoring all
time derivatives in Egs.(1), we find

: _ K. Ke_
<1(A +ylail) - §>a1 —5ht Vikesin =0, (2a)

K Ke _
<i(A +ylal?) — E)le — VKkesin =0,  (2b)

iG>
mQ2,
cubic nonlinearity coefficient, and we have x| =

hG
ms2,

defining the intensities A; = |@;|*> and A, = |@,|?, we can
show that

[72(AT + A1Az + A) + 2 A(AL + Ad) + A% + 17 /4]
X (A — Ay) =0. 3)

where y = is the optomechanically induced steady state

hG
me2,

|@s|?. After setting these two relations equal, and by

|@;|* and

2
m

Xy =

As expected, for all sets of parameters this equation
admits a symmetric solution A; = A,. However, for some
range of parameters asymmetric solutions A; # A also arise.
Inspecting Eq. (3), and considering that A; and A, are
both positive quantities, we find that asymmetric solutions
require A < 0, i.e., operating in the red-detuned regime,
which ensures the absence of parametric instabilities of the
mechanical oscillator as long as the input power does not
exceed a critical level [37,38]. To find the exact parameter
range required for asymmetric solutions, we solve Eq. (3)
for A,, which results in 2y A, = —y A} —2A £ \/5, where
D = —/cz2 —4Ay A — 3y2A%. To have valid solutions, D
should be positive, which happens only for

/3

A< ——k. 4
< 2/(( ()

Although this necessary condition for symmetry breaking
depends only on the frequency detuning and intrinsic optical
losses, it is expected to depend also on the input power level.
In fact, when condition (4) is satisfied, the symmetry-breaking
threshold of intracavity photon numbers can be obtained by
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FIG. 2. The nonlinear eigenstates |a, | of the two cavities for (a) A =0, (b) A = —«y, (¢) A = —1.5«,, and (d) A = —4«; as a function
of the input photon flux |s;,|?. In all cases, black and gray curves depict the symmetric and asymmetric solutions, respectively, while the solid
and dashed curves, on the other hand, represent the stable and unstable regions. Light red, green, and blue regions, respectively, represent
regions with two, three, and four stable eigenstates. The parameters used for these simulations are « /2w = 2«,/2mw = 2k, /27 = 1 MHz,
Q,/2r =50MHz, '), /2n = 10 kHz, G/27n = 6 GHz/nm, and m = 6 ng.

solving the asymmetric branch of Eq. (3) for A} = A,, which

results in
1
— (—4A F \/4A2 — 3k2),
associated with the lower (—) and upper (4) bifurcation points
of the bistability region. The critical input power level at which
symmetry breaking begins and ends can be obtained by solving
Eq.(2) for a; = a, and using the threshold intracavity photon
numbers obtained from Eq. (5). This leads to the threshold

input photon flux:
2
) ]Afﬁ. (6)

1

Figure 2 shows the steady state solutions of Egs. (2) as
a function of the input photon flux for different frequency
detunings. For this example, we have considered silica mi-
crotoroid resonators supporting a mechanical radial breathing
mode, evanescently coupled to a tapered fiber [39]. Here
we assume k /2w = 2k,/2w = 2k /27 = 1 MHz, Q,, /27 =
50 MHz, I',,/2r = 10kHz, G/27 = 6 GHz/nm, and m =
6 ng. Such parameters are within experimental reach (see
for example [40,41]). As shown in Fig. 2(a), for the case
A = 0 the only possible solution is the symmetric eigenstate.
By decreasing the detuning parameter below the critical
point Ay, = —+/3k/2, a bifurcation emerges for sufficiently
large input powers. This is shown in Fig. 2(b) for A =
—k¢, where the asymmetric solutions appear between two

+ _
Ath_

®)

K+ K,

2
st = [(A b yAD) & (

e

bifurcation points associated with the critical input photon
flux levels |si;|2 ~ 0.49x10'* and |sfg|2 A~ 0.74x 10" 571,
For a detuning rate A = —1.5«, [Fig. 2(c)], the bifurcation
pattern changes, as each branch of the asymmetric solutions
involves unstable branches. By further decreasing the detuning
to A = —4«k, [Fig. 2(d)], the bifurcation pattern becomes even
more complex, since optical bistability becomes the dominant
effect. As shown in the following section, in this case both the
unbroken and broken symmetry states are stable, while in the
asymmetric mode, a large contrast between photon numbers
in the two cavities can be achieved.

III. STABILITY ANALYSIS

The stability of the derived fixed point solutions can be
investigated by evaluating the eigenvalues of the associated
Jacobian matrix. Defining the normalized momenta p;, =
dx) »/dt, we first reduce the mechanical equation of motion to
first-order equations. After defining perturbed solutions a; , =
aip +d8ayp, x12 = X12+8x12,and p1o = pi2 +8pi2, the
equations of motion can be linearized around the fixed point
solutions 51’2,)?1,2,]31!2, where X12 = rng |6_11’2|2 and ]31’2 =
0. The evolution equations of the perturl;”ed scenario can be

written as
(81ﬁ1> <£1 M) (3101)
3[/12 M £2 31/f2 ’

d
dt

(7
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e i dynam erturbation equations (7), a fixed point solution
— » 06 ~pe 110 is stable as long as igenvalues of the associated Jacobian
/ e () matrix exhll?lt a negative real part: s_condition can be
numerically investigated for all steady-state solufi ig. 2.

e  Figure 3 shows all eight eigenvalues of the Jacobian for
he symmetric and asymmetric solutions of Fig. 2(b), while

FIG. 3. (a)Real part of the Jacobian eigenvalues to investig
stability of the nonlinear eigenstates shown in Fig. 2(b) for A = —«,.
Here the solid black and gray lines represent the symmetric and
asymmetric regions, respectively, while the dashed line is associated
with the symmetric branch in the region where it coexists with
the asymmetric solution. The only portion with positive values
corresponds to symmetric eigenstates in the power range where
symmetry breaking occurs.

dashed lines, respectively. Interestingly, for a certain parameter
. . range and at specific input power levels, the proposed structure
where 8y 2 = (812, 8ay 5, 8x12, 8p12)', and the blocks of ey pibits multistability. As shown in Fig. 2(d), for 1.6x 10 <

the Jacobian matrix are defined as Isin]? < 3.4x10 and 5x10™ < |sin]® < 5.3x 10", we find
three stable solutions, and for 3.4 x 10 < [s;,]? < 5x 107!
. x . four stable eigenstates coexist.
i812 = K/2 . % 0 +I.Gi’2 0 The stability of the fixed point solutions can be further
0 —iAip—«k/2 —iGT, 0 . . . . .
Li,= 0 0 0 1/m | explored dynamically by directly simulating the evolution
e HG1s m Q%z T, (1), as shown in Fig. 4. Here the results are presented for

the optomechanical system of Fig. 2(b) at two different
(8a) photon flux levels [si;|> = 0.6x10'* [Figs. 4(a) and 4(b)]
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FIG. 4. Temporal dynamics of the intracavity photon numbers |a; ,|?> and the evolution of a; , in the phase space for broken (a) and (b)
and unbroken (c) and (d) symmetry regimes. In all cases, solid blue and dotted red lines correspond to the first and second cavity, respectively.
Here A = —k, and for (a) and (b) |si,|> = 0.6x10™ s~! while for (c) and (d) |s;|> = 0.4x 10 s~ 1.
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FIG. 5. (a) Time domain dynamics of the normalized optical
mode amplitudes. Being in one of its two stable steady states, the
system can switch to the other state by injecting small pulses to
the cavities. The top panels depict trigger pulses built up in the two
cavities which could be excited from a separate channel. (b) and (c)
Phase space evolution of a; and a,. The parameters used for these
simulations are the same as Fig. 2(c) (A = —1.5«,), while the input
photon flux is assumed to be |s;,|> = 10 s~

and |siy|> = 0.4x10™ s=' [Figs. 4(c) and 4(d)], which
correspond to stable asymmetric and symmetric regimes,
respectively. In both cases, the fixed point solutions of Eqgs. (2)
are attractors for arbitrary initial excitations of the two
cavities.

IV. NONLINEAR TOGGLING

The proposed structure can operate as an all-optical
memory element, switching between its two stable asymmetric
states when triggered by weak control pulses to one of the
two cavities such that the state of the system can hop to the
basin of attraction of the other stable state. In order to toggle
between the two states, when applied to the lower intensity
cavity the pulse should be positive and when applied to the
higher intensity cavity it should be negative. Alternatively,
one can apply a positive pulse control to either cavity that
is in its lower intensity state. Figure 5 shows time-domain
simulations for design parameters similar to those used in
Fig. 2(c), while both cavities are initially populated with

16 x 106
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a stable state. Interestingly, the intensity contrast between
the two switching states can be easily controlled via the
frequency detuning A. This can be shown by solving the
asymmetric branch of Eq. (3) for a fixed point solution
that results in the maximum contrast |A, — A;|. By en-
forcing the condition d(|A; — A4])/dA; = 0, the maximum
contrast is

I
max(|A; — Ay]) = me, 9)
y

which is a monotonically increasing function of the frequency
detuning. An upper limit on the toggling time between these
two stable states can be approximated by o = 1/Re(A(), where
Ao represents the Jacobian eigenvalue with the algebraically
largest real part. Even though for the example presented in
Fig. 5 this limit is 7y & 36 us, in principle the switching occurs
in a few microseconds.

V. IMPERFECTIONS AND BISTABILITY

In the analysis presented so far, the two optomechanical
cavities are assumed to be identical while in practice im-
perfections may arise in various parameters (A, y, k¢, and
k), thus breaking the parity inversion symmetry of the steady
state equations (2). In order to investigate the effect of such
imperfections, we break the mirror symmetry of the problem
by considering two different optomechanical nonlinearity rates
v12 = (1 £ &)y, withe < 1, forthe two cavities and obtain the
nonlinear fixed points as shown in Fig. 6. As expected, a small
perturbation (¢ = 0.002) lifts the degeneracy of the nonlinear
eigenstates leading into a coexisting pair of asymmetric
eigenstates with slightly different on/off intensities in the two
cavities [Fig. 6(a)]. Similar to the previous case, this system
supports an unstable eigenstate with minor intensity contr;
between the two cavities due to the lifted degeneracy. As
in Fig. 6(b), by increasing the detuning ¢, the bistabi
shrinks and eventually evaporates above a criti
[see Fig. 6(c)]. In the latter scenario, the symmetry-breaking
signature appears as a large intensity eOntrast between the two
cavities for a specific power ra
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FIG. 6. The nonlingareigenstates when perturbing the optomechanical nonlinearities of the two cavitiestoy; = (1 + €)y andy, = (1 — )y,

where (a) e = 0.0
cavities, resp:

(b) ¢ =0.015, and (c) & = 0.025. In all cases, the solid blue and dotted red curves correspond to the first and second
vely, while the dashed lines represent unstable modes. All parameters are the same as in Fig. 2(b).
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VI. THERMAL NOISE

So far we have neglected the effect of noise in our analysis.
In principle, however, given that the mechanical resonator
operates at relatively low frequencies, thermal mechanical
motion can be a major source of noise in the system.
Through the optomechanical coupling, the thermal noise will
be upconverted to the optical mode and appear at the output
port. In our model, the thermal Langevin forces £(¢) acting
on the mechanical resonators can be incorporated in Egs. (1b)
and (1d) as follows:

d’x ) dxl él(f)

—=-Q r,—+— , 10

o X1t = T | P4+ == (10a)

d*x, dx; ﬁG fz(l)

— = Q2 x — T, — =7 10b

ar wi = T 4 S rleal £ 50 (10
where,  (£12(1)) =0 and  (§12(0)&12(t")) = 2mD,kp

Té8(t — t), while we also assume no correlation between the
noise sources [42]. We note that the threshold intracavity
photon number for symmetry breaking |ay|* is associated
with a radiation pressure force (hG|a|$2|2) much larger than
the average thermal force (/2mI',,kgTBW, where BW
represents an effective bandwidth). Therefore, in practice,
thermal effects are not expected to significantly perturb the
dynamics of symmetry breaking, especially in the bistability
range |al;|2 < laa|* <« |a$|2. However, it is still relevant to
investigate the effect of thermal noise on the optical fields. To
do so, we first obtain the linearized response of the system to
small mechanical forces F »(t). The dynamical equations can
be linearized around the fixed point solutions by considering
aip =aiz +aro(t) and x1o = X1 + x1,2(t) where a;>(t)
and x;.(¢) represent small perturbations in the optical and
mechanical degrees of freedom, induced by weak mechanical
forces. In this case, the equations of motion for o »(¢) and
x1.2(t) can be written as

d . e
%: (iA] —%)a]—i‘iGIXI _%012, (11a)
dZXl 2 dxi Fi(1)
FZ_QW!XI_F d_+_(G1al+G )+_
(11b)
90 (18— )ar+iGaps - (110)
= — — | - —u Y
i [JAV) ) 2 T1lU2X2 3 1
d2X2 d)(z FZ(t)
W = —Qi F d_ + (GQOIZ + GZOIZ) +
(11d)

In frequency domain we can now write [&@; () ar(w)]’ =
H()[F\(w) F>(w)]", where the small signal transfer matrix
is

H(w) = {Q(@) — PP [Q*(~w)] ' PP
+{0() — PO (—w)] ' P
x hP2[Q*(—w)] "' P*. (12)

PHYSICAL REVIEW A 95, 053822 (2017)

Here Q and P matrices are defined as

(@), (@) — 1G] i Z(w)ke/2
Q(w) = _ e
i Xy (@)k./2 ()X, (w) — kG2
(13a)
G, 0
P = (0 G2>, (13b)

where, in these relations, ¥, ,(w) =+ A, +ik/2 and
Ta(w) = m(w? — Q2 +il,w), respectively, represent the
inverse optical and mechanical susceptibilities, while the
angular frequency w is evaluated with respect to the drive laser
frequency wy,. A rough approximation of the transfer matrix of
Eq. (12) is obtained by neglecting the conjugate terms G >o] ,
in the dynamical equations (11), which results in the simpliﬁéd
relation H(w) = Q(w)~! P. Similar to its optical response, the
linear mechanical response of the system to external forces
can be written as [¥1(®) #2(@)]T = K(0)[Fi(0) F>(w)]” .
The mechanical response K (w) is obtained from Egs. (11b)
and (11d) in terms of the optical response H (w) as

K(w)=— [AP*H(w)+ hiPH*(—w)+ 1], (14)

1
(@)

where [ is the 2x2 identity matrix. The spectral densities of
the intracavity noise photons can be obtained as

Seyoy (@) = @mT,kp T Hyy(@)* + |Hiz(@)*],  (15a)
Suser (@) = @mTykg T)[| Hot(0)* + | Hn(w)*].  (15b)
In addition, from the input-output relation sy = —sin +
Jkelai +az), the total noise power exiting the out-

put ports can be calculated from Ppyise = k. (2mI,,kgT)
ST H(w + or) Zi,j | Hjj (w)|2‘é—jr“. Figure 7 shows the spectral
densities of the intracavity noise photon numbers (normalized
to kg T) for an optomechanical system driven in two different
regimes of broken and unbroken symmetry. As expected
from the linear frequency response of the system, the power
spectral densities of the thermal noise are mainly centered at
the nonlinearly modified optical resonances (@ ~ —Alyz) and
at the two mechanical sidebands of the cavity (v &~ £,,).
According to Fig. 7(a), in the broken symmetry regime, noise
affects the two states differently with a higher density at
the cavity with higher photon intensity. This is in complete
agreement with the fact that optomechanical coupling is
stronger when an optical mode is driven at higher intensities,
which instead results in an enhanced thermal mechanical noise.
The total number of intracavity noise photons can be obtained
by integrating the associated spectral densities over the entire
frequency domain. For the example of Fig. 7(a), at room
temperature, the ratio of noise phonons to pump photons in
the two cavities is found to be below 0.07%.

VII. CONCLUSION

It is worth stressing that the effective static nonlinearity
offered in an optomechanical system can exceed that of
Kerr-type nonlinear resonators, which tend to suffer from
large intrinsic losses as nonlinear effects grow [43]. The
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FIG. 7. The spectral densities of noise photon numbers in the two optical cavities (normalized to kg T') for (a) broken and (b) unbroken
symmetry states. Here all parameters are the same as in Fig. 2(b), while the input photon flux is assumed to be |s;,|*> = 0.6x 10 s™! for (a)

and |s;y]? = 0.4x10™ s~! for (b).

optomechanically induced frequency shift per photon y =
dw/dit = KG*/mQ2, can be rewritten in terms of the sin-
gle photon optomechanical coupling rate gy = Gxzpgr, with
xzpr = /h/2m<2,, representing the mechanical zero point
fluctuation amplitude, as y = 2g§ /2. The quantity gé /2
represents the strength of the mechanically assisted photon-
photon interaction, which can be significantly large in suitably
designed optomechanical systems [22], thus supporting strong
nonlinear frequency detunings at low intensities. For example,
using a nanophotonic photonic-crystal-based implementation
with the parameters presented in Ref. [44] would yield a
symmetry-breaking threshold at only 830 intracavity photons,
for cavity linewidths of 0.5 THz. Such large linewidths
would facilitate straightforward frequency matching of the
two cavities. In this regard, optomechanical cavities offer
an exciting route for inherently low-power and low-noise
nonlinear nanophotonic switching devices and memories. We
are currently exploring the impact of thermomechanical noise
on the operation of these devices.

Finally, it should be noted that the optical bistability
achieved under spontaneous symmetry breaking in the pro-
posed coupled cavity structure occurs at lower power levels
compared to the bistability behavior in a single optomechanical
cavity. In fact, for an optomechanical cavity described in
steady state with [i(A + y|al*) — «/2]a + /Kesin = 0, the

necessary condition for bistability is found to be A <

—?K, while the two bistability turning points Atih, as-

sociated with d|si,|?/d|a|> =0, are found to be AZ
%(—4A F V4A% — 3k2). Clearly, in this case, larger fre-
quency detunings are required to reach bistability which in
turns requires larger intracavity photon numbers.

To conclude, we have shown that a coupled arrangement
of identical optomechanical cavities can undergo spontaneous
symmetry breaking in the red detuning regime for low input
power levels, which may be triggered and controlled by suit-
able input pulses. We studied the static and dynamic behavior
of this system and explored the effect of imperfections. We
believe that the proposed structure may have disruptive appli-
cations as an integrated low-power, low-noise nanophotonic
switch or flip-flop for quantum optics applications. In addition,
similar effects can be investigated in other platforms with
optomechanical properties [45—47].
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