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Optical microdisk cavities with rough sidewalls: A perturbative
approach based on weak boundary deformations
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A recently developed perturbation theory for microdisk cavities with weak boundary deformation is applied
to the problem of surface roughness. Explicit and transparent formulas for the variance of the frequency splitting
and the expectation values of the decay rates are derived for transverse magnetic polarization. For a Gaussian
correlation function we demonstrate excellent agreement of our statistical theory with full numerical simulations.
The numerical simulations also reveal the chirality of mode pairs in rough microdisks.
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I. INTRODUCTION

The study of optical microcavities has been an important
interdisciplinary topic in fundamental and applied research
[1–4]. One reason is that microcavities can trap light for
a long time τ in a very small volume. This ability is often
limited by surface roughness [5–10]. The effect of surface
roughness depends strongly on the fabrication process, the
material system, and the geometry. We restrict ourselves
to microdisk cavities [11–13], which confine light by total
internal reflection at the circular-shaped dielectric boundary.
Surface roughness at the sidewalls of such cavities has been
studied experimentally [7,8,10], numerically [14–16], and
theoretically using the volume element method [7,8,10,17].

Usually surface roughness is considered an undesirable
property, but sometimes it can be beneficial. For example, it has
been demonstrated that microdisk lasers can be controlled by
local refractive index perturbations and spatially nonuniform
pumping provided that surface roughness has already broken
the rotational symmetry [18–20]. Another interesting example
is the study of dynamical localization in microdisks with strong
surface roughness [21–25].

Microdisks with a smooth boundary deformation have been
intensively studied for directional light emission [26–28] and
as model systems for wave chaos [4,29]. For weak boundary
deformations a perturbation theory has been developed which
allows one to compute the quality factor Q = ωτ , the resonant
frequency ω, and the near- and far-field patterns of the modes.
Originally, the perturbation theory was restricted to a deformed
boundary with a mirror-reflection symmetry [30,31]. This re-
striction avoids having to deal with the degeneracy of the mode
pairs in the unperturbed disk. This nondegenerate perturbation
theory has been applied successfully to a variety of different
geometries [31–37]. The degenerate perturbation theory for
the generic case of a deformed boundary without any mirror-
reflection symmetry has been introduced only recently [38].

The aim of the present paper is to apply the degenerate
perturbation theory for weak boundary deformations to the
problem of surface roughness. It is shown that this approach
leads to analytical formulas that allow one to easily calculate
the variance of the frequency splitting and the expected decay
rates. In contrast to previous approaches based on the volume
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element method [7,8,10,17,39,40], the present derivation is
transparent and rather general.

This paper is organized as follows. Section II introduces
the mode equation for deformed and circular microcavities.
In Sec. III we review the relevant results of the degenerate
perturbation theory. Section IV deals with general aspects
of surface roughness in microdisks. Section V derives the
perturbative expressions for the rough disk. The obtained
formulas are compared to numerical calculations in Sec. VI
and to experimental data from the literature in Sec. VII. Finally,
we conclude in Sec. VIII.

II. MODE EQUATION FOR DEFORMED AND
CIRCULAR MICROCAVITIES

Within the effective index approximation, Maxwell’s
equations reduce to a two-dimensional scalar mode
equation [41],

−∇2ψ = n2(x,y)
ω2

c2
ψ, (1)

with the speed of light in vacuum, c, and the effective index
of refraction n(x,y) which is assumed to be n > 1 inside the
cavity and n = 1 outside. In the effective index approximation
the two polarizations of the light are decoupled into transverse
magnetic (TM) and transverse electric (TE) polarization.
TM polarized light has the electric field vector �E(x,y,t) ∝
(0,0,Re[ψ(x,y)e−iωt ]) perpendicular to the cavity plane. The
wave function ψ and its normal derivative ∂νψ are continuous
across the cavity boundary. In the case of TE polarization,
ψ represents the z component of the magnetic field vector
Hz, with ψ and n(x,y)−2∂νψ being continuous across the
boundary [41]. With Sommerfeld’s outgoing-wave condition
the solutions of the mode equation (1) are quasibound states
with decay rate 1/τ = −2 Im ω > 0. The quality factor of the
given mode is Q = −Re ω/(2 Im ω).

For the special case of a circular cavity with radius R the
mode equation (1) including the boundary conditions can be
solved analytically in polar coordinates (r,φ) with the ansatz

ψ(r,φ) =
{

Jm(nkr)
Jm(nx) eimφ for r � R

Hm(kr)
Hm(x) eimφ for r > R.

(2)

Here, m ∈ Z is the azimuthal mode number, and Jm and Hm

are the Bessel and Hankel functions of the first kind and
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order m. For TM polarization with fixed m, the complex
(dimensionless) frequencies x = kR = ωR/c are given by the
roots of

Sm(x) = n
J ′

m

Jm

(nx) − H ′
m

Hm

(x) (3)

and are labeled by the radial mode number l ∈ N+. Here, a
prime denotes the first derivative with respect to the argument
of the function. Note that such determined frequencies x

depend only on l and |m|; i.e., the frequencies are twofold
degenerate for m �= 0.

III. ESSENTIALS OF THE PERTURBATION THEORY

The degenerate perturbation theory in Ref. [38] treats a
boundary deformation of the type

r(φ) = R + λf (φ) (4)

with formal perturbation parameter λ and 2π -periodic defor-
mation function f (φ) such that |λf (φ)| � R. As in Ref. [30],
the theory is restricted to TM polarization but the deformation
function is not required to be symmetric. The wave function of
the deformed cavity is expanded in the solutions of the circular
disk [Eq. (2)].

For a chosen pair of mode numbers (m,l) the order O(λ0)
gives the frequency x0 of the circular cavity. For the frequency

of the perturbed mode x = kR it is found up to order O(λ2),

x(μ) = x0 + λx
(μ)
1 + λ2x

(μ)
2 , (5)

with mode index μ ∈ {0,1} labeling the modes in the given
pair. The first-order correction is given by

x
(μ)
1 = −x0(A0 + e−2iz0A−2m) (6)

with

z0 = −1

4
Arg

(
A2m

A−2m

)
+ μ

π

2
(7)

and dimensionless Fourier coefficients of f (φ),

Aq = 1

2πR

∫ 2π

0
f (φ)eiqφ dφ. (8)

The obvious relation A−q = A∗
q holds since f (φ) is a real-

valued function. Equation (6) can be rewritten as

x
(μ)
1 = −x0(A0 ± |A2m|), (9)

where + (−) refers to the μ = 0 (μ = 1) mode.
The second-order correction is written in a more compact

form than in Ref. [38]:

x
(μ)
2 = x0

⎧⎨
⎩3

2

(
x

(μ)
1

x0

)2

− 1

2
(B0 + e−2iz0B−2m) + x0

H ′
m

Hm

(x0)

[(
x

(μ)
1

x0

)2

− (B0 + e−2iz0B−2m)

]

− 1

2
(n2 − 1)x0

∑
p �=±m

1

Sp(x0)
[|Am−p|2 + |Ap+m|2 + e−2iz0A−m−pAp−m + e2iz0Am−pAp+m]

− 1

4

[
1 + 2x0

H ′
m

Hm

(x0)

]
(e2iz0B2m − e−2iz0B−2m)

⎫⎬
⎭ (10)

with dimensionless Fourier coefficients of f 2(φ),

Bq = 1

2πR2

∫ 2π

0
f 2(φ)eiqφ dφ (11)

=
∞∑

j=−∞
AjA

∗
j−q . (12)

Also here B−q = B∗
q holds since f (φ) is real valued.

IV. SURFACE ROUGHNESS: GENERAL ASPECTS

The study of wave scattering at rough surfaces has a long
history (see, e.g., Ref. [42]). In the case of microdisks it has
been observed that the etch process results in residual surface
roughness often with uniform corrugations along the vertical
direction (see, e.g., Refs. [43–45]). This justifies the effective
index approximation used in our theory.

The rough boundary of a microdisk of radius R is usually
described [10,16] by

r(φ) = R + ξ (φ), (13)

where ξ (φ) = ξ (φ + 2π ) is a real random variable. A so-called
wide-sense stationary random process [46] is assumed; i.e., for
all values of the angles φ and φ′,

〈ξ (φ)〉 = 0, (14)

〈[ξ (φ)]2〉 = σ 2, (15)

and

〈ξ (φ)ξ (φ′)〉 = σ 2W(φ − φ′). (16)

Here and below, the angular bracket 〈· · · 〉 stands for an
ensemble average over all realizations of the random process.
This procedure has to be distinguished from a spatial average
over the angle φ of a fixed realization. Only for extended
systems such as an infinite waveguide [42] are both types
of the average assumed to be equivalent (ergodicity). The
positive quantity σ is called the roughness standard deviation.
W(φ) ∈ R is the azimuthal correlation function which is
a 2π -periodic function of φ due to the 2π periodicity of
ξ (φ). Consistent with Eq. (15),W(0) = 1 is chosen. Moreover,
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from definition (16) it follows that [46] (i) W(−φ) = W(φ),
(ii) |W(φ)| � W(0), and (iii) the Fourier transform

Wq = 1

2π

∫ 2π

0
W(φ)eiqφ dφ (17)

is real and non-negative. Wq is also named the roughness power
spectrum.

By direct measurements of the surface profile of silicon
microdisk sidewalls [8] it has been demonstrated that the
correlation function W is well approximated by a Gaussian

W(φ − φ′) = e−(φ−φ′)2/�2
c (18)

with correlation angle �c > 0. Equivalently, one can use the
correlation length Lc = R�c. It should be pointed out that the
correlation function in Eq. (18) lacks a proper 2π periodicity,
so this equation only makes sense for �c � 2π . For general
�c we modify the equation to

W(φ − φ′) = 1

ϑ(�c)

∞∑
j=−∞

e−(φ−φ′+2πj )2/�2
c , (19)

where ϑ(�c) = ∑∞
j=−∞ e−(2πj )2/�2

c ensures that W(0) = 1.

ϑ(�c) can also be expressed by ϑ(�c) = ϑ3(0,e−4π2/�2
c ),

where ϑ3 is one of the Jacobi theta functions [47]. The
modification (19) takes care of the fact that ξ at φ = ε and
φ′ = 2π − ε for 0 < ε � �c are strongly correlated, which
would be ignored by Eq. (18). For realistic �c, Eqs. (18)
and (19) give nearly identical results. For instance, for the
maximal value of �c used in this work, 0.2, the value of ϑ(�c)
is extremely close to 1: |ϑ(�c) − 1| ≈ 10−427. Hence, also
Eq. (19) is fully consistent with the experiments in Ref. [8].

V. SURFACE ROUGHNESS: PERTURBATION THEORY

The same structure of Eqs. (4) and (13) suggests that
for σ � R the perturbation theory for weak boundary de-
formations can be applied to rough microdisks simply by
using λf (φ) = ξ (φ) and performing an appropriate ensemble
average.

First let us note that Eqs. (14)–(17) imply that the Fourier
coefficients of the deformation function, Aq , can be considered
as independent random variables with

〈Aq〉 = 0, (20)

〈AqA
∗
p〉 = σ 2

R2
Wq δq,p, (21)

where δq,p is the Kronecker delta. For the special case of the
Gaussian correlation function we get for the roughness power
spectrum

Wq = 1

2
√

π

�c

ϑ(�c)
e−q2 �2

c
4 . (22)

This expression is valid also for general �c as long as Eq. (19)
is used.

A. Frequency splitting

The first quantity that we consider is the (real) frequency
splitting,

�x = Re(x(0) − x(1)). (23)

Its expectation value vanishes, 〈�x〉 = 0, since both modes are
equivalent. At first glance this seems to be in contradiction with
Eq. (9). However, in the perturbation theory the two modes of a
given pair are no longer equivalent since the mode with μ = 0
is the selected one with smaller Re(x(μ)

1 ). In other words, when
we do numerical simulations or experiments we cannot decide
which of the modes is the one with frequency x(0) and which is
the one with x(1). Of course, one could alternatively consider
〈|�x|〉 as a proper measure for the expected frequency split-
ting. However, in our statistical theory it is more natural to look
at the variance of the frequency splitting from the zero mean:

Var(�x) = 〈(�x)2〉. (24)

Plugging in the first-order result of the perturbation theory
for x(μ) in Eq. (9) and taking advantage of Eq. (21) gives
straightforwardly the first central result,

Var(�x) = 4 Re(x0)2 σ 2

R2
W2m. (25)

The frequency splitting is determined by the coupling
of the modes m and −m, with strength proportional to
Wm−(−m) = W2m. For the frequency splitting we restrict
ourselves to the first-order perturbation theory. Second-order
contributions would require higher-order moments which are
not provided by Eqs. (20) and (21).

For the special case of the Gaussian correlation function we
get with Eq. (22)

Var(�x) = 2√
π

Re(x0)2 σ 2

R2

�c

ϑ(�c)
e−m2�2

c . (26)

Ignoring the weak dependence of ϑ(�c) on the correlation
angle �c in the relevant regime, it can be seen that Var(�x) as
a function of �c has a global maximum at �c = 1/(

√
2m).

B. Decay rates

For computing the expectation value of the decay rate for
mode μ,

γ (μ) = −〈Im(x(μ))〉, (27)

we simplify the terms from the first- and second-order
contributions by restricting ourselves to well-confined modes,
i.e., γ0 = |Im(x0)| � Re(x0), and highly excited states, i.e.,
Re(x0) � 1, which covers all cases of practical interest.
The first assumption immediately implies that the first-order
contribution [Eq. (9)] to γ (μ) is zero as x0 is replaced by
Re(x0) for well-confined modes. To determine the second-
order contributions, we first derive from Eq. (11)

〈Bq〉 = σ 2

R2
δq,0. (28)

Second, with Aq = |Aq |eiϕq , ϕq ∈ R, and Eqs. (7) and (12) we
write

〈e−2iz0B−2m〉 = e−iμπ
∑

j

〈|Aj ||Aj+2m|ei(ϕ2m+ϕj −ϕj+2m)〉. (29)

Since the Aq are independent random variables, so are the
angles ϕq . We conclude

〈e−2iz0B−2m〉 = 0 = 〈e2iz0B2m〉. (30)
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The same kind of reasoning gives

〈e−2iz0A−m−pAp−m〉 = 0 = 〈e2iz0Am−pAp+m〉. (31)

Third, we conclude from Eq. (9) that x(μ)
1 /x0 is real. Fourth,

for highly excited states which are well confined [m > Re(x0)]
the quotient H ′

m(x0)/Hm(x0) is real [30]. Putting everything
together, we see that from Eqs. (5), (9), and (10) only the
following contributions remain:

γ (μ) = γ0 + (n2 − 1)Re(x0)2σ 2

2R2
Im

∑
p �=±m

Wm−p + Wp+m

Sp(x0)
.

(32)

Using the fact that the right-hand side of this equation does
not depend on the mode index μ, the equality S−p = Sp, and
the definition of the real-valued quantity

Dp(x) = n2 − 1

π
Im

1

Sp(x)
, (33)

we can write as the second central result

γ = γ0 + π Re(x0)2 σ 2

R2

∑
p �=±m

Wm−pDp(x0). (34)

In contrast to the frequency splitting, which results from a
coupling of the modes m and −m within the degenerate
mode pair, the decay induced by the surface roughness is
determined by the coupling to other modes p �= ±m with
strength proportional to Wm−pDp(x0). To interpret the weight
Dp(x0) we note the relation for real-valued x [48],

d(x) − d (0)(x) = n2 − 1

π

∞∑
p=−∞

Im
1

Sp(x)
=

∞∑
p=−∞

Dp(x),

(35)

0
10
20
30
40
50

ex
ce

ss
 D

O
S

7 8 9 10 11 12 13
frequency x (dimensionless)

0
10
20
30
40
50

ex
ce

ss
 D

O
S 

p 
≠ 

±m

(a)

(b)

FIG. 1. (a) Excess DOS [Eq. (35)] (solid black curve) and its
smooth part [Eq. (47)] (dashed red line) of the circular microdisk as
a function of the dimensionless frequency x on the real axis. The
refractive index is set to n = 2. (b) The solid black curve shows
the right-hand side of Eq. (35) with the summands corresponding to
p = ±m excluded. The dashed red line is the smooth part of the DOS
divided by n.
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FIG. 2. Summands in Eq. (34) for a mode pair (m,l) = (16,1)
with refractive index n = 2. The correlation function is a Gaussian
[Eq. (19)] with roughness standard deviation σ/R = 0.005 and
correlation angle �c = 0.07. The summands with p = ±m are not
shown since they do not appear in the sum [Eq. (34)].

where d(x) is the optical density of states (DOS) in the
presence of the circular microcavity; d (0)(x) is the DOS in
the absence of the circular microcavity. The excess DOS
d(x) − d (0)(x) is shown in Fig. 1(a). Hence, for |Im(x0)| �
Re(x0) we can interpret Dp(x0) as p-resolved excess DOS at
frequency x0.

For the Gaussian correlation function with Eq. (22) the
explicit formula follows:

γ = γ0 + (n2 − 1)Re(x0)2σ 2�c

2
√

πR2ϑ(�c)

∑
p �=±m

Im
e−(m−p)2 �2

c
4

Sp(x0)
. (36)

Figure 2 shows an example of the summands in Eq. (34) for
the Gaussian correlation function [see also Eq. (36)]. It can
be seen that only components with |p| < m can contribute
to the decay rate. The reason for this is twofold. First, the
p-resolved excess DOS is for each radial mode number l

approximately a Lorentzian with a linewidth that increases
with decreasing |p|. This reflects the fact that the lifetime
of modes in the circular cavity reduces with decreasing |p|.
In particular, states with |p| < Re(x0) ≈ 10 are not confined
by total internal reflection [30]. Obviously, a broader peak
has a better chance to significantly overlap with x = Re(x0).
This can be clearly seen in Fig. 3. Second, the frequency of
a mode of the circular cavity increases with |p|. This implies

9.5 10 10.5 11
frequency x (dimensionless)

0

D
p (a

rb
. u

ni
ts

)

p = 17 p = 18

p = 7
p = 10

p = 12

FIG. 3. The p-resolved excess DOS Dp [Eq. (33)] vs dimension-
less frequency x for n = 2 and various p. Dp for |p| > 16 (|p| < 16)
is shown as solid (dashed) curves. The dotted vertical line marks the
value x = Re(x0) ≈ 9.8853 for the mode pair (m,l) = (16,1).
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that for the same l the frequency belonging to a contribution
with |p| > m is already distant from the frequency of mode
m. That is different for contributions with |p| < m since the
radial mode number l can be increased to come closer to the
mode with azimuthal mode number m. For example, the peak
with p = 7 in Fig. 3 corresponds to a radial mode number
of l = 4, the peak with p = 10 corresponds to l = 3, and the
peak with p = 12 corresponds to l = 2.

C. Applicability of the perturbation series

In this section we derive a condition for the validity of our
theory. To do so, we remark that in the perturbation theory of
Ref. [38] the first-order correction to the internal wave function
is given by the coefficient

ap = (n2 − 1)x0

Sp(x0)
(eiz0Am−p + e−iz0A−m−p) (37)

for the contribution from mode p �= ±m of the circular cavity.
Assuming again |Im(x0)| � Re(x0) it follows with the help of
Eqs. (21) and (31) that

〈|ap|2〉 = (n2 − 1)2Re(x0)2

|Sp(x0)|2
σ 2

R2
(Wm−p + Wp+m). (38)

We have to require a weak correction, i.e.,√
〈|ap|2〉 � 1 (39)

for each p �= ±m. For 1/|Sp| the following estimate is known
[30]:

1

|Sp(x)| ∼ n2

4

sn

n2 − 1
x (40)

with

sn = 1 − 2

π

(
arcsin

1

n
+ 1

n

√
1 − 1

n2

)
. (41)

For instance, s2 ≈ 0.391. Inserting Eq. (40) into Eq. (39) gives
the condition

n2

4
snRe(x0)2 σ

R

√
Wm−p + Wp+m � 1 (42)

for each p �= ±m.
For the Gaussian correlation function with Fourier trans-

form (22) we estimate with e−(m−p)2�2
c/4 < 1 for p �= ±m and

ϑ(�c) ≈ 1

n2

4π1/4
snRe(x0)2 σ

R

√
�c � 1. (43)

D. The smooth part of the excess DOS

In this section we simplify our result [Eq. (34)] by assuming
that the Fourier transform Wm−p is a smooth and slowly
varying function of p in the relevant regime |p| � Re(x0).
We expand Wm−p at p = 0 up to second order in p,

Wm−p ≈ Wm − W ′
mp + 1

2W ′′
mp2. (44)

The second-order term can be ignored for all relevant p

provided that

W ′′
mRe(x0)2

2Wm

� 1. (45)

Plugging Eq. (44) into Eq. (34) we see that the first-order term
drops out because p/Sp is an odd function of p, yielding

γ = γ0 + π Re(x0)2 σ 2

R2
Wm

∑
p �=±m

Dp(x0). (46)

The sum is almost equal to the sum in the excess DOS (35). It
is therefore tempting to use the excess DOS and replace it by
its smooth part given by Weyl law [48] for real x,

d̄(x) − d̄ (0)(x) = n2 − 1

2
x. (47)

This approximation correctly describes the mean behavior of
the excess DOS, but it cannot account for the fluctuations
which can be rather large [cf. Fig. 1(a)]. Moreover, there is a
subtle difference between the two sums in Eqs. (46) and (35).
In Eq. (46) the terms with p = ±m do not appear. Figure 1(b)
shows that this corresponds to missing peaks in the DOS. One
of these missing peaks is always exactly at the frequency at
which the sum is evaluated; here x = Re(x0) ≈ 9.8853, again
assuming |Im(x0)| � Re(x0). Hence, using the smooth part of
the DOS tends to overestimate the decay rate. Choosing various
values of the refractive index n in the regime x � 20, we find
numerically that this overestimation can be compensated by
dividing the smooth part of the DOS by n [see Fig. 1(b)]. We
cannot provide an analytical argument for this finding. Using
the such modified smooth part of the DOS we approximate
Eq. (34) by

γ = γ0 + (n2 − 1)π Re(x0)3σ 2Wm

2nR2
. (48)

The replacement of the DOS by its smooth part can also be
seen as an average over modes within a frequency window
containing many modes. Thus, Eq. (48) is a result of an
ensemble average and a frequency average.

For the special case of the Gaussian correlation function
[Eq. (22)], condition (45) becomes

�2
c Re(x0)2

4

∣∣∣∣m2�2
c

2
− 1

∣∣∣∣ � 1. (49)

The approximate result in Eq. (48) translates to

γ = γ0 + (n2 − 1)
√

πRe(x0)3σ 2�c

4nR2
e−m2 �2

c
4 , (50)

with ϑ(�c) ≈ 1 in the relevant regime of �c. As the variance
of the frequency splitting, γ (�c) has a global maximum but
now at �c = √

2/m.
Formula (50) has an important consequence. Suppose we

have two modes with similar frequency and azimuthal mode
numbers m1 > m2. For the radial mode numbers it then must
hold that l1 < l2. In the perfect disk, mode 1 usually has
significantly lower losses than mode 2. In the opposite regime
in which surface roughness dominates the losses, mode 1 has
on average still lower losses because of the exponential in
Eq. (50). However, the differences in the expected decay rates
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can be negligible when the correlation angle �c is sufficiently
small. Fluctuation can then easily lead to a mode 2 with lower
losses than mode 1.

VI. NUMERICAL RESULTS

In this section we verify our theory by a comparison to
numerical results. We employ the boundary element method
(BEM) [49] to compute the characteristics of the TM modes. If
not stated otherwise we consider the mode pair (m,l) = (16,1),
the refractive index n = 2, the wavelength regime around
λ ≈ 900 nm, and the disk radius R = 1.415 μm. For the
surface roughness we assume a Gaussian correlation function
(19). For all values of σ and �c used in the following the
condition for the validity of the theory in Eq. (43) is satisfied.

The surface roughness is implemented by expanding the
deformation function into a Fourier series with complex
coefficients Aq being random variables with first two moments
as in Eqs. (20) and (21). To do so, we first pick the phase of each
Aq randomly from a uniform distribution between zero and 2π .
This ensures Eq. (20) and the Kronecker delta δq,p in Eq. (21).
Second, we pick |Aq | randomly from a uniform distribution in
the interval [0,σ

√
3Wq/R] where the upper border is chosen

such that Eq. (21) is fulfilled for q = p. Another possibility
(not shown) is to choose Aq to be independent circular
symmetric Gaussian random variables with an appropriate
variance. We find that both approaches give nearly the same
results for the variance of the frequency splitting [Eq. (25)]
and the expected decay rate [Eq. (34)]. However, fluctuations
around these two mean values do depend on the choice of the
probability distribution. In an extended version of the theory
this would be incorporated by higher-order moments, such as
〈AqApAr〉, which are, however, not known for microdisks.

For a randomly picked realization of the cavity’s boundary
with σ/R = 0.005 and �c = 0.07, Fig. 4 shows the spatial
mode structure of a mode pair. The values of the chosen rough-
ness parameters correspond to a relatively large roughness
standard deviation σ = 7 nm and a correlation length Lc =
100 nm. At first glance, the two modes look like conventional
standing-wave modes with an equal amount of clockwise (CW)
and counterclockwise (CCW) traveling waves. However, an
angular momentum decomposition [50] reveals that for both
modes the CCW intensity ICCW is about 2.3 times larger than
the CW intensity ICW. This unbalanced contribution of CCW
and CW traveling waves is quantified by the chirality [50]

α = 1 − min (ICCW,ICW)

max (ICCW,ICW)
. (51)

Here, α ≈ 0.57 for both modes. The modes are therefore not
standing waves (α = 0) in contrast to the common wisdom
(see, e.g., Refs. [6,8]) but partially copropagating traveling
waves. This chirality is a generic feature of deformed or
perturbed whispering-gallery cavities without any mirror-
reflection symmetry [50–55]. The physical origin of this kind
of chirality is asymmetric backscattering between CW and
CCW traveling waves. It has to be emphasized that our statisti-
cal theory does not assume the backscattering to be symmetric.

The far-field pattern of the two modes is depicted in
Fig. 4(c). A rather nonuniform emission distribution can be
observed. This is in agreement with recent experiments [18].

FIG. 4. Intensity |ψ |2 of mode pair (m,l) = (16,1) in a rough disk
with n = 2, σ/R = 0.005, and �c = 0.07 (in radians) calculated nu-
merically by the BEM. Dimensionless frequency (a) x = 9.89497 −
i0.00147 and (b) x = 9.89523 − i0.00054. The arrows illustrate an
unbalanced contribution of clockwise and counterclockwise traveling
waves. (c) Far-field intensity pattern for the mode in (a) (solid curve)
and (b) (dashed curve). The area below both curves is normalized
to 1.

Figure 5(a) shows the (squared) frequency splittings of
60 realizations and the resulting variance as a function of
σ/R. A very good agreement between theory and numerical
calculations can be observed even for σ/R as large as 0.01
which translates for the chosen R to σ = 14 nm. There are
considerable fluctuations around the expectation values. The
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FIG. 5. (a) Variance of the (dimensionless) frequency splitting
Var(�x) and (b) expected (dimensionless) decay rate γ vs roughness
standard deviation σ in units of R; �c = 0.07, n = 2, (m,l) = (16,1).
The green dots mark the individual results, (�xj )2 and γj , of the
BEM (60 realizations for each point on the σ axis). The solid black
curves show the result of averaging. The dashed red curves are the
perturbative results in Eqs. (26) and (36), respectively. The dotted
blue curve in (b) is approximation (50). Note that the curves are
partly on top of each other.

053815-6



OPTICAL MICRODISK CAVITIES WITH ROUGH . . . PHYSICAL REVIEW A 95, 053815 (2017)

0

0.05

0.1

0.15

0.2

10
3 V

ar
(Δ

x)
, 1

03 (Δ
x j)2

0 0.05 0.1 0.15 0.2
correlation angle θc (radians)

0

0.5

1

1.5

10
3 γ,

 1
03 γ j

(a)

(b)

FIG. 6. (a) Variance of frequency splitting Var(�x) and
(b) expected decay rate γ vs correlation angle �c; σ/R = 0.005,
n = 2, (m,l) = (16,1). The green dots mark the individual results of
the BEM (60 realizations for each point on the �c axis). The solid
black curves show the result of averaging. The dashed red curves are
the perturbative results in Eqs. (26) and (36), respectively. The dotted
blue curve in (b) is approximation (50).

importance of such fluctuations was already discussed in
the context of comparing frequency splittings of modes with
different m in Ref. [10]. A statistical theory based solely on
Eqs. (13)–(16) cannot predict the characteristics of individual
realizations. It can, at best, give an estimation of its order of
magnitude.

Figure 5(b) shows the decay rates of the same 60 real-
izations (averaged over the two modes of the mode pair)
and the resulting averaged decay rate as a function of σ/R.
Again, a very good agreement between theory and numerical
calculations can be observed. In addition, Fig. 5(b) shows
approximation (50), which can hardly be distinguished by eye
from the full theoretical result.

The variation of the variance of the frequency splitting
as a function of the correlation angle is shown in Fig. 6(a).
The global maximum at �c = 1/(

√
2m) ≈ 0.044 can be

clearly seen. Figure 6(b) shows the expected decay rate
as a function of �c. This curve has a maximum around
�c ≈ 0.096 which is reasonably close to the prediction of the
simplified theory (50): �c = √

2/m ≈ 0.088. In both cases
the agreement between the theory and the full numerical
calculations is very convincing. Note that even for small �c the
relative fluctuations are large (not shown). So, one cannot take
advantage of self-averaging. Moreover, approximation (50)
again agrees well with the full theoretical results. Deviations
start to become visible around �c ≈ 1.25 where condition (49)
is no longer fulfilled.

Figure 7 shows the chirality α of the modes as a function
of σ . Whereas the averaged chirality is well below 1/4 for the
considered regime of σ , the fluctuations can lead to significant
chirality close to 1 even for small σ . We do not have a statistical
theory for the chirality induced by the surface roughness since
the resulting perturbation series contains other terms than in
Eqs. (20) and (21). The same is true for properties related to
the far-field pattern.
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FIG. 7. Chirality of modes α [Eq. (51)] vs roughness standard
deviation σ in units of R; �c = 0.07, n = 2, (m,l) = (16,1). The
green dots mark the individual results, αj , of the BEM (60 realizations
for each point on the σ axis). The solid black curve shows the result
of averaging, 〈α〉.

VII. COMPARISON TO LITERATURE

Finally, we compare the results of our theory to measured
data from the literature. Unfortunately, none of the experiments
had performed an ensemble average, for which it would be
necessary to measure many independently fabricated cavities
under the same conditions.

The authors of Ref. [8] measured the quality factor Q and
the wavelength splitting �λ for two silicon microdisk cavities
of different size. Their study included a reconstruction of the
correlation function based on a single realization assuming
ergodicity. They demonstrated a clear Gaussian behavior as in
Eq. (18) with σ = 2.8 nm and Lc = 40 nm. For the first disk
with radius R = 2.5 μm they found for the TM mode (23,1)
the values Q = 4.7 × 105 and �λ = 93 pm. For the second
disk with R = 4.5 μm they measured for the TM mode (44,1)
the values Q = 5.2 × 105 and �λ = 37 pm. For comparison
we estimate from the spectrum in the inset of Fig. 2(a) in
Ref. [8] an effective index n = 2.75 and approximate Q by
Re(x0)/(2γ ). Condition (43) is fulfilled. For the smaller disk
with R = 2.5 μm we get from Eq. (36) the quality factor Q ≈
1.8 × 105 and from Eq. (26) the wavelength splitting �λ =
221 pm. This gives a reasonable agreement, having in mind
that we compare expectation values to a single realization.
For the larger disk (R = 4.5 μm) we get Q ≈ 3.4 × 105 and
�λ = 90 pm, again in similar agreement with the experiment.

Next, we compare our theory to experimental data obtained
by the same group also for silicon microdisks but with
reduced surface roughness [7]. Unfortunately, the roughness
parameters have not been independently determined but
were estimated by fitting numerical results to experimentally
measured doublet splitting parameter Qβ = λ/�λ and quality
factors. Since a simultaneous fit was not successful the authors
in Ref. [7] proposed the existence of another relevant decay
channel, namely, surface state absorption. In contrast, our
(simplified) theory permits such a fit with reasonable param-
eters without extra decay channel (see Fig. 8). We compute
the doublet splitting parameter by Qβ = Re(x0)/

√
Var(�x)

and the quality factor again by Q = Re(x0)/(2γ ). We choose
the same effective index n mentioned above and take the
wavelength λ to be 1.455 μm located at the center of the
wavelength range 1.41−1.5 μm studied in Ref. [7]. The decay
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FIG. 8. (a) Doublet splitting parameter Qβ computed from
Eq. (26) and (b) Q factor computed from Eq. (50) vs radius R

(solid curves) in a semilogarithmic scale; σ = 1.75 nm, Lc = 180 nm,
n = 2.75, λ = 1.455 μm, and m = 2πnR/λ. Open circles represent
the experimental data extracted from Ref. [7].

rate for the perfect disk, γ0, can be safely ignored for R �
5 μm. The azimuthal mode index m is determined with the
asymptotic relation m = nRe(x0) = 2πnR/λ [30]. Finally, we
adjust the roughness parameters to σ = 1.75 nm and Lc = 180
nm, which fulfills conditions (43) and (49). A very satisfactory
agreement between experimental data and our theory can be
observed for both Qβ and Q simultaneously. Note that the
experimental data do not involve an ensemble average.

A direct comparison to other theoretical works using the
volume element method is hindered by the usage of various
approximations (for instance �c � 1, Re(x0) ≈ m/n for large
m, correlation functions with W ′(0) = 0, and symmetric
backscattering between CW and CCW traveling waves) which
are sometimes not mentioned [7,8,17,39,40]. Often, results are
given only implicitly (e.g., Ref. [39]) and prefactors are unclear

(e.g., Ref. [17]). In limiting cases our formulas are sometimes
similar to the ones found by the volume element method but
differ by a prefactor of order 1. For example, Eq. (26) agrees
with the one in Ref. [8] apart from a factor of π2/16 ≈ 0.62.

VIII. CONCLUSION

We have introduced a statistical theory for sidewall rough-
ness of microdisk cavities in the effective index approximation
for the TM polarized electromagnetic modes. The approach
is based on a recently developed perturbation theory for mi-
crodisks with weak boundary deformation. Explicit formulas
for the variance of the frequency splitting and the expectation
value of the decay rates are derived and explained. For a
Gaussian correlation function it is shown that both quantities
show a global maximum as a function of the correlation
angle. This provides a strategy to reduce the effects of surface
roughness by increasing the correlation angle.

A comparison to full numerical results based on the
boundary element method shows excellent agreement even
for rather strong surface roughness. The numerical results also
reveal the appearance of rather strong fluctuations around the
expectation values and the presence of chirality of the modes
induced by the surface roughness. We have applied our theory
to experimental data from the literature and observe reasonable
agreement. We have taken advantage of the fact that our theory
is not restricted to small correlation angles. This allows us to
demonstrate that no additional decay channel is needed to
explain the experimental data of Ref. [7]. We believe that our
work will help to understand and improve the properties of
optical microcavities.
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