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Energy shift between two relativistic laser pulses copropagating in plasmas
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The interactive dynamics of two relativistic laser beams copropagating in underdense plasmas is studied using
a coupled model equation for the relativistic laser propagation. It is shown that the relative phase difference
between the two laser pulses plays a significant role in their interaction processes. When the relative phase varies,
the two laser beams display different features, such as attraction, repulsion, and energy shift. In particular, energy
flow from the phase-advanced beam to the spot domain of the phase-delayed beam is observed when the relative
phase difference is between zero and π . When the relative phase is larger than π/2, repulsion is dominant and the
interaction gradually becomes weak. When the relative phase difference is smaller than π/2, attraction becomes
dominant and, as the phase difference decreases, the phase-advanced beam shifts most of its energy into the
spot domain of the phase-delayed beam. These conclusions are verified by our three-dimensional particle-in-cell
simulations. This provides an efficient way to manipulate the energy distribution of relativistically intense laser
pulses in plasmas by adjusting their relative phase.
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I. INTRODUCTION

The interactive dynamics of laser beams copropagating
in nonlinear media has stimulated great interest in a broad
range of applications, including optical communications [1],
long-range laser transport [2,3], energy transfer between
lasers [4–6], laser-based particle acceleration [7,8], and inertial
confinement fusion [9,10]. Recently, with the rapid develop-
ment of laser technology, the interaction processes of laser
pulses in a relativistic regime have attracted much attention.
It is well known that in the nonrelativistic regime, when two
laser beams propagate into nonlinear media, for example, in
a Kerr media, whose refractive index is proportional to the
laser intensity, the interference of the two laser pulses would
induce the redistribution of the refractive index of the nonlinear
media, leading to different interaction features [11–25] such
as attraction, fusion, repulsion, and spiraling. In particular, the
relative phase difference (φ) of the two copropagating laser
beams can affect their interaction processes greatly. The influ-
ence of phase differences and individual powers of collapsing
beams subject to nonlinear interaction was first analytically
and numerically investigated by Bergé et al. [17]. It was shown
that if the two laser beams are in phase (φ = 0), they would
collapse into a single beam under a critical distance, and if
they are out of phase (φ = π ), they would repulse each other.

In the relativistic regime, similar interaction properties have
also been found in plasmas [26–32]. Plasma can be regarded as
a kind of nonlinear medium that is already in a stage of break-
down and in principle can tolerate ultrastrong laser fields. For a
relativistically intense laser pulse propagating in the plasmas,
the electron mass is corrected by the relativistic effect and the
plasma density is modified by the laser ponderomotive force.
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These combined nonlinear effects induced by the relativistic
laser pulse would modify the refractive index of the plasma.
In particular, when two relativistic laser beams propagate in
the plasmas, their interference leads to the redistribution of
the refractive index of the plasma, and different interaction
features have been observed in previous works. Dong et al.
found that two laser beams in plasmas can merge into one
beam or split into three beams in different cases [26]. Ren
et al. observed the spiraling interaction of two laser beams
with crossed polarization directions [27,28]. Mahdy studied
the interaction process of two laser beams that are out of
phase at different intensities and spot sizes [29]. However,
so far, the effects of the relative phase difference (φ) between
the two coherent laser beams have not been explored yet.
Although φ = 0,π has been studied clearly, φ with arbitrary
value has attracted little attention. In addition, it is noted that
in previous works, a weak relativistic approximation (a0 < 1)
is considered, where a0 refers to the normalized amplitude of
the laser electric field. For the relativistic laser pulse with
a0 > 1, its ponderomotive force would lead to significant
density depression along its propagation axis. In particular,
when the power of each laser beam far exceeds the critical
power for relativistic self-focusing, i.e., Pcr ≈ 17.1(ωL/ωp)2

GW, where ωL and ωp refer to the laser and plasma frequency,
respectively, these nonlinear effects cannot be neglected and
the laser beams would first focus separately and then interact
like solitons.

In this paper, we consider the interactive dynamics of
two relativistically intense laser beams copropagating in
underdense plasmas and study the effects of the relative phase
difference (φ) between them. Based on the relativistic non-
linear Schrödinger equations (NLSEs) and three-dimensional
(3D) particle-in-cell (PIC) simulations, it is found that when φ

is between zero and π , an energy shift can be observed between
the two laser beams. This phenomenon is different from the
cases with φ = 0 and φ = π , because in this case interference
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of the two beams leads to the asymmetric distribution of the
plasma refractive index and the laser energy selectively flows
into the spot domain of the phase-delayed beam. Besides en-
ergy shift, attraction or repulsion is also found when 0 < φ <

π/2 or π/2 < φ < π , respectively. In addition, it is revealed
that the energy-shift process corresponds to the redistribution
of the energy of each laser beam: during the interaction the
phase-delayed beam is affected less while the phase-advanced
beam shifts most of its energy to the spot domain of the phase-
delayed beam. It is suggested that it is possible to manipulate
the interaction process of two relativistically intense laser
beams by adjusting their relative phase.

The paper is organized as follows. In Sec. II, the physical
model is discussed and theoretical analyses based on NLSEs
are presented. In Sec. III, numerical simulations based on
NLSEs are also presented. In Sec. IV, 3D PIC simulations are
further employed to verify the conclusions that are obtained
in Secs. II and III. Then a brief summary is given in the final
section.

II. THEORETICAL ANALYSES BASED ON NLSE

The interactions of two copropagating laser beams can be
described by two coupled relativistic NLSEs. In the slowly
varying envelope approximation, the envelope evolution of
a circularly polarized laser beam propagating through an
underdense plasma can be written as [33,34]

2ikL

∂

∂z
a1,2 + ∇2

⊥a1,2 + k2
p

(
1 − n

γ

)
a1,2 = 0 (1)

in the moving frame of the laser group velocity (τ = t − z/vg),
where 1 and 2 represent the two laser beams, kL = ωL/c

is the wave vector of the laser beams, ωL is the laser

frequency, kp = ωp/c, ωp =
√

nee
2

ε0me
is the plasma frequency,

ne is the plasma density, ε0 is the vacuum permittivity, me

is the electron mass, c is the vacuum speed of light, and
z is the laser propagation direction. Here a is the slowly
varying vector potential normalized as a = eE/meωLc. The
operator ∇2

⊥ = ∂2

∂x2 + ∂2

∂y2 is the Laplace operator in the (x,y)
plane, n = ne/n0 is the normalized electron density, n0 is
the background electron density, and γ =

√
1 + |a1 + a2|2 is

the Lorentz factor, which is coupled with the interference
term of the two laser beams. When the relativistic laser
pulse propagates into the plasmas, the laser ponderomotive
force expels the electrons from the laser region and the
plasma density profile will be strongly modified. On the slow
time-space scales, by considering the balance between the laser
ponderomotive force and the electrostatic force, the electron
density can be given as n = 1 + k−2

p ∇2
⊥γ , which is valid for

1 + k−2
p ∇2

⊥γ > 0. In order to avoid the nonphysical value of
the plasma density [33], the expression of n can be rewritten
as n = max{0,1 + k−2

p ∇2
⊥γ }.

It is impossible to get exact analytical solutions for Eq. (1)
because of the nonlinearity; however, one can use the global
invariant Hamiltonian to elucidate some characteristics of the
interaction process of two intense laser beams in plasmas. For
Eq. (1), if one assumes there is no electron cavitation initially,
i.e., 1 + k−2

p ∇2
⊥γ > 0, then the global Hamiltonian can be

expressed as

H =
∫ [|∇⊥(a1 + a2)|2 − k2

p(γ − 1)2 − |∇⊥γ |2] dx dy,

(2)

where the last two terms respectively result from the relativistic
effect and the charge displacement driven by the laser pondero-
motive force. In order to qualitatively describe the interaction
process of two laser beams, one can define the overall
mean-square radius as 〈r2〉 ≡ ∫

(x2 + y2)|a1 + a2|2 dx dy/P ,
where P = ∫

(|a1|2 + |a2|2) dx dy refers to the total input
laser power. The evolution of 〈r2〉 can be given by [35]

d2〈r2〉
dz2

= 2

k2
LP

[
H + k2

p

∫ (
1 − 1

γ

)
(γ − 1)2 dx dy

+
∫ (

γ − 1

γ

)
(∇2

⊥γ ) dx dy

]
. (3)

It is noted that for the nonrelativistic case, i.e., a1,a2 � 1,
Eq. (3) reduces to d2〈r2〉

dz2 = 2H

k2
LP

with H = ∫
[|∇⊥(a1 + a2)|2 −

k2
p

4 |a1 + a2|4] dx dy, which is analogous to the case in a
Kerr-type medium [17]. However, in the relativistic regime
considered here, the above equation cannot be analytically
solved because of the nonlinearity induced by the rela-
tivistic effect and plasma density depression. For two laser
beams propagating in the plasmas, the expression of 〈r2〉
can be written as 〈r2〉 = 〈r2

1 〉 + 〈r2
2 〉 + 〈r2

12〉, where 〈r2
1 〉 =∫

(x2 + y2)|a1|2 dx dy/P , 〈r2
2 〉 = ∫

(x2 + y2)|a2|2 dx dy/P ,
and 〈r2

12〉 = ∫
(x2 + y2)(a1a

∗
2 + a∗

1a2) dx dy/P . Here a∗
1 and

a∗
2 respectively correspond to the complex conjugates of a1

and a2. In this case, the evolution of 〈r2〉 can be separated

into three parts, d2〈r2〉
dz2 = d2〈r2

1 〉
dz2 + d2〈r2

2 〉
dz2 + d2〈r2

12〉
dz2 , where the first

two terms describe the evolution process of each laser beam
and the last term describes the interaction process of the two
laser beams. In particular, when the separation distance d

approaches infinity, then the last term is neglected and no
interaction process occurs between the two laser beams. Thus,
one can further get

d2
〈
r2

12

〉
dz2

= F − F |d→∞, (4)

where F denotes the right-hand side of Eq. (3) and F |d→∞
represents the value of the right-hand side of Eq. (3) when
the separation distance of the two laser beams approaches
infinity. From Eq. (4), one can get some characteristics of the
interaction process of two relativistic laser beams in plasmas.
When the value of the right-hand side of Eq. (4) is negative,
then the two laser beams attract each other, and the two laser
beams would repulse each other when the value of the right-
hand side of Eq. (4) becomes positive.

Figure 1 shows the dependence of 	F on different param-
eters for two parallel laser beams in plasmas, where 	F =
F − F |d→∞. It is shown from Fig. 1(a) that the absolute value
of 	F is reduced when the separation distance of the two laser
beams is increased, suggesting that the interaction between the
two laser beams gradually becomes weak. Figure 1(b) shows
that for a relatively small separation distance, the value of 	F

depends strongly on the relative phase of the two beams and it
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FIG. 1. The dependence of 	F on different relative phases,
separation distances, and input powers for the two laser beams,
where 	F = F − F |d→∞. (a) The dependence of 	F on different
separation distances for different relative phases, where PL = 9Pcr is
fixed. (b) The dependence of 	F on different relative phases for
different separation distances, where PL = 9Pcr is fixed. (c) The
dependence of 	F on different separation distances for different
input laser powers, where φ = 0 is fixed. (d) The dependence of
	F on different relative phases for different input laser powers,
where d = w0 is fixed. In the calculations, two relativistically
intense laser beams are employed with the initial beam profiles
of a1 = a10 exp{−[(x − d/2)2 + y2]/w2

0} and a2 = a20 exp{−[(x +
d/2)2 + y2]/w2

0} exp(iφ), where d is the separation distance, w0 is
the beam radius, and φ is the relative phase. The value of F |d→∞ is
calculated at a large distance of d = 10w0.

even changes signs when the relative phase is approximately
larger than π/2. This indicates that the two laser beams would
attract each other for a small phase difference (at least < π/2)
and, in turn, would repulse each other for π � φ > π/2.
However, when the separation distance is large enough, the
value of 	F approaches zero and is independent of the relative
phase of the two laser beams, as indicated by the black curve

in Fig. 1(b). In this case, the well-separated two laser beams
develop individually in plasmas without mutual interaction.
In addition, it is noted from Fig. 1(a) the repulsion dominates
the interaction process for φ = π/2. Figures 1(c) and 1(d)
show that the interaction process becomes stronger for a
larger laser input power. For relativistically intense laser pulses
with PL > Pcr considered here, the condition between the
separation distance and the input power cannot be analytically
derived because of the strong nonlinearity. However, it can
be seen from Figs. 1(a) and 1(c) that the separation distance
impacts the interaction strength, but it does not affect the
interaction features (repulsion vs attraction), which is only
determined by the relative phase difference of the two laser
beams.

III. NUMERICAL SIMULATIONS BASED ON NLSE

In order to demonstrate the evolution process of two
relativistically intense laser beams in plasmas, the coupled
equations (1) are solved numerically using a spectral split-step
scheme [36]. The simulation box is set to be 40 × 40 μm2

in the x-y plane. In the simulations, two relativistically
intense laser beams are employed with the initial beam
profiles of a1 = a10 exp{−[(x − d/2)2 + y2]/w2

0} and a2 =
a20 exp{−[(x + d/2)2 + y2]/w2

0} exp(iφ), where a10 = a20 =
3.0 represents the amplitude of the vector potential of the two
beams, the separation distance is d = 5 μm, and the transverse
beam waist is chosen to be w0 = 2 μm. The laser wavelength
is set as λ0 = 1 μm and plasma density is chosen to be
n0 = 0.1nc, where nc refers to the critical plasma density. For
these parameters, the peak power of each beam corresponds to
PL ≈ 9Pcr. The phase difference φ is set to be kπ , where k is
between zero and 1. Here a2 is regarded as the phase-advanced
beam and a1 is regarded as the phase-delayed beam.

Figure 2 shows the spatiotemporal intensity distribution for
different values of φ. It is shown from Figs. 2(a) and 2(b)
that the attraction is dominant for the interaction processes
when the two laser beams are in phase (φ = 0) and repulsion

FIG. 2. The spatiotemporal intensity distribution of two interacting beams with different phase differences. (a)–(f) Simulation results for
φ = 0, π , π/2, π/3, π/10, and −π/10, respectively. The isovalue is set to be 1.0 × 1019 W/cm2 in these simulations. The coordinate units
are μm.
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FIG. 3. The transverse intensity distribution of beam 1 (I1 ∝ |a1|2), beam 2 (I2 ∝ |a2|2), and the two coherent beams (I ∝ |a1 + a2|2) at
different propagation distances z for φ = π/4. (a)–(c) Results corresponding to beam 1, (d)–(f) results corresponding to beam 2, and (g)–(i)
results for the two coherent beams. Simulation results at (a), (d), (g) z = 0 μm; (b), (e), (h) z = 100 μm; and (c), (f), (i) z = 200 μm. Here the
unit of laser intensity is normalized by 1.0 × 1019 W/cm2.

is dominant when the two beams are out of phase (φ = π ).
However, for φ = π/2, the repulsion is still dominant but
the intensity evolution of the two beams is asymmetric, as
indicated in Fig. 2(c). This is in good agreement with the
theoretical predications in the above section. For a smaller
phase difference with φ = π/3, the asymmetry becomes more
obvious and the phase-advanced beam seems to lose energy
faster than the case of φ = π/2, as shown in Fig. 2(d). In the
NLSE system, it is noted that the power of each beam is con-
served, i.e., ∂P1,2/∂z = 0, where P1,2 = ∫ |a1,2|2 dx dy. Thus
the asymmetric intensity distribution indicates the energy-
shift process in these cases. In addition, as the energy shift
continues, the two laser beams begin to repulse each other after
an initial attraction process. In this case, the interaction process
becomes weak and the energy shift becomes saturated. If φ is
close to zero, for example, φ = π/10, as shown in Fig. 2(e),
more energy flows from the phase-advanced beam into the
spot domain of the phase-delayed beam and the spot location
of phase-delayed beam moves towards the center of the two
beams, which indicates the dominant attraction process for a
relatively small value of φ. When φ is negative, as shown in
Fig. 2(f), beam 1 in the upper side becomes the phase-advanced
beam, and the evolution process is reversed. The cases for
π/2 < |φ| < π are also considered in our simulations (not
shown here) and it is shown that the interaction processes in
these cases are nearly the same with the case of φ = π/2,
where the repulsion dominates the interaction process, as
predicted by the theoretical analyses. Once the repulsion
process begins, the interaction force gradually becomes weak
and can be neglected when the two laser beams are separated
far enough. In addition, we have also considered the cases in

which two laser beams have a common phase term but the
phase difference is kept the same as that in Fig. 2; it is found
that the simulation results make no difference. This can be
understood in that the coupled equations are unchanged if the
two vector potentials a1,2 have a common phase term with
exp(iφ0). Thus one can conclude that the interaction processes
of the two laser beams in plasmas are only governed by their
relative phase difference rather than the phases of each beam.

In order to investigate the mechanism of the energy-shift
process, the evolution of the intensity profile of each beam
is analyzed. Figure 3 gives the corresponding transverse
intensity profiles of the two laser beams for φ = π/4. It
is shown that at the initial stage, their spots are located
at x = ±2.5 μm. When the interaction occurs, each beam
would split into two parts: one stays at its original position
and keeps on losing energy, while the split part is gradually
transferred into the spot domain of the other beam. For the
phase-delayed beam (beam 1), its profile changes little, as
shown in Figs. 3(a)–3(c), while the peak intensity of the
phase-advanced beam (beam 2) is decreased by a factor of 2,
as indicated by Fig. 3(f). These results can be understood
from the distribution of the refractive index of the plasma that
is modified by the two relativistic laser beams. The plasma
refractive index can be described as η =

√
1 − ne

γ nc
, where

γ =
√

1 + |a1 + a2|2 is coupled with the interference term
of the two laser beams. When the two laser beams propagate
into the plasmas, the electrons in the spot domain of each beam
would be expelled radially because of the laser ponderomotive
force, and the gradient of η is negative in the regions of the
two laser beams; thus each beam will deposit some energy
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FIG. 4. The energy-shift ratio ξ vs the propagation distance z for
different values of φ.

into the spot region of the other beam. In particular, the
distribution of η is strongly dependent on the relative phase
difference of the two laser beams. The Lorentz factor in the
expression of η can be written as γ =

√
1 + |a1 + a2|2 =√

1 + |a1|2 + |a2|2 + 2|a1||a2| cos(	kx − φ). Here 	k refers
to the difference value of the transverse wave vectors of
the two laser beams, which is induced by an attraction or
repulsion interaction process. It is noted that for φ = 0 or π ,
the distribution of η is symmetric along the x direction and
no energy shift occurs in this case, whereas for φ = 0 and
π , the distribution of η becomes asymmetric, which would
lead to the asymmetric energy flows from the two laser beams.
Once the asymmetric shift process is triggered, this kind of
asymmetry will be further intensified. As a result, the energy of
the two beams would be redistributed, as shown in Fig. 3(i). In
addition, it is noted from Figs. 3(g)–3(i) that at the beginning,
attraction between the two beams is obvious while at a
longer propagation distance z = 200 μm, repulsion becomes
dominant. In this case, the interaction process becomes weak
and the energy-shift process becomes saturated.

Figure 4 shows the energy-shift ratio ξ as a function of
the propagation distance z for different values of φ. Here, ξ

is defined as ξ = P2/(P1 + P2), where P1 = ∫
|x−x1|<w0

|a1 +
a2|2 dr is the power in the spot domain of beam 1 (phase
delayed), P2 = ∫

|x−x2|<w0
|a1 + a2|2 dr is the power in the spot

domain of beam 2 (phase advanced), x1 and x2 refer to the
positions of the two beams, respectively, which correspond
to the maximum intensity of each beam. It is supposed that
the main spot sizes of beam 1 and beam 2 change little
during the interaction. This is reasonable because it is known
that the matched spot size of the light bullet in underdense
plasma is about r0 ≈ 2c/ωpe [36], and in our simulations,
w0 ≈ r0. Thus one can employ the value of ξ to describe the
energy-shift ratio and characterize the interaction strength of
the two laser beams. For φ = π or zero, the two laser beams
transport symmetrically and no energy shift is observed; in
this case, the value of ξ is strictly equal to 0.5, as shown
in Fig. 4. For other cases with φ � π/2, as the two laser
beams propagate, the value of ξ is decreased at the beginning
and then gradually becomes saturated, indicating that the

interaction process becomes weak. In addition, it is noted
that for 0 < φ � π/2, ξ is much decreased when the phase
difference gets smaller. This implies that more energy is
shifted from the phase-advanced beam into the phase-delayed
beam and the interaction process becomes stronger when the
phase difference is decreased. In particular, for φ < π/5, the
energy-shift process becomes rather strong and the curves in
Fig. 4 change dramatically at a special distance zd , for example,
zd ≈ 100 μm for φ = π/10. At this distance, most of the laser
energy in the phase-advanced beam is shifted into the region
of the phase-delayed beam; as a result, P1 = P2 and the value
of ξ jumps to 0.5. For φ = π/10, more than 90% of the laser
energy is deposited into the region of the phase-delayed beam.
In addition, in these cases with φ < π/5, the value of zd is
decreased as the phase difference is decreased, suggesting a
stronger and faster energy-shift process. Figure 4 also shows
the case with negative phase difference with φ = −π/4. It is
shown that ξ (φ = −π/4) + ξ (φ = π/4) = 1. Similarly, one
can get the relation with ξ (φ) + ξ (−φ) = 1. This indicates
that the interaction processes of two relativistic laser beams in
plasmas are phase reversible.

To demonstrate the robustness of the energy-shift process,
the asymmetric cases where the two laser beams have different
initial intensities are also considered in our simulations. In
the simulations, the initial relative phase difference is set as
π/4, and only the parameters of a10 and a20 are changed.
Other parameters are the same as in Fig. 2. The corresponding
simulation results are shown in Fig. 5. It is shown that
the energy-shift process still occurs for different initial laser
intensities. Even when the phase-advanced beam has a larger
intensity initially, its energy can still be efficiently shifted into
the region of the phase-delayed beam. The cases for φ = π/6
are also considered and it is shown that the results are similar
to the cases of φ = π/4. For the cases with φ = π/2, repulsion
is dominant and the energy shift is not so obvious as indicated
above. Thus one can conclude that the energy-shift process is
rather robust for two relativistic laser beams propagating in
plasmas, which is independent of their initial laser intensities
and is mainly governed by the relative phase difference of the
two laser beams.

IV. 3D PIC SIMULATIONS

In this section, a three-dimensional PIC simulation method
is employed to investigate the energy-shift process discussed
above using the EPOCH code [37]. In the simulations, two
circularly polarized intense laser pulses with a relative phase
difference are incident into a uniform underdense plasma from
the left boundary. The simulation box is 2 × 20 × 80 μm3 with
a grid of 200 × 200 × 800 cells and eight particles for both
electrons and ions per cell. The laser wavelength is set as λ =
1 μm and the durations of the two laser pulses are set as 20T0,
where T0 refers to the laser period. The initial transverse pro-
files of the two laser pulses are a1 = a10 exp{−[(x − d/2)2 +
y2]/w2

0} and a2 = a20 exp{−[(x + d/2)2 + y2]/w2
0} exp(iφ),

respectively, where a10 = a20 = 10, d = 4 μm, w0 = 2 μm,
and φ is the relative phase term. The plasma density is
n0 = 0.3nc, where nc = 1.1 × 1021 cm−3 is the critical plasma
density. It is noted that compared with the simulation setup in
Fig. 2, here two stronger laser pulses and larger plasma density
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FIG. 5. The transverse intensity distribution of the two beams at different propagation distances z for φ = π/4. Simulation results for (a),
(d) a1 = 3, a2 = 2; (b), (e) a1 = 2, a2 = 3; and (c), (f) a1 = 2, a2 = 4. Simulation results at (a)–(c) z = 0 μm and (d)–(f) z = 60 μm. Here the
laser intensity is in units of 1.0 × 1019 W/cm2.

are considered in order to avoid the scattering instabilities in
underdense plasmas [38].

Figures 6 and 7 show the corresponding simulation results
for different values of φ. It is shown from Figs. 6(a) and 6(b)
that when the two laser beams are in phase with φ = 0, they
would attract each other and then collapse into a single beam.
In this process, the peak intensity is almost increased by a
factor of 2. In particular, when the relative phase difference is
in the range 0 < φ < π , the energy-shift process can be clearly
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FIG. 6. The laser intensity distribution along the y = 0 plane for
two copropagating laser beams with relative phase difference in 3D
PIC simulations. Simulation results for φ = 0 at (a) T = 20T0 and
(b) T = 40T0; for φ = π/4 at (c) T = 20T0 and (d) T = 40T0; and
for φ = π/2 at (e) T = 20T0 and (f) T = 40T0. The laser intensity
is in units of 2.76 × 1018 W/cm2. Here the beam in the upper side is
referred to as the phase-delayed beam and the beam in the lower side
is referred to as the phase-advanced beam.

observed, as indicated in Figs. 6(c)–6(f), which is in good
agreement with the NLSE simulation results. In addition, for
φ = π/2, the repulsion process is dominant and the interaction
gradually becomes weak, as shown in Fig. 6(f), whereas for
φ = π/4, attraction is dominant and the energy-shift process
is much faster than the case with φ = π/2, as shown in
Fig. 6(d). The corresponding transverse intensity distribution
in the x-y plane is shown in Fig. 7 for different values of φ. It
is shown that when the two beams are out of phase (φ = π ),
the repulsion process is dominant and no energy shift occurs,
as shown in Fig. 7(b), whereas for the cases with 0 < φ < π ,
the laser energy is shifted from the phase-advanced beam into
the phase-delayed beam and, in these cases, the peak laser
intensity is much larger than the case with φ = π . In addition,
for 0 < φ < π/2, when the phase difference is decreased, the
interaction process would become stronger and more energy
can be shifted into the phase-delayed beam, as indicated from
Figs. 7(d) and 7(e). The case with a negative phase difference
φ = −π/4 is also considered, as shown in Fig. 7(f). It can be
seen that the results are reversible compared with the results
in Fig. 7(e) except for some quantitative fluctuations. These
conclusions agree well with the theoretical predications and
the NLSE simulation results. The PIC simulations with two
linearly polarized lasers are also conducted under the same
parameters, and it is found that the energy-shift process is
identical to the circularly polarized cases, which indicates that
the energy-shift process is independent of the polarizations of
the laser beams.

Figure 8 shows the laser electric field distribution for the
two laser pulses with different relative phases. The energy-shift
process can also be observed in the electric field distribution,
as shown in Figs. 8(a) and 8(d). It is shown that energy in
the leading edge of the phase-advanced laser pulse is almost
completely transferred into the phase-delayed pulse. During
the energy-shift process, the strength of the phase-advanced
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FIG. 7. The corresponding transverse laser intensity distribution along the plane of z = 33 μm at T = 40T0 for different values of φ. (a)–(f)
Simulation results for φ = 0, π , π/2, π/6, π/4, and −π/4, respectively. The laser intensity is in units of 2.76 × 1018 W/cm2.

beam is gradually decreased. In this case, the phase velocity
of the phase-advanced beam in plasmas is increased due to
the weaker relativistic effect. This can be understood from the
dependence of the phase velocity on the laser intensity, which
can be written as vph = c/η = c/

√
1 − ne

γLnc
. Such an effect

will induce the increase of the phase difference between the
two laser pulses. Figures 8(b), 8(c), 8(e), and 8(f) show the
longitudinal profiles of the laser electric field in a localized
region at different interaction times. It can be seen from
Figs. 8(b) and 8(e) at an early stage that the energy shift
between the two laser pulses is negligible and the relative
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FIG. 8. The normalized laser electric field (eEy/meωLc) distri-
bution along the plane y = 0 μm at T = 50T0 for (a)–(c) φ = π/4
and (d)–(f) φ = π/2. Localized laser electric field distribution along
the line x = ±2 μm at (b) T = 20T0 for φ = π/4, (c) T = 50T0

for φ = π/4, (e) T = 20T0 for φ = π/2, and (f) T = 50T0 for
φ = π/2. In (b), (c), (e), and (f), the solid blue line corresponds
to the phase-advanced beam along x = −2 μm, the dashed red
line corresponds to the phase-delayed beam along x = +2 μm, and
the solid black line marks the position of one wave crest for the
phase-advanced beam at the initial stage.

phase difference remains as the initial value. At a later stage,
the energy shift becomes remarkable, as shown in Figs. 8(a)
and 8(d). In this case, the phase velocity of the phase-advanced
beam is larger than the phase-delayed beam; thus the relative
phase difference between the two laser pulses is increased, as
indicated in Figs. 8(c) and 8(f). In particular, for the initial
phase difference with φ < π/2, the increase of φ may induce
different interaction features; as shown in Fig. 8(a), the repul-
sion becomes dominant at the later stage. Once the repulsion
process begins, the interaction force becomes weak and can
be neglected when the two laser beams are well separated. In
this case, the energy shift gradually becomes saturated.

V. SUMMARY

In summary, the energy-shift process between two rela-
tivistically intense laser pulses copropagating in underdense
plasmas is investigated. It is shown that the refractive index
of the plasma is strongly dependent on the relative phase
difference (φ) of the two laser pulses, which leads to different
interaction features, including the attraction, repulsion, and
energy shift. In particular, when the relative phase difference is
between zero and π , the laser energy is shifted from the phase-
advanced beam into the phase-delayed beam. The repulsion
process becomes dominant for π/2 < φ < π and the attraction
process is dominant for 0 < φ < π/2. In addition, a phase
offset of π/2 favors repulsion and asymmetric distribution
of energy between the two beams. When 0 < φ < π/2, the
interaction becomes stronger and more energy is shifted into
the phase-delayed beam as the relative phase difference is
decreased. During the interaction process, the relative phase
difference is gradually increased due to the different phase
velocities. It is further demonstrated that the energy-shift pro-
cess is independent of the initial laser intensities and also the
polarizations of the laser pulses. It is possible to manipulate the
interaction process of ultraintense laser pulses in plasmas by
controlling their relative phase difference. In this way, the con-
trollable laser energy redistribution and reallocation become
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feasible, which would simulate great interest in a broad range
of applications, including laser-driven plasma accelerators,
laser-based radiation sources, and inertial confinement fusion.
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