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A simple superbunching pseudothermal light source is introduced based on common instruments such as laser,
lenses, pinholes, and ground glasses. g(2)(0) = 3.66 ± 0.02 is observed in the suggested scheme by employing
two rotating ground glasses. Quantum and classical theories are employed to interpret the observed superbunching
effect. It is predicted that g(2)(0) can reach 2N if N rotating ground glasses were employed. These results are
helpful to understand the physics of superbunching. The proposed superbunching pseudothermal light may serve
as a type of light to study the second- and higher-order coherence of light and have potential application in
improving the visibility of thermal light ghost imaging.
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I. INTRODUCTION

Two-photon bunching was first observed by Hanbury
Brown and Twiss in 1956 [1,2], in which randomly emitted
photons by thermal light source have the tendency to come
in bunches rather than randomly. Much attention was drawn
to this bunching effect shortly after it was reported. Some
researchers repeated Hanbury Brown and Twiss’s experiments
and got negative results [3,4]. It was later understood that
the negative results were due to the response time of the
detection system being much longer than the coherence time
of the measured light [5]. Classical theory was first employed
to interpret the bunching effect [6–9]. Then quantum theory
was also employed to interpret the same effect [10–13]. It
is now well accepted that the two-photon bunching effect
of thermal light can be explained by both quantum and
classical theories [12–14]. The full quantum explanation of the
bunching effect given by Glauber greatly deepens our under-
standing of optical coherence. The Hanbury Brown and Twiss
experiments [1,2] and Glauber’s quantum optical coherence
theory [12,13] are usually regarded as the cornerstones of
modern quantum optics [15].

The experimental setup employed by Hanbury Brown and
Twiss [1,2], which is known as the Hanbury Brown–Twiss
(HBT) interferometer, plays an important role in measuring
the second-order coherence of light and photon statistics in
quantum optics [5,16]. The second-order coherence of light
can be described by the normalized second-order coherence
function introduced by Glauber [12,13]. For a light beam
in a HBT interferometer, two-photon bunching is defined
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as g(2)(0) > g(2)(τ ) (τ �= 0), where g(2)(τ ) is the normalized
second-order coherence function and τ is the time difference
between two photon detection events within a two-photon
coincidence count. On the contrary, antibunching is defined
as g(2)(0) < g(2)(τ ) (τ �= 0), which is usually regarded as a
nonclassical effect [5]. It is well known that g(2)(0) equals
2 for thermal light [1,2,5]. For the bunched light, the phrase
two-photon superbunching is usually employed if g(2)(0) is
larger than 2 [17].

Two-photon superbunching is usually introduced by non-
linear interaction between light and atoms [18–26], quantum
dots [27–29], or nonlinear medium [30–35], etc. The efficiency
of generating two-photon superbunching effect with nonlinear
interaction is usually very low and high precision alignment is
always required in adjusting the experimental setup [18–35]. It
is tempting to generate two-photon superbunching effect with
linear effect. Hong et al. observed g(2)(0) = 2.4 ± 0.1 in a
linear system via multiple two-photon path interference [36].
They further predicted that higher value of g(2)(0) could be
reached by adding more paths. However, it is a big experimen-
tal challenge if more paths are added in their scheme [36]. In
this paper, we will introduce a different and much simpler
scheme for superbunching with classical light in a linear
system, which is called superbunching pseudothermal light.
The corresponding quantum and classical interpretations of
the superbunching effect in our scheme are of great importance
to understand the physics of superbunching. The proposed
superbunching pseudothermal light source may find possible
applications in the second- and higher-order interference of
light [5,16] and high-visibility ghost imaging with classical
light [37].

The paper is organized as follows. In Sec. II, we will
introduce the superbunching pseudothermal light source
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FIG. 1. Superbunching pseudothermal light source. Pj : the j th
pinhole. RGj : the j th rotating ground glass. The pinhole before RGj

is employed to filter out the light beam within one coherence area of
pseudothermal light generated by RGj−1 (j = 2,3, . . . ,N ).

and employ two-photon interference theory to calculate the
second-order coherence function. The experimental setup
with two rotating ground glasses is employed to observe
two-photon superbunching effect in Sec. III. The discussions
about the physics of superbunching and an alternative scheme
for superbunching pseudothermal light source are in Sec. IV.
Section V summarizes our conclusions.

II. THEORY

A. Superbunching pseudothermal light with N rotating
ground glasses

The proposed superbunching pseudothermal light source
is shown in Fig. 1, where Pj and RGj are the j th pinhole
and rotating ground glass, respectively (j = 1,2, . . . ,N). A
coherent light beam is incident to RG1 after passing through
P1. The scattered light is then filtered out by P2. The filtered
light beam is within the same transverse coherence area of
pseudothermal light generated by RG1. The incident light
before RG2 is coherent and there will be interference pattern
after RG2. Another pinhole and RG can be put after RG2 in the
same manner and the process can be repeated for N (positive
integer) RGs.

If a single-mode continuous-wave laser light beam is
employed as the input before P1 in Fig. 1, the scattered
light after RG1 is pseudothermal light [38], which has been
applied extensively in thermal light ghost imaging [39–42], the
second- and higher-order interference of thermal light [43–46].
The photons in light beam after N (N � 2) RGs will be
superbunched, which means the normalized second-order
coherence function, g(2)(0), will exceed 2.

The HBT interferometer [1,2] is employed in the scheme
shown in Fig. 1 to measure the second-order coherence
function. When there is only one RG in the scheme, there are
two different alternatives for two photons in pseudothermal
light to trigger a two-photon coincidence count. One is that
photon a (short for photon at position a) is detected by D1

(short for detector 1) and photon b is detected by D2. The other
one is that photon a is detected by D2 and photon b is detected
by D1. If these two different alternatives are indistinguishable,
the second-order coherence function is [10,11,37,47,48]

G
(2)
1 (r1,t1; r2,t2) = 〈|A1 + A2|2〉, (1)

where (rj ,tj ) is the space-time coordinates for the photon
detection event at Dj (j = 1 and 2). 〈· · · 〉 is the ensemble

FIG. 2. Different paths for two photons to trigger a two-photon
coincidence count in superbunching scheme. aj and bj are the possible
positions of photons on RGj (j = 1,2, . . . ,N ). D1 and D2 are two
single-photon detectors in a HBT interferometer. The outputs of these
two detectors are sent to a two-photon coincidence count detection
system to measure the two-photon coincidence count, which is not
shown in the figure.

average by taking all the possible realizations into account. A1

and A2 are the corresponding probability amplitudes for the
above two alternatives, respectively. Based on the calculations
in [37] and Appendix A of this paper, the value of g(2)(0) can
be approximately estimated by the ratio between the number of
total terms and the number of autocorrelation terms in Eq. (1).
There are four terms after the modulus square is calculated
and two autocorrelation terms. The normalized second-order
coherence function, g(2)(0), equals 2 in this case, which is
consistent with the conclusions in [8–11].

When there are two RGs, there are four different alternatives
for two photons to trigger a two-photon coincidence count in
the scheme in Fig. 1. These four alternatives are a1-a2-D1 and
b1-b2-D2, a1-a2-D2 and b1-b2-D1, a1-b2-D2 and b1-a2-D1, and
a1-b2-D1 and b1-a2-D2, respectively. a1-a2-D1 means photon
at a1 goes to a2 and then is detected by D1. The meanings of
other symbols are similar. If these four different alternatives are
indistinguishable, the second-order coherence function with
two RGs is [47,48]

G
(2)
2 (r1,t1; r2,t2) = 〈|A1 + A2 + A3 + A4|2〉, (2)

where A1, A2, A3, and A4 are the corresponding probability
amplitudes for the above four alternatives, respectively. The
number of total terms after modulus square in Eq. (2) is 42. The
number of autocorrelation terms is 4. Hence g(2)(0) equals 42/4
for two RGs in Fig. 1, in which superbunching is expected.

The same method can be employed to calculate the
normalized second-order coherence function of N RGs in
Fig. 1. There are 2N different alternatives for two photons
to trigger a two-photon coincidence count for N RGs in Fig. 1,
which can be understood in the following way. There are 21

and 22 different alternatives for one and two RGs in Fig. 1,
respectively. We can assume that there are 2N−1 different
alternatives to trigger a two-photon coincidence count for
N − 1 RGs in Fig. 1. By adding the N th RG, there will be
two more possible positions, aN and bN , for the photons as
shown in Fig. 2. There are 2N−1 different alternatives, for the
photon at aN is detected by D1 and the photon at bN is detected
by D2. When exchanging the orders, i.e., the photon at aN is
detected by D2 and the photon at bN is detected by D1, there
are 2N−1 different alternatives, too. Hence the total number of
alternatives to trigger a two-photon coincidence count for N

RGs in Fig. 1 is 2N−1 + 2N−1, which equals 2N .
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If all the 2N different alternatives are indistinguishable, the
second-order coherence function for N RGs is

G
(2)
N (r1,t1; r2,t2) =

〈∣∣∣∣∣∣
2N∑
j=1

Aj

∣∣∣∣∣∣
2〉

, (3)

where Aj is the j th probability amplitude for two photons at
a1 and b1 are detected by D1 and D2 to trigger a two-photon
coincidence count. The number of total terms in Eq. (3) after
modulus square is (2N )2 and the number of autocorrelation
terms is 2N . The normalized second-order coherence function
of N RGs in the scheme shown in Fig. 1 is

g
(2)
N (0) = (2N )2

2N
= 2N, (4)

where two-photon superbunching is expected for N (N � 2)
RGs.

B. Second-order temporal coherence function of superbunching
pseudothermal light

In this section, we will calculate the second-order temporal
coherence functions for one and two RGs in the superbunching
pseudothermal light scheme, respectively.

The Feynman photon propagator for a point light source
is [49]

Kαβ = exp[−i(ωαtαβ − kαβ · rαβ)]

rαβ

, (5)

which is the same as the Green function for a point light
source in classical optics [50]. rαβ equals rβ − rα , which is
the position vector of the photon at rα that goes to rβ . rα

and rβ are two position vectors. rαβ is the distance between
rα and rβ , which equals |rαβ |. kαβ and ωα are the wave vector
and frequency of the photon at rα that goes to rβ , respectively.
tαβ equals tβ − tα , which is the time for the photon at rα that
goes to rβ . tα and tβ are the time for the photon at rα and rβ ,
respectively.

For simplicity, we will concentrate on the temporal corre-
lation. The propagator in Eq. (5) can be simplified as

Kαβ ∝ e−iωα (tβ−tα ) (6)

by ignoring the spatial part. The second-order coherence
function in Eq. (1) can be written as

G
(2)
1 (t1,t2) = 〈|eiϕa1Ka1D1e

iϕb1Kb1D2

+ eiϕa1Ka1D2e
iϕb1Kb1D1|2〉, (7)

where ϕa1 and ϕb1 are the initial phases of photons at a1 and b1,
respectively. The initial phases of photons in thermal light are
random [51]. t1 and t2 are short for tD1 and tD2, which are the
time for photon detection events at D1 and D2, respectively.
Substituting Eq. (6) into Eq. (7), it is straightforward to have

G
(2)
1 (t1 − t2) ∝ 2 + 2 Re[e−iωa1(t1−t2)e−iωb1(t1−t2)], (8)

where Re is the real part of the complex expression. Assuming
the frequency bandwidth of the light scattered by RG1 is �ω1,
the normalized second-order temporal coherence function for

FIG. 3. Experimental setup for superbunching pseudothermal
light source with two RGs. Laser: single-mode continuous-wave
laser. M: mirror. L: lens. RG: rotating ground glass. P: pinhole. FBS:
nonpolarized 50:50 fiber beam splitter. D: single-photon detector. CC:
two-photon coincidence count detection system.

one RG in the scheme shown in Fig. 1 is [37,52]

g
(2)
1 (t1 − t2) = 1 + sinc2 �ω1(t1 − t2)

2
, (9)

where sinc(x) equals sin(x)/x. When the value of |t1 − t2|
is large enough, g

(2)
1 (t1 − t2) equals 1, which means the

detections of these two photons are independent in this
condition. g

(2)
1 (t1 − t2) equals 2 when t1 − t2 equals zero,

which means photons in thermal light have tendency to come in
bunches. This phenomenon is the two-photon bunching effect,
which was first observed by Hanbury Brown and Twiss [1,2].

With the same method above, we can have the second-order
temporal coherence function for two RGs in the scheme shown
in Fig. 1,

g
(2)
2 (t1 − t2) =

[
1 + sinc2 �ω1(t1 − t2)

2

]

×
[

1 + sinc2 �ω2(t1 − t2)

2

]
, (10)

where the detail calculations can be found in Appendix A. �ω1

and �ω2 are the frequency bandwidths of pseudothermal light
at RG1 and RG2, respectively. When the value of |t1 − t2| is
large enough, g

(2)
2 (t1 − t2) equals 1, which means two photon

detection events are independent. When t1 − t2 equals zero,
g

(2)
2 (t1 − t2) equals 4, which means two-photon superbunching

can be observed.

III. EXPERIMENTS

The experimental setup to observe superbunching pseu-
dothermal light with two RGs is shown in Fig. 3. The employed
laser is a linearly polarized single-mode continuous-wave laser
with central wavelength at 780 nm and frequency bandwidth
of 200 kHz (Newport, SWL-7513). M is a mirror. L1 is a focus
lens with focus length of 50 mm. RG1 and RG2 are two rotating
ground glasses. P is a pinhole. The distance between L1 and
RG1 is 50 mm. The distance between RG1 and the pinhole is
240 mm. The transverse coherence length of pseudothermal
light generated by RG1 is 4 mm in the pinhole plane. The
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FIG. 4. Measured second-order temporal coherence functions.
g(2)(t1 − t2) is the normalized second-order coherence function.
t1 − t2 is the time difference between two single-photon detection
events within a two-photon coincidence count. The squares, circles,
and triangles are measured results. The red lines are theoretical fittings
by employing Eq. (9). Panel (a) is measured when RG1 is not rotating
while RG2 is rotating at 12 Hz. Panel (b) is measured when RG1 is
rotating at 40 Hz while RG2 is not rotating. Panel (c) is measured
when RG1 and RG2 are rotating at 40 and 12 Hz, respectively. The
blue line in (c) is the product of the red lines in (a) and (b).

diameter of the pinhole is 1.2 mm, which is less than the
coherence length. Only the light within one coherence area
can pass the pinhole. The second lens with focus length of
25 mm, L2, is employed to focus the light onto RG2. The
distance between L2 and RG2 is 28 mm, which is determined
by minimizing the size of light spot on RG2. The reason why
the distance between L2 and RG2 is larger than the focus length
of L2 is that the light scattered by RG1 is diffuse instead of
parallel. A nonpolarized 50:50 fiber beam splitter (FBS) is
employed to measure the second-order temporal coherence
function. The distance between RG2 and the collector of FBS
is 700 mm. The diameter of the collector of FBS is 5 μm, which
is much less than the coherence length of pseudothermal light
generated by RG2 in the same plane (∼13 mm). D1 and D2 are
two single-photon detectors (PerkinElmer, SPCM-AQRH-14-
FC). CC is a two-photon coincidence count detection system
(Becker & Hickl GmbH, DPC-230).

We first measure the second-order temporal coherence
function of usual pseudothermal light [38]. Figure 4(a) shows
the measured normalized second-order temporal coherence

function when RG1 is not rotating while RG2 is rotating at
12 Hz. g(2)(t1 − t2) is the normalized second-order coherence
function and t1 − t2 is the time difference between the two
single-photon detection events within a two-photon coinci-
dence count. The squares are the measured results, which
are normalized according to the background. The red line
is theoretical fitting by employing Eq. (9). The measured
coherence time and g(2)(0) of pseudothermal light in Fig. 4(a)
are 1.08 ± 0.01 μs and 2.01 ± 0.02, respectively. Figure 4(b)
shows the measured results when RG1 is rotating at 40 Hz
while RG2 is not rotating. The circles are measured results
and the red line is the fitting of the measured data by
employing Eq. (9). The measured coherence time and g(2)(0)
of pseudothermal light in Fig. 4(b) are 2.15 ± 0.03 μs and
1.99 ± 0.01, respectively. Figure 4(c) is the measured second-
order coherence function when RG1 and RG2 are rotating
with speeds of 40 and 12 Hz, respectively. The triangles are
measured results and the red line is theoretical fitting of the
data by employing Eq. (9). The measured coherence time in
Fig. 4(c) is 1.74 ± 0.02 μs. The ratio between the peak and
the background in Fig. 4(c) is much larger than the ones in
Figs. 4(a) and 4(b). The normalized second-order coherence
function, g(2)(0), equals 3.66 ± 0.02, in which two-photon
superbunching is observed.

The blue line in Fig. 4(c) is the product of the two fitted
lines in Figs. 4(a) and 4(b). It is consistent with the measured
results except the calculated line is narrower. The reason may
be the conditions to measure Fig. 4(c) are not exactly the same
as the ones to measure Fig. 4(a). When measuring the temporal
coherence function in Fig. 4(a), we manually rotate RG1 to a
certain position to ensure that the single-photon counting rates
of both detectors are at 5000 c/s level. The size of the light
spot on RG2 did not vary during the measurement. However,
RG1 is rotating during the measurement of coherence function
in Fig. 4(c), in which the size of the light spot on RG2 varies
during the measurement. The difference between these two
measurements may cause the deviation between the blue line
and the measured results in Fig. 4(c). However, two-photon
superbunching effect is observed in Fig. 4(c) from either the
red line or the blue line, which means that the principle of
superbunching pseudothermal light source in Fig. 1 works.

IV. DISCUSSIONS

A. Why two-photon superbunching can be observed
in our scheme

In the last two sections, we have employed two-photon in-
terference theory to predict that two-photon superbunching can
be observed in the scheme shown in Fig. 1 and experimentally
confirmed it. The key to observed superbunching in our scheme
is that all the different alternatives to trigger a two-photon
coincidence count are in principle indistinguishable when
there is more than one RG. If these different alternatives to
trigger a two-photon coincidence count are distinguishable,
the second-order coherence function is [48]

G
(2)
N (r1,t1; r2,t2) =

〈
2N∑
j=1

|Aj |2
〉
, (11)
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where the probabilities, instead of probability amplitudes,
are summed. There are no cross terms in Eq. (11). The
ratio between the number of total terms and the number
of autocorrelation terms is 1, which means g

(2)
N (0) equals

1. No two-photon superbunching can be observed if all the
alternatives are distinguishable.

In the scheme shown in Fig. 1, the necessary and sufficient
condition for these different alternatives indistinguishable
is that the photons are indistinguishable [53]. Photons are
indistinguishable if they are within the same coherence vol-
ume [5,38]. Coherence volume equals the product of transverse
coherence area and longitudinal coherence length. If a pinhole
with diameter less than the transverse coherence length of light
is employed to filter the light, the photons passing through the
pinhole are within the same coherence area. All the photons
within the coherence time are indistinguishable in this case.
This is what we have done in the scheme in Fig. 1 and in the
experiment in Fig. 3. A pinhole between RGj and RGj+1 is
employed to filter the photons within one coherence area of
pseudothermal light generated by RGj (j = 1,2, . . . ,N ). All
the different alternatives are indistinguishable if a pinhole is
employed to filter the photons within the same coherence area
after every RG.

In the early work by Hong et al. [36], two-photon
superbunching is also observed by adding more alternatives
via a modified Michelson interferometer. They experimentally
observed g(2)(0) equals 2.4 ± 0.1 and theoretically proved that
g(2)(0) will increase to 2 × 1.5N if N modified Michelson
interferometers were inserted into their scheme. However, it
is very difficult to insert more than one modified Michelson
interferometer into their scheme since special requirements
should be satisfied for the two mirrors in the Michelson
interferometer [36]. More two-photon paths are added through
inserting more modified Michelson interferometers into their
scheme [36]. In our scheme, more two-photon paths are added
through adding more rotating ground glasses and pinholes.
We have observed g(2)(0) = 3.66 ± 0.02 by employing two
RGs and one pinhole. Furthermore, the value of g(2)(0)
can be increased to 2N if N RGs were employed in our
scheme. Comparing to the scheme by Hong et al. [36], our
superbunching pseudothermal light source is much simpler
and the value of g(2)(0) increases faster when more alternatives
were added in the scheme. Another difference between these
two schemes is that two-photon superbunching is observed in
spatial domain in [36] and temporal domain in our research.

B. Revised scheme and classical interpretation

The superbunching pseudothermal light source in Fig. 1 can
also be understood in classical theory [12–14]. The intensity of
light after one RG obeys negative exponential distribution [54],

P (I ) = 1

〈I 〉exp

(
− I

〈I 〉
)

, (12)

where 〈I 〉 is the average intensity of the scattered light. If a
pinhole is employed to filter the light within one coherence
area, the intensity of light after the pinhole will obey Eq. (12)
when the ground glass is rotating. Even though the intensity of
the filtered light is not constant, it is coherent since it is within
one coherence area [38]. This light beam can be incident to

FIG. 5. Revised superbunching pseudothermal light scheme. The
intensity modulator (IM) before rotating ground glass (RG) is used
to modulate the intensity of the incident light without randomizing
the phase.

another RG to generate pseudothermal light. Based on the
results in Appendix B, the second-order moments of the light
intensity after n (n = 2, 3, 4, and 5) RGs is

〈I 2〉 = 〈I 〉22n. (13)

The normalized second-order coherence function is [5]

g(2)
n (0) ≡ 〈I 2〉

〈I 〉2
= 2n. (14)

We did not prove this equation for any value of n. However, it
is confirmed that this equation is true for n equals 2, 3, 4, and
5. The result in Eq. (14) is consistent with the one in Eq. (4).

Most energy of the incident light in the scheme shown in
Fig. 1 is wasted due to scattering. From the classical point
of view, all the RGs before the last one are employed to
introduce certain intensity distribution. An intensity modulator
(IM) can be employed to modulate the light intensity to obey
the same distribution as the one of multiple RGs. Two-photon
superbunching can also be observed in the scheme shown in
Fig. 5 if suitable intensity modulation is applied by IM.

There are no multiple alternatives before RG to trigger
a two-photon coincidence count in the scheme shown in
Fig. 5. How to understand the superbunching effect can also
be observed in the scheme shown in Fig. 5 as the one in Fig. 1.
For simplicity, let us take two RGs, for example, to explain
the physics of these two schemes. In the scheme shown in
Fig. 1, the incident light before RG2 is filtered by a pinhole
from the pseudothermal light generated by RG1. The intensity
before RG2 obeys negative exponential distribution [54]. This
phenomenon can be understood by two-photon interference
since there are different and indistinguishable alternatives to
trigger a two-photon coincidence count. However, from a
classical point of view, the filtered light before RG2 in Fig. 1
can be mimicked by a light beam with the same negative
exponential distribution as the one scattered by RG1. There
is no difference for RG2 whether the incident light is filtered
by a pinhole in pseudothermal light or directly modulated by
an IM as long as the intensities of light beams obey the same
distribution and the light is coherent. The discussions can be
generalized to the N RGs case.
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V. CONCLUSIONS

In summary, we have proposed a superbunching pseu-
dothermal light source based on simple laboratory instruments
such as laser, lenses, rotating ground glasses, and pinholes, etc.
Two-photon interference theory is employed to interpret the
two-photon superbunching effect and it is found that the key to
observe superbunching in our scheme is that all the different
alternatives to trigger a two-photon coincidence count are in
principle indistinguishable. g(2)(0) = 3.66 ± 0.02 is observed
with two RGs in the superbunching scheme and it is predicted
that g(2)(0) can reach 2N if N RGs were employed. Based on
the conclusions in classical theory, we suggested a different
but equivalent superbunching pseudothermal light scheme by
replacing all the RGs before the last one with an intensity
modulator. The revised scheme can be employed to observe
superbunching as long as the intensity of the modulated light
obeys certain distribution. Light intensity obeying negative
exponential distribution and related distributions is discussed
in this paper. It is interesting to study whether superbunching
can be observed or not when the intensity obeys other types of
distributions.

The observed two-photon superbunching is in the temporal
domain, which is helpful to improve the visibility of temporal
ghost imaging with classical light [55]. Whether the spa-
tial superbunching can be realized by analogy of the temporal
superbunching is an interesting topic, too. The discussions of
superbunching, in both the quantum and classical theories, are
helpful to understand the physics of two-photon superbunch-
ing. We believe that the simple superbunching pseudothermal
light source will be an important tool to study thermal light
ghost imaging, the second- and higher-order interference of
thermal light, and other possible applications of thermal light.
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APPENDIX A: SECOND-ORDER TEMPORAL
COHERENCE FUNCTION OF TWO RGs

There are four different alternatives for two photons to
trigger a two-photon coincidence count when two RGs are
in the scheme shown in Fig. 1. The first one is a1-a2-D1

and b1-b2-D2, which means the photon at a1 goes to a2 and
then is detected by D1 and the photon at b1 goes to b2

and then is detected by D2. The other three alternatives are
a1-a2-D2 and b1-b2-D1, a1-b2-D2 and b1-a2-D1, and a1-b2-D1

and b1-a2-D2, respectively. If these four different alternatives
are indistinguishable, the second-order coherence function of
two RGs in the scheme shown in Fig. 1 is

G
(2)
2 (r1,t1; r2,t2)

= 〈|Aa1a2D1Ab1b2D2 + Aa1a2D2Ab1b2D1

+Aa1b2D2Ab1a2D1 + Aa1b2D1Ab1a2D2|2〉. (A1)

With the same method as the one for one RG, we
only consider the temporal part. There will be 16 terms
after modulus square is evaluated in Eq. (A1). The four
autocorrelation terms only contribute to the background. There
are 12 cross-correlation terms left, which can be categorized
into three groups. We can have the result of one group by
calculating one term from the same group.

The first term that needs to be calculated is
Aa1a2D1Ab1b2D2A

∗
a1a2D2A

∗
b1b2D1, where A∗

a1a2D2 is the complex
conjugate of Aa1a2D2. The probability amplitude of two
successive and independent events equals the product of these
two different probability amplitudes [48]. Aa1a2D1 can be
written as Aa1a2Aa2D1. Other terms can be simplified in the
same way. Substituting this relation and Eq. (6) into the term
above, we have

Aa1a2D1Ab1b2D2A
∗
a1a2D2A

∗
b1b2D1

= e−iωa1(ta2−ta1)e−iωa2(t1−ta2)e−iωb1(tb2−tb1)e−iωb2(t2−tb2)

× eiωa1(ta2−ta1)eiωa2(t2−ta2)eiωb1(tb2−tb1)eiωb2(t1−tb2)

= e−iωa2(t1−t2)eiωb2(t1−t2). (A2)

The last term on the right-hand side of Eq. (A2) is similar to the
last term of Eq. (8). If the frequency bandwidth of thermal light
scattered by RG2 is �ω2, Aa1a2D1Ab1b2D2A

∗
a1a2D2A

∗
b1b2D1 can

be calculated as

Aa1a2D1Ab1b2D2A
∗
a1a2D2A

∗
b1b2D1

=
∫ ∫ ω0+ �ω2

2

ω0− �ω2
2

e−iωa2(t1−t2)eiωb2(t1−t2)dωa2dωb2

= (�ω2)2sinc2 �ω2(t1 − t2)

2
. (A3)

ω0 is the central frequency of light and sinc(x) equals sin(x)/x.
The other three terms, A∗

a1a2D1A
∗
b1b2D2Aa1a2D2Ab1b2D1,

Aa1b2D1Ab1a2D2A
∗
a1b2D2A

∗
b1a2D1, and

A∗
a1b2D1A

∗
b1a2D2Aa1b2D2Ab1a2D1, in the same group have

the same result as the one of Eq. (A3).
The second term that needs to be calculated is

Aa1a2D1Ab1b2D2A
∗
a1b2D2A

∗
b1a2D1. With the same method above,

we have

Aa1a2D1Ab1b2D2A
∗
a1b2D2A

∗
b1a2D1

= e−iωa1(ta2−ta1)e−iωa2(t1−ta2)e−iωb1(tb2−tb1)e−iωb2(t2−tb2)

× eiωa1(tb2−ta1)eiωb2(t2−tb2)eiωb1(ta2−tb1)eiωa2(t1−ta2)

= e−iωa1(ta2−tb2)eiωb1(ta2−tb2). (A4)

Assuming the frequency bandwidth of thermal light scattered
by RG1 is �ω1, Aa1a2D1Ab1b2D2A

∗
a1b2D2A

∗
b1a2D1 can be calcu-

lated as

Aa1a2D1Ab1b2D2A
∗
a1b2D2A

∗
b1a2D1

=
∫ ∫ ω0+ �ω1

2

ω0− �ω1
2

e−iωa1(ta2−tb2)eiωb1(ta2−tb2)dωa1dωb1

= (�ω1)2sinc2 �ω1(ta2 − tb2)

2
, (A5)

where the central frequency is assumed to be the same during
scattering in different RGs. ta2 is related to t1 by the relation
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ta2 = t1 − ra2D1/c, where ra2D1 is the distance between ra2

and rD1. c is the velocity of light in the vacuum. In a similar
way, tb2 is related to t2 by tb2 = t2 − rb2D2/c. Point light source
and symmetrical positions for D1 and D2 are assumed in the
calculations of temporal correlation. ra2D1 equals rb2D2. ta2 −
tb2 can be replaced by t1 − t2 in Eq. (A5),

Aa1a2D1Ab1b2D2A
∗
a1b2D2A

∗
b1a2D1

= (�ω1)2sinc2 �ω1(t1 − t2)

2
. (A6)

The terms, A∗
a1a2D1A

∗
b1b2D2Aa1b2D2Ab1a2D1, Aa1a2D2Ab1b2D1

A∗
a1b2D1A

∗
b1a2D2, and A∗

a1a2D2A
∗
b1b2D1Aa1b2D1Ab1a2D2, in the

same group have the same result as the one in Eq. (A6).
The third term that needs to be calculated is

Aa1a2D1Ab1b2D2A
∗
a1b2D1A

∗
b1a2D2, which is

Aa1a2D1Ab1b2D2A
∗
a1b2D1A

∗
b1a2D2

= e−iωa1(ta2−ta1)e−iωa2(t1−ta2)e−iωb1(tb2−tb1)e−iωb2(t2−tb2)

× eiωa1(tb2−ta1)eiωb2(t1−tb2)eiωb1(ta2−tb1)eiωa2(t2−ta2)

= e−iωa1(ta2−tb2)eiωb1(ta2−tb2)e−iωa2(t1−t2)eiωb2(t1−t2). (A7)

Integrating over the frequency bandwidths of thermal light
scattered by RG1 and RG2, we have

Aa1a2D1Ab1b2D2A
∗
a1b2D1A

∗
b1a2D2

= (�ω1�ω2)2sinc2 �ω1(t1 − t2)

2
sinc2 �ω2(t1 − t2)

2
.

(A8)

The other three terms, A∗
a1a2D1A

∗
b1b2D2Aa1b2D1Ab1a2D2,

Aa1a2D2Ab1b2D1A
∗
a1b2D2A

∗
b1a2D1, and

A∗
a1a2D2A

∗
b1b2D1Aa1b2D2Ab1a2D1, in the same group have

the same result as the one in Eq. (A8).
In the calculations of Eqs. (A3) and (A5), we have ignored

the integral of the constant, 1, for RG1 and RG2, respectively.
If we take this factor into account and also integrate the
autocorrelation terms, the second-order temporal coherence
function with two RGs in the scheme in Fig. 1 is

G
(2)
2 (t1 − t2) ∝ 4(�ω1�ω2)2

[
1 + sinc2 �ω1(t1 − t2)

2

+ sinc2 �ω2(t1 − t2)

2
〉 + sinc2 �ω1(t1 − t2)

2

× sinc2 �ω2(t1 − t2)

2

]
. (A9)

All the 16 terms in Eq. (A1) are calculated. Rearranging the
terms on the right-hand side of Eq. (A9), the normalized
second-order temporal coherence function can be expressed
as

g
(2)
2 (t1 − t2) =

[
1 + sinc2 �ω1(t1 − t2)

2

]

×
[

1 + sinc2 �ω2(t1 − t2)

2

]
, (A10)

in which Eq. (10) is obtained.

APPENDIX B: CALCULATIONS OF g2(0)
IN CLASSICAL THEORY

We will follow the method given by Goodman to show how
the second-order coherence function in the scheme shown
in Fig. 1 can be calculated in classical theory [54]. The
probability density function of pseudothermal light generated
by scattering single-mode continuous-wave laser light on a
rotating ground glass is negative exponential distribution [38].
If the intensity of the incident light varies, the conditional
density function of the scattered light should be

PI |x(I |x) = 1

x
exp

(
− I

x

)
, (B1)

where x is proportional to the intensity of the incident light. If
the incident light is filtered out as the one shown in Fig. 1, the
intensity, x, obeys negative exponential distribution, too. The
density distribution of the light intensity after RG2 is

PI (I ) =
∫ ∞

0

1

x
exp

(
− I

x

)
1

〈I 〉exp

(
− x

〈I 〉
)

dx, (B2)

where 〈I 〉 is the average intensity of the scattered light after
RG2. Equation (B2) can be simplified as [54]

PI (I ) = 2

〈I 〉K0

(
2

√
I

〈I 〉

)
, (B3)

where K0(x) is the modified Bessel function of the second
kind, order zero. The qth moment of the intensity is

〈I q〉 =
∫ ∞

0
I qPI (I )dI = 〈I 〉q(q!)2. (B4)

In classical theory, the normalized second-order coherence
function is defined as [5]

g(2)(r1,t1; r2,t2) = 〈I (r1,t1)I (r2,t2)〉
〈I (r1,t1)〉〈I (r2,t2)〉 , (B5)

where I (rj ,tj ) is the intensity of light at space-time coordinate
(rj ,tj ) (j = 1 and 2). When these two detectors are at
symmetrical positions, the normalized second-order coherence
function can be simplified as

g(2)(0) = 〈I 2〉
〈I 〉2

. (B6)

Substituting Eq. (B4) into Eq. (B6), the normalized second-
order coherence function with two RGs in Fig. 1 equals 4,
which is consistent with the result of Eq. (4) in quantum
theory.

With the same method, we can calculate the normalized
second-order coherence function for more than two RGs. If
there are three RGs, the input intensity of RG3 is given by
Eq. (B3); the density function of the light intensity after RG3

is given by

PI (I ) =
∫ ∞

0

2

x
K0

(
2

√
I

x

)
1

〈I 〉exp

(
− x

〈I 〉
)

dx. (B7)

There is no analytical expression for Eq. (B7). However,
only the moment is needed to calculate the normalized
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second-order coherence function. With the help of Eqs. (B4)
and (B7), the qth moment of the light intensity after three
RGs is

〈I q〉 = 〈I 〉q(q!)3. (B8)

The corresponding normalized second-order coherence func-
tion, g(2)(0), equals 8. With the same method above, the qth
moments of intensity after four and five RGs are 〈I 〉q(q!)4

and 〈I 〉q(q!)5, respectively, which correspond to the normal-
ized second-order coherence functions equal to 16 and 32,
respectively. These results are consistent with the one in
Eq. (4).

Employing classical theory to calculate the normalized
second-order coherence function for more than five RGs is
straightforward. However, the process may be cumbersome.
The results above are sufficient to prove that if we can employ
an intensity modulator (IM) to modulate the intensity of light
to obey negative exponential distribution before RG, g(2)(0)
should equal 4. For the condition of more than two RGs,
numerical method can be employed to calculate the intensity
distribution and then apply the distribution on the IM. The
experimental realization of superbunching pseudothermal light
with g(2)(0) = 2N should be possible for N larger than 2 in the
scheme shown in Fig. 5.
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