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We analyze an elliptic optical vortex embedded into a Gaussian beam. Explicit closed expressions for the
complex amplitude and normalized orbital angular momentum (OAM) of such a beam are derived. The resulting
elliptic Gaussian vortex (EGV) is shown to have a fractional OAM whose maximal value equal to the topological
charge n of a conventional Gauss vortex is attained for a zero-ellipticity vortex. As the beam propagates, the
major axis of the intensity ellipse in the beam cross section rotates, making the angle of 90° between the initial
plane and the focal plane of a spherical lens. On the major axis of the intensity ellipse, there are n intensity
nulls of the EGV, with the distance between them varying with propagation distance and varying ellipticity. The
distance between the intensity nulls is found to be maximal in the focal plane for a given ellipticity. For zero
ellipticity, all intensity nulls get merged into a single n-times degenerate on-axis intensity null. The experimental
results are in good agreement with theory.
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I. INTRODUCTION

Optical vortices that are devoid of radial symmetry and
carry a fractional orbital angular momentum (OAM) have been
studied intensively in the last several years. This interest is due
to the fact that optical vortices with fractional OAM have found
use in quantum computing for generating the entanglement of
the orbital angular momentum states of photon pairs [1–3]. For
example, in Ref. [1] obtaining the fractional OAM was done
by shifting the “fork” hologram with the topological charge
n = 1 from the center of the illuminating Gaussian beam. The
fact that such shift leads to the fractional OAM of an optical
vortex is described in Ref. [4]. In this way, ultrahigh security
of quantum communication lines can be achieved.

An optical vortex with fractional OAM can be generated
using a variety of techniques. For instance, this can be done
by an off-axis shift of a Gaussian beam from the center of
a spiral phase plate (SPP) [4]. Another possibility involves
generating asymmetric optical vortices with a crescent-shaped
intensity pattern [5,6]. However, in this case the microparticle
trapped in the beam moves on an open trajectory. It would be of
interest to study a situation when the OAM is fractional and the
intensity curve in the transverse plane of the vortex is closed.
The simplest approach is based on generating an elliptic optical
vortex. Transformation of an optical vortex via introducing
varying ellipticity was discussed in Ref. [7], which was a
follow-up of earlier studies of elliptic optical vortices [8,9].
However, the OAM of elliptic vortices was not considered in
Refs. [7–9]. Topics dealt with in the present article are most
close to those discussed in Ref. [10], which studied an elliptic
Hermite-Gaussian vortex, calculating the corresponding OAM
and finding it to be fractional. For such a beam to be
practically generated, an elliptic Gaussian beam needs to be
incident on an amplitude-phase optical element. However,
combining the required amplitude and phase in a single
element is a challenging task. There are also works where more
complicated elliptical Gaussian vortices with fractional OAM
were studied, including general-form elliptic beams (EB) [11],
Ince-Gaussian (IG) beams [12], helical Ince-Gaussian (HIG)
beams [13], Ince-Gaussian beams in a parabolic gradient-index
medium [14], Hermite-Laguerre-Gaussian (HLG) beams [15],

Mathieu [16] beams, and Lommel [17] modes. It was shown
experimentally in Ref. [18] that HIG beams allow generation
of OAM-entangled pairs of photons, while in Ref. [19] it
was shown theoretically that HIG beams have a fractional
OAM, which changes nonmonotonically with increase of the
ellipticity parameter. We note that it was shown numerically
in Ref. [16] that Mathieu beams have a fractional OAM which
changes with the ellipticity parameter the same way as the
OAM of HIG beams, i.e., it decreases at first and then increases.
We note also that it was shown in Ref. [20] that cylindrical lens
allows generating an elliptical noncanonical vortex, which can
change the sign of its topological charge on propagation in
space. It was demonstrated experimentally in Ref. [21] that by
using spiral phase plates with a fractional topological charge
it is possible to generate entangled pairs of photons with
the fractional OAM. Note that all above-mentioned elliptical
beams have the fractional OAM, but closed-form expressions
for the fractional OAM are only in Refs. [4,10,15,17]. In
Refs. [16,19], there are expressions for the OAM in the form
of an infinite series.

In this work, we study simple elliptical Gaussian optical
vortices (EGVs). We derive a relationship to describe the OAM
of a Gaussian beam that is embedded with an elliptic optical
vortex with n-times degenerate on-axis intensity null (at the
Gaussian beam’s center). As distinct from Ref. [10], in which
the OAM increased with increasing ellipticity of the Gaussian
beam, we discuss a situation where the OAM decreases with
increasing ellipticity of the embedded optical vortex. Also,
note that the optical vortex discussed in Ref. [10] was found
to preserve its shape upon propagation up to a scale, with
the transverse intensity pattern defined by an ellipse with n

isolated intensity nulls. In this work, while featuring a rotating
elliptic transverse intensity pattern, the major-axis intensity
nulls of the vortex beam are only found in the focal plane of a
spherical lens.

We now briefly compare the above-mentioned various types
of elliptical vortex beams. IG [12] and HIG beams [13] differ
from the HLG beams [15], since the HLG beams tend in the
limiting cases to the conventional Hermite-Gaussian (HG) or
Laguerre-Gaussian (LG) beams, while the IG beams in the
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limiting cases tend only to the HG beams and HIG beams tend
only to the LG beams. In addition, with increasing ellipticity
OAM of the HIG beams changes nonmonotonically [19], while
OAM of the HLG beams monotonically decreases toward zero
[15]. The EGV beams considered here differ both from HIG
beams and from HLG beams, since first they have different
dependence of the OAM on the ellipticity parameter, and
second, the EGV beams are not modes and change their shape
on propagation in space. In the center of the initial plane,
EGV has an n-fold degenerate intensity null, while in any
other transverse plane there are n isolated intensity nulls,
lying on a straight line, which rotates (as the whole beam)
on propagation. Since the elliptic beams [11] are space modes
and at some parameters they reduce to the IG beams [12] and to
the Mathieu beams [16], they also differ from the EGV beams.
In addition, yet another difference of these beams is that EB,
IG, and Mathieu beams are decomposed into an infinite series
of the LG modes [22]; the HLG beam is a finite sum of the
HG modes [15], while the EGV is a finite sum of the LG
beams with different n. We also note that solutions of the
paraxial equation as a product of the Ince polynomials and the
Gaussian function, obtained by separation of variables in the
elliptical coordinates, have been known in mathematics for a
long time [23].

II. COMPUTATION OF THE ORBITAL
ANGULAR MOMENTUM

Assume an isolated n-times degenerate elliptic intensity
null at the origin, described as

T (x,y) = (αx + iy)n, (1)

where n is the integer topological charge of the optical vortex,
α is a dimensionless parameter that defines the ellipticity of
the intensity null: if α < 1, the major axis is on the x axis,
if α > 1 – on the y axis, if α < 0, the vortex phase rotates
clockwise, if α > 0 – anticlockwise.

Let the intensity null (1) be embedded into the waist of a
Gaussian beam, so that the complex amplitude of the light field
in the initial plane takes the form

E(x,y,z = 0) = (αx + iy)n exp

(
−x2 + y2

2w2

)
, (2)

where w is the waist radius of the Gaussian beam. We shall seek
the OAM and power of the paraxial field using well-known
formulas [5,7]:

Jz = Im

{∫ ∞

−∞

∫ ∞

−∞
Ē(x,y)

(
x

∂

∂y
− y

∂

∂x

)
E(x,y)dxdy

}
,

(3)

W =
∫ ∞

−∞

∫ ∞

−∞
Ē(x,y)E(x,y)dxdy, (4)

where Im is the imaginary part of a complex number and Ē is
a conjugate complex amplitude. For the field in (2), Eqs. (3)

and (4) are rearranged to

Jz = αn

∫ ∞

−∞

∫ ∞

−∞
exp

(
−x2 + y2

w2

)

×(α2x2 + y2)n−1(x2 + y2)dxdy, (5)

W =
∫ ∞

−∞

∫ ∞

−∞
exp

(
−x2 + y2

w2

)
(α2x2 + y2)

n
dxdy. (6)

From (5) and (6) it follows that if the intensity null has zero
ellipticity (α = 1), we obtain a well-known normalized OAM
equal to the topological charge of the vortex [24]:

Jz

W
= n. (7)

If α = −1, Eq. (7) has the opposite sign: Jz/W = −n. The
integrals in (5) and (6) can be calculated based on the integral

Im =
∫ ∞

−∞

∫ ∞

−∞
exp

(
−x2 + y2

w2

)
(α2x2 + y2)

m
dxdy, (8)

because the OAM in (5) and power in (6) are connected with
(8) via simple relations:

Jz = −αn
∂

∂(w−2)
Im=n−1, W = Im=n. (9)

Integral (8) is calculated using an expansion in terms of
Newton binomials

(αx + iy)n =
n∑

l=0

n!

l!(n − l)!
(αx)l(iy)n−l , (10)

and a simple integral

∫ ∞

−∞
x2l exp(−px2)dx = √

π2−l(2l − 1)!!p−(2l+1)/2, (11)

with the factorial (2l−1)!! taken over odd integer numbers.
Applying (10) and (11) to (8) and accounting for (9), Eqs. (5)
and (6) are rearranged to

Jz = παn2w2n+2

2n−1
An−1 , W = πw2n+2

2n
An, (12)

where

An =
n∑

l=0

n!(2l − 1)!!(2n − 2l − 1)!!

l!(n − l)!
α2l . (13)

From (12), the normalized OAM of the field in (2) takes the
form

Jz

W
= 2αn2An−1

An

. (14)

Considering that it is difficult to draw specific conclusions
from (14), below we give simplified expressions for the
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normalized OAM with the topological charges n = 1,2,3:

Jz

W
|n=1 = 2α

1 + α2
, (15)

Jz

W
|n=2 = 8α(1 + α2)

3 + 2α2 + 3α4
, (16)

Jz

W
|n=3 = 6α(3 + 2α2 + 3α4)

5 + 3α2 + 3α4 + 5α6
. (17)

From (15)–(17) the OAM of optical vortex (2) is seen to
be fractional and smaller than the topological charge n both
at α < 1 and at α > 1. Hence, yet omitting a proof we can
suggest that at α > 0

Jz

W
= 2αn2An−1

An

� n. (18)

It can be shown also that the normalized OAM can be
expressed more compactly by using the Legendre polynomials:

Jz

W
= n

Pn−1(s)

Pn(s)
, (19)

where s = (1 + α2)/(2α). Since Pn(1) = 1 for any n, then for
circular Gaussian vortex (α = 1) we obtain the well-known
property that the normalized OAM equals the topological
charge. Using the properties of the Legendre polynomials [25]
it can be shown that Pn(ξ ) > Pn−1(ξ ) at any ξ > 1. Since the
value of s is always not less than unity, this inequality proves
the inequality (18). For comparison, we note that the OAM
(19) as a ratio of the Legendre polynomials is not a unique
case. For example, OAM in Ref. [4] can be expressed as a
ratio of the Laguerre polynomials, although the optical vortex
in Ref. [4] has a crescent shape instead of being elliptical.
From Eq. (19), it follows that with increasing ellipticity
parameter the OAM decreases and tends to zero. We note
that the OAM of HLG beams [15] and of asymmetric vortex
Gaussian beams [4] also decreases (although in a different
way) toward zero with increasing ellipticity. With increasing
ellipticity, the OAM of the elliptic HIG beams [19] and of
the Mathieu beams [16] initially decreases and then grows
(or only decreases). Decrease of the OAM [16,19] is related
to increasing distance between the intensity nulls with unit
topological charge, while increase of the OAM is related to
new optical vortices appearing in the beam. We note, however,
that in contrast to the Lommel modes [17], whose OAM can
grow to infinity, the OAM of the HIG beams can grow to
some limiting value. Indeed, the HIG (p,m) beams [13,19] in
the limit reduce to a linear combination of two HG beams:
HG (p − m,m) ± i HG (p − m − 1,m + 1). It was shown in
Ref. [26] that the OAM of such sum of two HG modes equals
the maximal index, for example p−m. Therefore, the OAM
of the HIG beam starts from the integer value m and with
increasing ellipticity asymptotically decreases if p − m < m,
or asymptotically increases if p − m > m.

Note that the equality in (18) is attained at α = 1. Physics
behind the decrease of OAM resulting from the replacement of
a conventional rotationally symmetric vortex with the elliptic
vortex (1) may be as follows. The OAM density is higher in
areas with larger curvature of the intensity ellipse in the cross
section of the EGV beam. However, in areas where the optical

vortex is elongated the amplitude of the Gaussian beam is lower
so that the “elongated” optical vortex fragments contribute less
to the total OAM (18). From (15)–(17), we can infer that at
definite vales of α the OAM becomes equal to an integer m <

n. Therefore, varying the ellipticity of the isolated intensity
null (1) α from 0 to 1, it is possible to obtain an optical vortex
with any normalized OAM in the range from 0 to n.

III. COMPUTING THE FIELD COMPLEX AMPLITUDE

At an arbitrary distance z, the field’s complex amplitude in
(2) can be calculated using a Fresnel transform. Field (2) can
be complemented by the transmittance of a thin spherical lens
in the paraxial approximation:

F (x,y) = exp

[
− ik

2f
(x2 + y2)

]
, (20)

where f is the focal length of the thin lens and k is the
wave number. Then, after passing the spherical lens (20), the
complex amplitude of the elliptic Gaussian vortex (2) takes the
integral form:

E(ξ,η,z) =
(−ik

2πz

)∫ ∞

−∞

∫ ∞

−∞
E(x,y,z = 0)F (x,y)

× exp

[
ik

2z

{
(x − ξ )2 + (y − η)2}]dxdy. (21)

Integral (21) can be calculated as the sum in (10) and two
reference relationships [25]:∫ ∞

−∞
xm exp(−Ax2 − Bx)dx

= √
π

(
i

2

)m

A−(m+1)/2 exp

(
B2

4A

)
Hm

(
iB

2
√

A

)
, (22)

m∑
l=0

m!t l

l!(m − l)!
Hl(X)Hm−l(Y )

= (1 + t2)m/2Hm

(
tX + Y√

1 + t2

)
, (23)

where Hm(x) is a Hermite polynomial. Then, Eq. (21) reduces
to (α > 1)

E(ξ,η,z) =
(−1

2

)n(−ik

2z

)( √
2w

1 + iz0/z

)n+2

× exp

[
−ξ 2 + η2

P 2
+ ik

2S
(ξ 2 + η2)

]

×(1 − α2)n/2Hn(Q(R + iI )), (24)

where

P =
√

2wz

z0

√
1 + z2

0

z2
1

,

S = z

{
1 +

[
z

z1

(
1 + z2

1

z2
0

)]−1
}−1

,

z1 = zf

z − f
, z0 = kw2,

053805-3



V. V. KOTLYAR, A. A. KOVALEV, AND A. P. PORFIREV PHYSICAL REVIEW A 95, 053805 (2017)

Q = kw√
2z

(α2 − 1)−1/2

(
1 + z2

0

z2
1

)−1/4

,

I = η cos ψ − αξ sin ψ, R = −αξ cos ψ − η sin ψ,

ψ = 1

2
arctan

(
z0

z1

)
. (25)

From (24) and (25) it follows that the argument of the
Hermite polynomial takes real values only on a straight line in
the transverse plane, satisfying the equation

η = αξ tan (ψ). (26)

From (26) it follows that at z = 0, z1 = 0, and ψ = π/4,
i.e., the straight line (26) is inclined (tangent of inclination
angle equals α). At z = f , z1 → ∞, and ψ = 0, which means
that the line is horizontal. At other distances, 0 < z < f , the
line (26) is gradually rotated from the inclined to horizontal
position. It is on the line of real-valued arguments that the roots
of the Hermite polynomial [intensity nulls of field (24)] are
found. Having equated the real part of the Hermite polynomial
in (24) to the root value γn, where Hn(γn) = 0, and taking
account of (26), we derive an equation for the coordinates of
the intensity nulls on the horizontal ξ axis [the intensity null
coordinates on the vertical axis follow from (26)]:

ξn = −
√

2γnz
√

α2 − 1
(

1 + z2
0

z2
1

)1/4

αkw
cos (ψ). (27)

Equation (27) suggests that at α = 1, function (24) has a
single intensity null, ξn = 0. At small z and α > 1, the intensity
nulls (27) are located close to each other. The maximal spacing
between the nulls (27) is in the lens focus at z = f :

ξn = −
√

2γnf
√

α2 − 1

αkw
. (28)

From (28) it can be inferred that the spacing between the
nulls of field (24) located on a horizontal line in the focal
plane of spherical lens (20) depends on the optical vortex’s
ellipticity α. At α = 1, the spacing between the intensity nulls
equals zero, whereas at α → ∞ it is maximal, becoming equal
to

ξn = −
√

2γnf

kw
. (29)

We note that increase of the distance between the intensity
nulls with increasing ellipticity α and at the fixed Gaussian
beam waist radius leads to the decrease of the OAM [26].

It is worth noting that by choosing the inverse value β =
1/α as the ellipticity of the optical vortex (1), Eq. (28) is
rearranged to

ξn = −
√

2γnf
√

1 − β2

kw
, (30)

from which it follows that at β = 1 the spacing between the
intensity nulls equals zero (i.e., there is just one intensity null
at the origin in the lens focal plane), whereas at β = 0 the
spacing between the nulls is maximal and defined by (29).

LaserL1

L2
L3

D1

L4LL
D2

PH

SLM CCD

FIG. 1. An experimental setup: L is a solid-state laser (λ =
532 nm), PH is a 40-μm pinhole, L1, L2, L3, and L4 are lenses with
focal lengths f1 = 250 mm, f2 = 350 mm, f3 = 150 mm, and f4 =
500 mm, D1 and D2 are diaphragms, SLM is a spatial light modulator
PLUTO VIS, and CCD is a video-camera LOMO TC-1000.

IV. EXPERIMENTS ON GENERATING AN ELLIPTIC
GAUSSIAN BEAM

In the experiment, a linearly polarized Gaussian beam of
waist diameter 2w = 2.7 mm was near-orthogonally incident
on an elliptic spiral phase plate with the transmittance

V (r,ϕ) = exp (inϕ), (31)

where ϕ = arctan[(cyy)/(cxx)]. The ratio cy/cx = β = 1/α

was taken to equal 0.1; 0.2; 0.4; 0.6; 0.8; and 1.0. Note that
although function (31) is different from function (1), both
optical vortices have the same topological charge, given the
same n and α. This makes both vortices behave in a similar way.

An experimental setup is shown in Fig. 1. A solid-state
laser L (λ = 532 nm) was used as a light source, generating a
fundamental Gaussian beam. The laser light was expanded and
collimated by sequentially passing through a 40-μm pinhole
PH and lens L1 (f1 = 250 mm), before hitting the display
of a modulator SLM (PLUTO VIS, 1920 × 1080 resolution,
and 8-μm pixel size). The diaphragm D1 was utilized to
single out the central bright ring from surrounding bright
and dark rings resulting from diffraction by the pinhole.
Then, using lenses L2 (f2 = 350 mm) and L3 (f3 = 150 mm)
and diaphragm D2 the phase-modulated laser beam reflected
at the modulator’s display was spatially filtered. Lens L4

(f4 = 500 mm) was used to focus the laser beam on the
matrix of the charge-coupled-device camera LOMO TC 1000
(3.34 × 3.34-μm pixel size).

Shown in Fig. 2 are phase functions of the spiral phase plates
with different ellipticity β and corresponding experimental
and computed intensity distributions generated in the focus of
lens L4. The spiral phase plate carries a topological charge of
n = 1. A minor deviation of the intensity distribution observed
at β = 1 from a perfect ring is due to the minor deviation of
the incident light from normal.

Figure 3 shows phase functions of the spiral plates with
different ellipticity β and corresponding experimental and
computed intensity distributions they generate in the focus
of lens L4. The SPP carries a topological charge of n = 2. A
minor deviation of the resulting intensity distribution observed
at β = 1 from a perfect ring is due to the minor deviation of
the incident beam from normal.

Note that the relations (15)–(17) are invariant to the
substitution of parameters: α → β. Hence, substituting in (16)
β for α, we get the OAM of the optical vortices shown
in Figs. 3(g)–3(l), as presented in Table I. From Fig. 3,
the spacing between two adjacent intensity nulls is seen to
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100 µm

(b)(a) (c)

(h)(g)

(e)(d) (f)

(i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

FIG. 2. (a)–(f) Phase functions of the optical elements; (g)–
(l) corresponding experimental intensity distributions; and (m)–(r)
computed intensity distributions in the focus of lens L4 when using a
SPP with n = 1 and the ratio β taking values of 0.1 (a), (g), (m); 0.2
(b), (h), (n); 0.4 (c), (i), (o); 0.6 (d), (j), (p); 0.8 (e), (k), (q); and 1.0
(f), (l), (r). The intensity patterns are 900 μm × 900 μm in size.

TABLE I. Normalized OAM derived from (16) and computed
numerically for an elliptic Gaussian vortex with n = 2 and varying
ellipticity β.

Fig. 3 (g) (h) (i) (j) (k) (l)

β 0.1 0.2 0.4 0.6 0.8 1.0
Jz/W (theory) 0.26 0.53 1.11 1.56 1.91 2.00
Jz/W (comput.) 0.27 0.54 1.09 1.59 1.91 2.00

100 µm

(b)(a () c)

(h)(g)

(e)(d) (f)

(i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

FIG. 3. (a)–(f) Phase functions of the elements; (g)–(l) corre-
sponding experimental intensity distributions; and (m)–(r) computed
intensity distributions in the focus of lens L4 for a SPP with the
topological charge n = 2 and with the ratio β taking values of 0.1 (a),
(g), (m); 0.2 (b), (h), (n); 0.4 (c), (i), (o); 0.6 (d), (j), (p); 0.8 (e), (k),
(q); and 1.0 (f), (l), (r). The intensity patterns are 900 μm × 900 μm
in size.

decrease [according to (30)] from Fig. 3(g) to Fig. 3(l), while
the OAM on the contrary increases from Fig. 3(g) to Fig. 3(l)
(see Table I, row 3).

It is interesting that Table I suggests that in the range 0.2–0.4
there is a β value such that the elliptic beam has a unit OAM.
Nonetheless, such an optical vortex has two intensity nulls in
the lens focal plane rather than having a single null, which is
the case with all similar optical vortices in Fig. 3.
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100 µm

(b)(a () c)

(h)(g)

(e)(d) (f)

(i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

FIG. 4. (a)–(f) Phase functions of the elements; (g)–(l) corre-
sponding experimental intensity distributions; and (m)–(r) computed
intensity distributions in the focus of lens L4 when using a SPP with
n = 3 and with the ratio β taking values of 0.1 (a), (g), (m); 0.2 (b),
(h), (n); 0.4 (c), (i), (o); 0.6 (d), (j), (p); 0.8 (e), (k), (q); and 1.0 (f),
(l), (r). The intensity patterns are 900 μm × 900 μm in size.

Figure 4 depicts phase functions of the SPPs with different
ellipticity β and corresponding experimental and computed
intensity distributions generated in the focus of lens L4. The
SPP has n = 3. A minor deviation of the intensity distribution
generated at β = 1 from a perfect ring is due to the minor
deviation of the incident light from normal.

Table II gives values of the normalized OAM derived from
(17) and computed numerically for an elliptic Gaussian beam
with n = 3 and different values of β. Figure 4 shows that

TABLE II. Normalized OAM derived from (17) and computed
numerically for an elliptic Gauss vortex with n = 3 and varying
ellipticity β.

Fig. 3 (g) (h) (i) (j) (k) (l)

β 0.1 0.2 0.4 0.6 0.8 1.0
Jz/W (theory) 0.36 0.72 1.47 2.20 2.97 3.00
Jz/W (comput.) 0.36 0.72 1.46 2.21 2.80 3.00

the spacing between three intensity nulls is decreasing [in
accordance with (30)] from Fig. 4(g) to Fig. 4(l), while OAM
on the contrary is increasing from Fig. 4(g) to Fig. 4(l) (see
Table I, row 3). In Figs. 4(g) and 4(h) a single intensity null
is clearly seen because two other intensity nulls are found
in the Gauss beam’s low-intensity region. The nulls are well
discernible starting from Fig. 4(i). In Fig. 4(l), the three
intensity nulls get merged, forming the intensity null of a
conventional radially symmetric optical vortex.

Figure 5 depicts phase functions of the SPP with varying
ellipticity β and corresponding experimental and computed
intensity distributions generated in the focus of lens L4. The
SPP has n = 4. A minor deviation of the intensity distribution
generated at β = 1 is due to the minor deviation of the incident
light from normal.

Four intensity nulls in the lens focus are clearly discernible
only in Figs. 5(i) and 5(j). In Fig. 5(g), the nulls are not yet seen
because they are located in the Gaussian beam’s low-intensity
region. In Fig. 5(h) just two intensity nulls can be seen, with
the two others found in the low-intensity region. In Figs. 5(k)
and 5(l) the situation is different: being located close to each
other, the nulls are hardly discernible.

Figure 6 depicts intensity distributions of an elliptic Gauss
vortex with the topological charge n = 4 and ellipticity β =
0.6 registered at different distances from the initial plane (prior
to and behind the focal plane of lens L4).

Figure 6 suggests that in compliance with (26), while
remaining in quadrants II and IV, the major axis of the
transverse intensity ellipse of the optical vortex rotates upon
propagation, changing from the initial vertical to the horizontal
position in the lens focal plane [Fig. 6(g)]. Vice versa, after
passing the focus, the major axis of the intensity ellipse
rotates from the horizontal to the vertical position, remaining
in quadrants I and III. The tilt of the straight line in (26)
changes its sign because of changing sign of the variable
z1 = zf/(z − f ) after passing the focus, leading to the change
of sign of the angle ψ = arctan(z0/z1)/2. In accordance with
(27), the spacing between four intensity nulls on the major
axis of the intensity ellipse increases, reaching its maximum
(28) in the lens focal plane [Fig. 6(g)]. Because of this, four
intensity nulls are clearly discernible just in the focal plane in
Fig. 6(g). After passing the focus, as the spacing decreases,
the nulls become hardly discernible.

V. CONCLUSION

Summing up, the following results have been obtained.
Explicit closed relationships for the complex amplitude and
normalized OAM of a conventional Gaussian beam implanted
with an elliptic optical vortex with an n-times degenerate
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FIG. 5. (a)–(f) Phase functions of the elements; (g)–(l) corre-
sponding experimental intensity distributions; and (m–r) computed
intensity distributions in the focus of lens L4 when using a SPP with
n = 4 and with the ratio β taking values of 0.1 (a), (g), (m); 0.2 (b),
(h), (n); 0.4 (c), (i), (o); 0.6 (d), (j), (p); 0.8 (e), (k), (q); and 1.0 (f),
(l), (r). The intensity patterns are 900 μm × 900 μm in size.

intensity null at the Gaussian beam’s center have been deduced.
The EGV has been shown to carry a fractional OAM whose
maximal value is equal to the vortex topological charge n

attained at zero ellipticity of the vortex. The major axis of the
intensity ellipse has been found to rotate, making an angle of
90° while propagating from the initial plane to the focal plane
of a spherical lens. There are n intensity nulls on the major
axis of the intensity ellipse, with the spacing between them
varying both during propagation of the EGV and with varying

1 mm

(b)(a () c)

(h)(g)

(e)(d) (f)

(i)

(j) (k) (l)

FIG. 6. Intensity patterns generated at different distances from
the lens L4 (f4 = 250 mm) when using an elliptic SPP with n = 4
and β = 0.6: (a) 100 mm, (b) 125 mm, (c) 150 mm, (d) 175 mm,
(e) 200 mm, (f) 225 mm, (g) 250 mm (focus), (h) 275 mm, (i) 300 mm,
(j) 325 mm, (k) 350 mm, and (l) 375 mm. The intensity patterns are
1800 μm × 1800 μm in size.

ellipticity. The internull spacing is maximal in the focal plane,
given the same ellipticity. When ellipticity is zero, all nulls
get merged into a single on-axis, n-times degenerate intensity
null. Such a beam has been experimentally generated via illu-
minating a SPP by a conventional Gaussian beam. Although
strictly speaking, the transmittance of such a SPP in (31) is
different from the complex amplitude of an elliptic intensity
null in (1), nonetheless experimental results are in qualitative
agreement with theory. This can be explained by the fact that
functions in (1) and (31) have the same phase distributions.

It is worth noting that if, on the contrary, we assume an ellip-
tic Gaussian beam implanted with a conventional radially sym-
metric n-times degenerate intensity null at the Gaussian beam’s
center, such a beam has an integer OAM equal to the vortex’s
topological charge n whatever the Gaussian beam ellipticity.

The EGV beam considered here differs from the more
complicated elliptical vortex laser modes, which also have
a fractional OAM and which were investigated earlier: EB
[11], IG [12], HIG [13], HLG [15], and Mathieu beams [16].
The main difference is that the EGV beam is not a mode and
changes its shape on propagation. The EGV beam is closest
to the noncanonical vortices [20], but there is no theory in
Ref. [20].
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