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Optical surface breather in graphene
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A theory of an optical breather of self-induced transparency for small area surface plasmon-polariton waves is
constructed. The wave equation for an optical nonlinear electric field consisting of surface transverse magnetic
modes, traveling along a two-dimensional layer of atomic systems (or semiconductor quantum dots), with
a graphene monolayer (or graphene-like two-dimensional material), are shown to reduce to the nonlinear
Schrödinger equation with damping. It is also shown that damped small intensity surface plasmon-polariton
breathers can propagate in such a system and its characteristic parameters depends on the connected media,
graphene conductivity, transition layer and transverse structures of the surface plasmon polariton. Explicit
analytical expressions for the parameters of an optical surface breather are given. The breather and the soliton in
graphene are compared with each other and the differences between their properties are contrasted.
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I. INTRODUCTION

One of the reasons for the strong interest in the interaction
of light with graphene is the very unique optical properties
of graphene [1,2]. Graphene is a single carbon atomic layer
consisting of a two-dimensional (2D) honeycomb lattice. It
is the result of an attempt to experimentally construct 2D
atomic crystals, whose features are significantly different
from the three-dimensional graphene crystals. In recent years
significant progress has also been made in the study of
other two-dimensional systems. In particular, a wide class
of graphene-like 2D materials has been investigated, such
as silicene, germanene, hafnene, and several others (see, for
instance, [3–6] and references therein). These materials are
novel two-dimensional optical systems with unprecedented
characteristics and they have been extensively investigated
for use as next-generation materials in applications for both
nano-optics and nanoelectronics [1,4].

Two-dimensional systems, which can be created with one or
a few crystalline monolayers of atoms, are of high interest, not
only because of their unusual optical properties, but also due
to their potential for applications in a new branch of nanoplas-
monics (graphene plasmonics), wherein one can create and
use surface plasmon polaritons (SPPs) [7,8]. SPP is a surface
optical wave which is characterized by a strong enhancement
of its wave power, due to the spatial confinement it undergoes
near the interface of these two-dimensional layered structures.
The amplitude of the SPP has a maximum at the interface
and decays exponentially in directions normal to the interface.
The SPP is an electromagnetic wave, which can propagate
along the boundary surface of different materials, provided
that the permittivities of the two connected materials have
opposite signs at the carrier wave frequency [9]. Graphene and
other graphene-like two-dimensional materials are recognized
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as being promising materials for the investigation of potential
applications for SPPs [10].

Graphene plasmonics is a rapidly growing field of research
which deals with very high intensity SPP-graphene interac-
tions found on the very short subwavelength scale, which is
mainly determined by the remarkably small effective mass of
the charge carriers in graphene. By means of an external gate,
one can adjust the value of the Fermi energy of graphene.
This is particularly interesting, because with an external gate,
one can externally control the properties of a SPP in various
ways. In the propagation of intense SPPs, nonlinear effects are
especially bright due to the nonlinear interaction between the
SPP and the graphene layer. Nonlinear effects can provide a
means for controlling the propagation of light on the nanoscale
by the formation of surface optical solitons [8]. The large
intrinsic nonlinearity of graphene at optical frequencies then
enables the formation of optical solitons, whereby one could
use the nonlinearity to compensate for a weaker dispersion.
Such solitons are referred to as nonresonance solitons.

The optical response of graphene is characterized by its
surface conductivity which is very closely related to its Fermi
energy. Usually, the conductivity of graphene has a complex
character which can be taken to be a sum of intraband and
interband processes. To study surface nonlinear waves in
graphene, one has to consider the influence of the optical
conductivity of graphene on the parameters of the surface
nonlinear waves.

The properties of a SPP are more varied, and consequently
more interesting, when one or more transition layers are
sandwiched between the connected media. It is known that
such transition layers can have an influence on the parameters
of the SPP, especially when they are in resonance with
the electronic excitations of the layer. In particular, a very
attractive multilayered system for the study of nonlinear
SPPs could be created by placing small concentrations of
resonance optical active atoms or semiconductor quantum dots
(SQDs) into the transition layer. In such structures, optical
resonance solitons can be created under the condition of
self-induced transparency (SIT) in graphene for SPPs [11] and
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also could create waveguide modes [12]. The investigation of
SIT in graphene could definitely be expected to open up new
applications for optoelectronic devices.

A natural extension of the study of the propagation of
optical nonlinear SPPs in graphene would be the investigation
of small intensity resonance breathers (pulsing solitons) in
a graphene nanostructure. Their presence could be expected
to give rise to a variety of interesting nonlinear optical
phenomena, as well as new applications.

Breathers arise in many physical situations where optical
waves propagate at intensities too small to create solitons.
However, surface SIT breathers in two-dimensional materials
may be possible. The purpose of the present work is to
consider the conditions for the realization of resonance
surface SIT breathers in a graphene monolayer, along with
the resulting analytic expressions that would determine the
breather parameters. At the same time, we will compare and
contrast the propagations of a SPP soliton, and also that of a
SPP breather, in graphene nanostructures.

II. BASIC EQUATIONS

We study the propagation of an optical resonant SPP SIT
breather in a graphene monolayer (or some other similar 2D
graphene-like system), where the surface transverse magnetic
(TM)-mode optical pulse has some width T and frequency
ω � T −1, and is orientated along the positive z axis. We will
consider a four-layered system. The graphene monolayer and
a thin transition resonance layer with thickness h, which con-
tains a small concentration of two-level optical active impurity
atoms, or SQDs, of density n0, which are sandwiched between
the two semispaces: medium 1 (x < 0) and medium 2 (x > h),
which have permittivities ε1 and ε2, respectively (Fig. 1). The
condition for the existence of the SPP is that the permittivities

FIG. 1. The SPP is traveling along the z axis. The vector of the
electric field, �E, of the SPP TM mode lies in the xz plane. The
vector of the associated magnetic field, �H , is parallel to the y axis.
The transition layer, of thickness h, contains the two-level atoms or
SQDs. The graphene monolayer is sandwiched between the transition
layer and medium 1.

of these two media are the negative of each other, i.e., ε1 > 0
and ε2 < 0. For example, in a metallic medium or in a
left-hand metamaterial, their permittivities can be negative
for certain values of the carrier wave frequencies [13]. For
a surface TM mode, the electric field �E(Ex,0,Ez) lies in the
xz plane, while the magnetic field �H (0,Hy,0) is directed along
y axis.

We will consider a Fourier decomposition of the x and z

components of the electric field �E and the y component of the
magnetic field �H of the SPP in the two connected semispaces
in the following form:

E1;i(x,z,t) =
∫∫

E1;i(�̃,Q̃)eκ1(�̃,Q̃)xei(Q̃z−�̃t)d�̃ dQ̃, for x < 0,

(1)

E2;i(x,z,t) =
∫∫

E2;i(�̃,Q̃)e−κ2(�̃,Q̃)xei(Q̃z−�̃t)d�̃ dQ̃, for x > 0,

where E1;i(x,z,t) is given in terms of the inverse Fourier
transform for any of the functions E1;x, E1;z, and H1;y , while
E2;i(x,z,t) is given in terms of the inverse Fourier transform for
any of the functions E2;x, E2;z, and H2;y , where the subscripts
1 and 2 refer to the respective fields in medium 1 and in
medium 2, i = x,y,z, with E1;x,z and E2;x,z being the respective
Fourier amplitudes for the electric fields and E1;y = H1;y and
E2;y = H2;y being the respective Fourier amplitudes for the
magnetic fields.

Substituting equation (1) for E1,2;y = H1,2;y into the wave
equation for the magnetic field

∂2H

∂x2
+ ∂2H

∂z2
− εi

c2

∂2H

∂t2
= 0,

we obtain, in the respective connected semispaces,

κ2
i (�̃,Q̃) = Q̃2 − εi

c2
�̃2, i = 1,2, (2)

where κ2
1 and κ2

2 are determined by the transverse structure of
the surface TM mode.

Let us imbue this transition layer with two-level optical
active impurity atoms (or SQDs). Then, as the SPP pulse
propagates along the flat surface of the separation (at x = 0),
between the two adjacent semispaces (the resonance transition
layer and the graphene layer), SIT can occur provided the
boundary conditions do take into account (1) the surface
current caused by the presence of the two-level optical
active impurity atoms (or SQDs) and (2) the conductivity
of the graphene monolayer.

Next we assume h � λ, where λ is the wavelength of the
surface mode. Then we approximate the transition resonance
layer and the graphene monolayer layer, each to be infinitely
thin, in which case we can approximate both by δ(x). Thus
we take that there would be no optical active atoms inside the
transition resonance layer (all optical active atoms would be
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concentrated at x = 0) while the graphene layer would have no
internal conductivity (all conductivity centered at x = 0 ). The
polarization P0 and conductivity σ would then contribute only
through boundary conditions. In other words, we would have
P0 = σ = 0, outside the x = 0 layer. We note that this has
been the general approach for SPPs interacting with transition
layers (see, for instance [11] and references therein).

Taking these points into account, the boundary conditions
for SPPs at x = 0 then become

H2;y − H1;y = 4π

c

(
∂P0

∂t
+ σE1;z

)
,

(3)
E1;z = E2;z, D1;x = D2;x,

where �D is the electric induction and c is the velocity of light
in vacuum. The polarization of the resonance transition layer,
P0, is determined by the ensemble of two-level optical active
impurity atoms (or SQDs) and can be given by

�P0(x,z,t) = �ez p(z,t) δ(x),

where �ez is the polarization unit vector along the z axis.
The electric current density of the graphene monolayer
is σ �E(z,t) δ(x), where σ is the electrical conductivity of
graphene.

Substituting Eqs. (1) and (2) into Eq. (3), we obtain for the
z component of the electrical field at x = 0

Ez (x = 0,z,t) =
∫∫

Ez(�̃,Q̃)ei(Q̃z−�̃t)d�̃ dQ̃,

and the nonlinear wave equation at x = 0 is found to be∫∫
F (�̃,Q̃)Ez(�̃,Q̃)ei(Q̃z−�̃t)d�̃ dQ̃

+ 4π

[
p(z,t) + σ

∫
Ez(z,t)dt

]
= 0, (4)

where

F (�̃,Q̃) = ε1

κ1
+ ε2

κ2
,

and Ez(�̃,Q̃) is given by

Ez(�̃,Q̃) = E1;z(�̃,Q̃) = E2;z(�̃,Q̃) .

This equation is valid for any dependence of the polarization
p(z,t) of the two-level optical active impurity atoms (or
SQDs), on the strength of the electrical field Ez at x = 0.

III. SIT EQUATIONS IN GRAPHENE

We are interested in the case where the SPP pulse durations
are much longer than the inverse frequency of the carrier wave.
Following the standard procedure, we will transform the wave
equation (4) into the slowly varying envelope case [14,15],
using the expansion

Ez =
∑
l=±1

ÊlZ−l , (5)

where Êl is the slowly varying complex envelope of the electric
field of the surface pulse and Zl = eil(kz−ωt) contains the

rapidly varying phase of the carrier wave. We also assume
that they satisfy the inequalities∣∣∣∣∣∂Êl

∂t

∣∣∣∣∣ � ω|Êl|,
∣∣∣∣∣∂Êl

∂z

∣∣∣∣∣ � k|Êl|. (6)

We also take Ez to be real, in which case Êl = Ê∗
−l .

Since the function F (�̃,Q̃) is slowly varying, we can
expand it about ω and k in the form of the series

F (�̃,Q̃) = F (ω,k) + (�̃ − ω)F ′
� + (Q̃ − k)F ′

Q + · · · , (7)

where

F ′
� = ∂F

∂�̃

∣∣∣∣
�̃=ω,Q̃=k

, F ′
Q = ∂F

∂Q̃

∣∣∣∣
�̃=ω,Q̃=k

,

and where ω and k are the frequency and the wave number of
the carrier wave.

Substituting the expansions (5) and (7) into the wave
equation (4), taking into account Eq. (6), and then after
separating the real and imaginary parts of Eq. (4), we obtain
the dispersion law for SPP

k2 = ω2

c2

ε1ε2

ε1 + ε2
, (8)

and the nonlinear evolution equation for the SPP envelope (at
x = 0)

∂Ê−1

∂t
+ V

∂Ê−1

∂z
= 4πn0μ

F ′
�

ρ−
∫

g(�)d�

1 + T 2�2
− 4πσ

ωF ′
�

Ê−1,

(9)

where Ê−1 = Ê∗
1 , � = ω0 − ω,ω0 is the frequency of the

atomic transitions in the transition region, and ρ± are the
slowly varying complex envelopes of the polarization [15],
while the group velocity of the linear SPP is given by

V = ∂ω

∂k
= kc2

ω

ε2κ̃
3
1 + ε1κ̃

3
2

ε2
2 κ̃

3
1 + ε2

1 κ̃
3
2

. (10)

In the above, μ is the electric dipole moment of the two-
level optical active impurity atoms (or SQDs), and g(�) is the
inhomogeneous broadening function of the spectral line of the
optical two-level atoms (or quantum dots). Also

F ′
� = ω

c2

(
ε2

2

κ̃3
2

+ ε2
1

κ̃3
1

)
,

F ′
Q = −k

(
ε2

κ̃3
2

+ ε1

κ̃3
1

)
, where κ̃2

i = k2 − εi

c2
ω2,

and κ̃2
1 and κ̃2

2 are determined by the transverse structure of the
surface TM mode.

For the determination of the polarization of the transition
layer, we consider the average values of the Pauli operators
σ̂i which describe the induced dipole and the inverse of the
probability for the state |〉, where we take si = Tr〈|σ̂i |〉
and (i = x,y,z) [14]. Here sx ± isy = ±2iρ±Z∓1, where
(ρ+)∗ = ρ−.

Assuming that the envelopes ρ± vary sufficiently slowly
in space and time as compared with the carrier wave parts, it
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follows that we may take∣∣∣∣∂ρ±

∂t

∣∣∣∣ � ω|ρ±|,
∣∣∣∣∂ρ±

∂z

∣∣∣∣ � k|ρ±| .

The above together with Eq. (6) is known as the slowly varying
envelope approximation [15].

The quantity ρ− is determined from the optical Bloch
equations [11,14]

∂ρ+

∂t
= i�ρ+ + μ

h̄
Ê+1sz,

∂sz

∂t
= −2μ

h̄
(Ê+1ρ

− + Ê−1ρ
+),

(11)

where h̄ is Planck’s constant. Equation (11) are exact only in
the limit of infinite relaxation times.

Equations (9) and (11) are the general equations for the
slowly varying complex amplitudes Ê±1 and ρ± by means of
which we can treat a rather wide class of coherent nonlinear
phenomena in four-layer systems, when they have a graphene
monolayer and a thin transition resonance layer containing
a small concentration of two-level optical active impurity
atoms (or SQDs). The soliton solution of these equations has
been developed and also expanded by an inverse scattering
transform (IST) perturbation theory in Ref. [11]. For the
breather solution of these systems of equations, it will be
necessary to detail some additional considerations regarding
the inverse scattering transform and its perturbation theory.

IV. BREATHER SOLUTION OF SPP

To consider small pulse area |�l| � 1 breather solutions
of the wave equation (9), we transform this equation into the
following form:

∂2�−1

∂t2
+ V

∂2�−1

∂z∂t
= R2 ρ− − σ̃ 2 ∂�−1

∂t
, (12)

where

R2 = 8πn0μ
2

h̄F ′
�

∫
g(�)d�

1 + T 2�2
, σ̃ 2 = 4πσ

ωF ′
�

,

and

�l(z,t) = 2μ

h̄

∫ t

−∞
Êl(z,t

′)dt ′ (13)

is the area of the optical pulse envelope at the interface (x = 0).
To further analyze these equations, we make use of the

perturbative reduction method [16], in the limit that �l is
O(ε), with its scale length being of order O(ε−1). This is the
typical scaling for the nonlinear Schrödinger (NLS) equation.
In this case �l can be represented as

�l(z,t) =
∞∑

α=1

εα�l
(α) =

∞∑
α=1

+∞∑
n=−∞

εαYnf
(α)
l,n (ζ,τ ), (14)

where

Yn = ein(Qz−�t), ζ = εQ(z − vgt), τ = ε2t,

vg = d�

dQ
,

with ε being a small parameter. Such a representation allows
us to expand �l(z,t) in the more slowly changing quantities

f
(α)
l,n . Consequently, it is assumed that the quantities �,Q, and

f
(α)
l,n satisfy the inequalities∣∣∣∣∣∂f

(α)
l,n

∂t

∣∣∣∣∣ � �

∣∣∣f (α)
l,n

∣∣∣,
∣∣∣∣∣∂f

(α)
l,n

∂z

∣∣∣∣∣ � Q

∣∣∣f (α)
l,n

∣∣∣.
From the condition Ê−1 = Ê∗

1 , it follows that f
(α)
−l,−n

∗ = f
(α)
l,n .

Substituting Eq. (14) into Eq. (12), to determine the values
of f

(α)
l,n , we collect the various terms in Eq. (12) according to

their powers of ε, and setting each collection equal to zero.
As a result, we obtain a chain of equations. Starting with first
order in ε, the only component of f

(α)
l,n that differs from zero

is f
(1)
l,n . The relation between the parameters � and Q also

follows from Eq. (12) and has the form

(QV − �)� + R2

2
= 0. (15)

From the Bloch equation (11) we can determine the quantity

ρ− = −1

2

[
ε1�−1

(1) + ε2�−1
(2) + ε3�−1

(3)

− ε3 1

2

∫
∂�−1

(1)

∂t
�+1

(1)�−1
(1)dt ′

]
+ · · · . (16)

Substituting Eqs. (14) and (16) into Eq. (12), and taking into
account Eq. (15), we obtain for the functions f

(1)
−1,±1, the NLS

equations in the form

∓i

[
V �

vg

∂f
(1)
−1,±1

∂τ
+ ��2f

(1)
−1,±1

]
− Q2vg(V − vg)

∂2f
(1)
−1,±1

∂ζ 2

− R2

4

∣∣f (1)
−1,±1

∣∣2
f

(1)
−1,±1 = 0, (17)

where we have taken σ̃ 2 to be of order ε2, whence we take
σ̃ 2 = ε2�2, and thus defining �2. We also find it convenient to
define

vg = V �

2� − QV
. (18)

Then upon defining the quantity �l = √
q̃εf

(1)
−1,l , Eq. (17)

becomes (l = ±1)

il
∂�l

∂t
+ ∂2�l

∂y2
+ |�l|2�l = −ilγ 2�l, (19)

which is a damped NLS equation, where

y = 1√
p̃

(z − vgt), t = t,

p̃ = (V − vg)v2
g

�V
, q̃ = 2πn0μ

2vg

�V h̄F ′
�

∫
g(�)d�

1 + T 2�2
, (20)

γ 2 = 4πσc2�

ω2(2� − QV )

κ̃3
1 κ̃3

2

ε2
2 κ̃

3
1 + ε2

1 κ̃
3
2

.

There are two phases in solving this equation. First, if
we drop the damping term, then we have the standard NLS
equation which is integrable and was originally solved by
Zakharov and Shabat in 1972 [17]. In 1974, this solution
method was expanded to include other nonlinear equations and
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was shown to be equivalent to a nonlinear Fourier transform
[18] also. There are generally two types of solutions for
these nonlinear equations. First, one generally has “soliton”
solutions, which are localized solutions. There can also be
continuous solutions which are wave-like, and are referred to
as “radiation.” There are also textbooks that explain in detail
how solutions of these equations may be constructed [19,20].

Once one has obtained the undamped solutions of equation
(19), one may then consider the effects of the damping term.
To do this, one may use a perturbation expansion about the
undamped solutions. This was first developed by Kaup in 1976
[14,21–23].

V. ZAKHAROV-SHABAT EQUATIONS

Let us now summarize how to use the IST to obtain solutions
of the NLS equation and present some well-known properties
of the NLS equation [19,21,23]. Let us start with the NLS
equation in the form i∂tq + ∂2

y q + 2q(q∗q) = 0, where q(y,t)
is a potential that vanishes sufficiently rapidly as y → ±∞ .

One constructs the following linear differential Zakharov and
Shabat equations (ZSEs) for v1 and v2,

∂v1

∂y
= −iζ v1 + qv2,

∂v2

∂y
= iζ v2 + rv1, (21)

where r = −q∗ and ζ is a spectral parameter in the complex
plane. There are two pairs of linearly independent solutions
(Jost functions) of the ZSE: the first pair is denoted by �

and �̄ and the second pair is  and ̄. In the first pair, �

and �̄ are defined by the asymptotic limit as y → −∞ to be
� → (1

0)e
−iζy and �̄ → ( 0

−1)e
iζy ; and in the second pair,  and

̄ are defined by the asymptotic limit as y → +∞ to be  →
(0
1)e

iζy and ̄ → (1
0)e

−iζy . For real ζ , the scattering coefficients

a, b, ā, and b̄ are defined from the asymptotic limit as y →
+∞, where � → (ae−iζy

beiζy ) and �̄ → ( b̄e−iζy

−āe−iζy). On the real axis,

one finds that aā + bb̄ = 1. From the above definitions, one
observes that in general the two pairs of solutions can be related
as � = ā + b, �̄ = −ā + b̄̄ . From the relation r =
−q∗, it follows that �̄ and ̄ can be given in terms of �

and : �̄ = ( φ∗
2−φ∗

1
), ̄ = ( ψ∗

2−ψ∗
1
), and ā(ζ ) = a∗(ζ ∗), b̄(ζ ) =

b∗(ζ ∗), where for real ζ we have āa + b̄b = 1.
In addition to the continuous spectra, ZSE (21) can also

possess bound states. These occur whenever a(ζ ) has a zero
in the upper half complex ζ plane. Here we shall consider the
situation where a has only one zero. If we designate the zero of
a by ζ1 = ξ + iη, with both ξ and η real, then since a(ζ1) = 0,
�(ζ1) = b(ζ1)(ζ1), where b(ζ1) = eiβe2ηy0 , which defines β

and y0.
Observe that what has occurred here is that the potential

q(y,t) has been mapped into scattering data. The scattering
data are contained in the coefficients a, ā, b, b̄, each of which
are functions of ζ . Given the scattering coefficients, one can
reconstruct the potentials q and r .

We comment here that the scattering data are also time
dependent, so that as time evolves, the scattering data also
evolve in time; however, the evolution of the scattering
coefficients in time is governed by linear ordinary differential
equations. Therefore, the power of the IST is to shift the action

from nonlinear equations to linear equations, allowing a more
rapid solution. The details of this are given in Refs. [19,20].

VI. BREATHER SOLUTION

The main purpose of this paper is to obtain breather
solutions of Ez. By using the IST to obtain the scattering data,
one can then obtain the solution of Eq. (19). This gives us the
soliton solution for the quantity �l, but this solution is not a
breather. To obtain a breather, we start with the expression for
�l, which is �l = ε

√
q̃f

(1)
−1,l , which we then solve for f

(1)
−1,l ,

which we then insert into the solution for Eq. (14). Retaining
only the ε terms, from Eq. (13) we then will obtain the breather
solution of Ez.

First, we consider Eq. (19) without the damping term. In
this case, this equation becomes

il
∂�l

∂t
+ ∂2�l

∂y2
l

+ |�l|2�l = 0, (22)

which is the NLS equation (22), which is an exactly solvable
equation. For the solution of interest, we require p̃q̃ > 0,
so that the soliton will be localized, vanishing as y → ±∞
[19,22].

One then obtains the general soliton solution as

�l = 2ilη
e−ilϕ1

cosh 2ηϕ2
, (23)

where

ϕ1 = 2ξz√
p̃

+ 2

[
2(ξ 2 − η2) − ξvg√

p̃

]
t − ϕ0,

(24)

ϕ2 = z√
p̃

+
(

4ξ − vg√
p̃

)
t − y0.

The quantities ξ, η, ϕ0 = arg b(0) and y0 = 1
2η

ln |b(0)| are
pieces of the scattering data, which are obtained when the
NLS equation is solved by the IST. Substituting the soliton
solution (23) into Eq. (14), we obtain the breather solution for
�−1, in the form

�−1(z,t) = 4η√
q̃

sin(ϕ1 − Qz + �t)

cosh 2ηϕ2
+ O(ε). (25)

Combining Eqs. (25) and (13), we have the breather solution
for the envelope of the z components of the electric field �E,

where

Ê−1 = 2ηh̄�

μ
√

q̃

cos(Qz − �t − ϕ1)

cosh 2ηϕ2
+ O(ε), (26)

with 2ηh̄�

μ
√

q̃
being the breather pulse height.

Soliton solutions of the NLS equation which are not
breathers are given by Eq. (23). From this solution, we can
construct the solution of Eq. (26), which is a breather solution.
This is the solution that characterizes the propagation of
the nonlinear SPP, which oscillates in time and space and
propagates in space with the characteristic parameters �

and Q.
Lastly, to fully understand and describe the SPP breather

in graphene, we need to take into account the first-order cor-
rections of the influence of the conductivity on the breather’s
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oscillation and propagation. For this, we use the perturbation
theory developed for the IST [14,21,23].

One can determine the perturbed evolution of the breather
parameters ξ and η due to the influence of the conductivity of
graphene on the pulse height 2ηh̄�

μ
√

q̃
(or pulse width), by means

of the equation [21]

ζ1t = ξ (0) + iη(0)e−2tγ 2
.

The solution of this equation has the form

η(t) = η(0)e−2tγ 2
, (27)

where the parameter ξ is constant. η(0) is the initial value of η

at t = 0.

VII. CONCLUSION

This work has studied the propagation of TM-mode SPP
waves, along the interface between two different media.
Sandwiched between these media are a monolayer of graphene
and a thin transition resonance layer. The latter has, as an
impurity, optical active two-level atoms or quantum dots.
Under the condition of SIT and providing that p̃q̃ > 0,
breathers can arise in the propagating SPP. As we have shown
above, the amplitude of these breathers can be expected to
decay exponentially in the process of propagation. The explicit
analytical expressions for the profile and parameters of the
surface breather are contained in Eqs. (27), (26), (24), (20),
(18), and (10). The dispersion equation for the surface TM
mode and the relations between the quantities � and Q are
given by Eqs. (8) and (15), respectively. The transverse profile
of the SPP is given by Eq. (2).

From these equations, it is obvious that the parameters of
the optical SPP breather in graphene also depends on the
parameters of the two-level optical active atoms or SQDs,
through the quantity R2 [which depends on the quantities
μ, n0, g(�)], as well as the permittivities of the two connected
media (ε1 and ε2). Also, the transverse structure of the surface
TM mode is influenced by the quantities κ̃1 and κ̃2. Lastly, the
amplitude of a breather will decay exponentially according

to the characteristic parameter γ 2 which is dependent also
on the following quantities: graphene conductivity σ , the two
permittivities (ε1 and ε2), the transverse structure coefficients
(κ̃1 and κ̃2), and the oscillate characteristic parameters � and
Q and the group velocity of the linear SPP, V .

SPP propagating in graphene nanostructure, under the
condition of SIT, can produce solitons and breathers. Under
the condition of SIT, SPP solitons were investigated earlier
in Ref. [11], by the use of the IST perturbation theory.
Comparing the SPP soliton and breather under the condi-
tion of SIT in graphene nanostructures, we note that the
amplitudes of both nonlinear resonance waves, propagating
through the multilayered graphene nanostructure, will undergo
damping exponentially. However, the damping coefficient
of the breather, γ 2, is distinctly different from that of a
soliton’s damping coefficient, which is 4πσ/ωF ′

Q. Conse-
quently, the breather’s damping coefficient depends addition-
ally on the characteristic oscillation parameters � and Q, as
well as the group velocity of the linear SPP, V .

In addition to the above, these two “damping coefficients”
cannot be easily compared against each other, since the
soliton and the breather in the graphene nanostructure undergo
distinctly different evolutions. In particular, the damping for
the soliton is along the coordinate z, whereas for the breather,
the damping coefficient is along the coordinate t (time). That
is, these damping coefficients act in different “directions.”

The results of this theoretical study of resonant SPP
breathers in graphene, along with the study of resonant SPP
solitons in graphene, as treated in Ref. [11], give a more
complete physical description of the propagation of resonant
SPP solitons in graphene nanostructures. These investigations
not only are informative for further theoretical studies, but also
will stimulate experimental investigations of the propagation
of resonance nonlinear waves in graphene nanostructures,
leading eventually to the development of graphene devices
and their applications in the studies of nonlinear SPPs.
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