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We investigate the quantum phases of mixed-dimensional cold atom mixtures. In particular, we consider
a mixture of a Fermi gas in a two-dimensional lattice, interacting with a bulk Fermi gas or a Bose-Einstein
condensate in a three-dimensional lattice. The effective interaction of the two-dimensional system mediated
by the bulk system is determined. We perform a functional renormalization group analysis, and demonstrate
that by tuning the properties of the bulk system, a subtle competition of several superconducting orders can be
controlled among s-wave, p-wave, dx2−y2 -wave, and gxy(x2−y2)-wave pairing symmetries. Other instabilities such
as a charge-density-wave order are also demonstrated to occur. In particular, we find that the critical temperature
of the d-wave pairing induced by the next-nearest-neighbor interactions can be an order of magnitude larger
than that of the same pairing induced by doping in the simple Hubbard model. We expect that by combining
the nearest-neighbor interaction with the next-nearest-neighbor hopping (known to enhance d-wave pairing), an
even higher critical temperature may be achieved.

DOI: 10.1103/PhysRevA.95.053633

I. INTRODUCTION

Recent experiments of ultracold atoms in optical lattices
successfully simulate various quantum lattice models, demon-
strating quantitative agreement with theoretical predictions
[1,2]. One of the extensively studied models is the Hubbard
model of fermions [3,4] and of bosons [5–7], which has a
local on-site interaction U . Until recently, only the on-site
interaction has been realized in experiments, except long-range
interactions engineered in polar gases [8,9] or Rydberg dressed
gases [10–14]. In this paper, we propose a way to generate
an effective nonlocal interaction in a two-dimensional (2D)
interacting Fermi gas by bringing it in contact with a three-
dimensional (3D) system: either a noninteracting Fermi gas
or a Bose-Einstein condensate (BEC) (Fig. 1). The induced
interaction creates a tunable 2D extended Fermi-Hubbard
model [15,16] of ultracold atoms.

Experimentally mixed-dimensional atomic mixtures are
realized by using species-specific optical lattices [17–20].
Each atomic species is trapped by different optical potentials
and confined into different geometries and dimensions. In
such systems, confinement-induced resonances give rise to
exotic pairing phenomena such as p-wave resonances and
Efimov effects. These experiments have triggered numbers of
theoretical investigations: Fermi-Fermi mixtures are studied in
Refs. [21–26], Bose-Bose mixtures in Refs. [27,28], and Bose-
Fermi mixtures in Refs. [29–33]. We note that most previous
theoretical calculations in mixed-dimensional systems (except
Refs. [25,29]) are based on mean-field analysis, which is
inadequate to give precise phase diagrams when the embedded
system is one or two dimensional. In order to incorporate
strong quantum fluctuations in low dimensions, we use the
functional renormalization group (fRG) [34–41], which treats
various competing orders without bias.

*wenmin@phys.nchu.edu.tw

In this work, we focus on a 2D Fermi gas described as the
Hubbard model,

H2D = −t
∑

〈r,r′〉,s
c†rscr′s + U

∑
r

nr↑nr↓ − μ
∑
r,s

nrs , (1)

where c
(†)
rs is the annihilation (creation) operator of a fermion

with spin s at site r = (x,y), and t is the hopping between
nearest-neighbor (NN) sites 〈r,r′〉. U is the on-site Hubbard
interaction between particle densities nrs = c

†
rscrs , and μ is

the chemical potential. In the following, we assume that a
3D system, either a noninteracting Fermi gas or a BEC,
is in contact with 2D fermions via a local density-density
interaction V at their interface (Fig. 1). After integrating
out the 3D degrees of freedom (ignoring the retardation
effects), nonlocal effective interactions are left among the 2D
fermions. A noninteracting 3D Fermi gas induces Ruderman-
Kittel-Kasuya-Yosida-type interactions [42–44]; the effective
interaction oscillates in space with the modulation period
determined by the Fermi momentum of the bulk system. Thus,
while the induced on-site interaction is always attractive, the
NN interaction changes signs as the filling of the 3D system
changes. When a BEC is in contact with the 2D fermions,
induced on-site and NN interactions are always attractive
[45–47]. With these effective interactions as well as the origi-
nal on-site Hubbard interaction U , we obtain zero-temperature
phase diagrams by fRG. Various superconducting instabilities
appear depending on the model parameters. In particular, we
find that the gap of the d-wave pairing induced by the attractive
NN interaction is larger than that of the pairing induced by
doping in the simple Hubbard model.

The rest of this paper is organized as follows. Section II
considers the case of a Fermi-Fermi mixture. Section III treats
the case of a Fermi-BEC mixture. Section IV discusses the
effects of finite temperatures and the experimental relevance
of our analysis. Section V is a conclusion. The Appendix
considers the 2D limit of the Fermi-Fermi mixture.
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FIG. 1. Schematics of the system that we consider. A 2D Fermi
gas (red dots) interacts with 3D particles (blue dots) via a local
density-density interaction V at z = N ′. We use an open boundary
condition for the z direction of the 3D system with 2N ′ − 1 sites.

II. FERMI-FERMI MIXTURE

A. Model

First, we study the case when the 3D system is a noninter-
acting Fermi gas. We assume a single-component gas, which
is easier to realize in experiments. The Hamiltonian of the 3D
part is

H F
3D = −t ′

∑
〈rz,r′z′〉

d†
rzdr′z′ − μ′ ∑

r,z

d†
rzdrz, (2)

where d
(†)
rz is the annihilation (creation) operator of a fermion

at site (r,z) = (x,y,z), t ′ is the hopping amplitude between NN
sites 〈rz,r′z′〉, and μ′ is the chemical potential. We use periodic
boundary conditions for x and y directions with N × N sites,
while we assume an open boundary condition with 2N ′ − 1
sites along the z axis. In momentum space, we obtain

H F
3D =

∑
p,k

ξpkd
†
pkdpk, (3)

with a 3D dispersion

ξpk = −2t ′[cos(pxa) + cos(pya) + cos(ka)] − μ′. (4)

Here a is the lattice constant, p = (px,py) = (nx,ny)2π/Na

(nx,y ∈ Z and 1 � nx,y � N ) is the in-plane momentum, and
k = πnz/2N ′a (nz ∈ Z and 1 � nz � 2N ′ − 1) is the out-of-
plane momentum along the z axis, satisfying open boundary
conditions.

The local contact interaction between 2D and 3D fermions
at z = N ′ is

H F
int = V

∑
r,s

nrsd
†
rN ′drN ′ . (5)

B. Effective interaction

In this section, we derive the effective interaction mediated
by the bulk fermions. We integrate out the 3D fermions in
a path-integral form. Such a procedure is legitimate if the
3D fermions are Fermi liquids. This requires the interspecies
interaction V to be small compared to the bandwidth 12t ′. Once
the 3D fermions become highly anisotropic (approaching to the
2D limit), even a weak perturbation can trigger an instability,
and treating both species by fRG is a more appropriate
procedure as in Ref. [48].

We start from the total action of the 2D and 3D fermions
with the imaginary time τ and the inverse temperature β,

S =
∫ β

0
dτ

[∑
p,s

c†ps(τ )∂τ cps(τ ) + H2D(τ )

+
∑
p,k

d
†
pk(τ )∂τ dpk(τ ) + H F

3D(τ ) + H F
int(τ )

⎤
⎦. (6)

Introducing the Fourier series in Matsubara frequencies
ωn = π (2n + 1)/β (n ∈ Z) as

cps(τ ) = 1√
β

∑
n

e−iωnτ cnps , (7)

we can write the quadratic action related to the 3D fermions
[the second line in Eq. (6)] in a matrix form,

SF
3D =

∑
n,n′,p,p′,k,k′

d
†
npk

[−G−1
0 + M

]
(npk);(n′p′k′)dn′p′k′ , (8)

with a Green’s function matrix G0 and an interaction part M ,

[G0](npk);(n′p′k′) = 1

iωn − ξpk

δnn′δpp′δkk′, (9)

[M](npk);(n′p′k′) = V

N2N ′β
sin(kN ′a) sin(k′N ′a)

×
∑
m,q,s

c†mqscn−n′+m,p−p′+q,s . (10)

After integrating out the 3D fermions, the effective action for
2D fermions becomes

Seff = S2D − Tr ln
[−G−1

0 + M
]

= S2D − Tr ln
[−G−1

0 (1 − G0M)
]

= S2D +
∞∑

n=1

Tr[(G0M)n]

n
+ const. (11)

We will ignore the self-energy correction to the 2D fermions
corresponding to the first order in the expansion. The second-
order term generates the effective interaction,

Tr[(G0M)2] = V 2

N4N ′2β2

∑
n,n′,p,p′,k,k′

[
sin2(kN ′a)

iωn − ξpk

∑
m,q,s

c†mqscn−n′+m,p−p′+q,s

sin2(k′N ′a)

iωn′ − ξp′k′

∑
m′,q′,s ′

c
†
m′q′s ′cn′−n+m′,p′−p+q′,s ′

]
. (12)

Summation over ωn gives the particle-hole propagator of the 3D fermions as

Tr[(G0M)2] = V 2

N4N ′2β

∑
l̃,p,p′,k,k′

[
nF(ξpk)−nF(ξp+p′,k′)

iω̃l+ξpk−ξp+p′,k′
sin2(kN ′a) sin2(k′N ′a)

∑
m,m′,q,q′,s ′,s ′

c†mqscm−l̃,−p′+q,sc
†
m′q′s ′cm′+l̃,p′+q′,s ′

]
,

(13)
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FIG. 2. (a) The effective interaction given by Eq. (15) in
momentum space in units of 4V 2/t ′. We use N = 50 and N ′ = 11.
(a1)–(a4) represent the dependence of UF

eff(q) on μ′. We observe a
peak at q = (π,π ) for μ′ = 0 shifting to (0,0) as μ′ increases. (b)
The effective interactions in real space in units of 4V 2/t ′. The NN
and next-nearest-neighbor (NNN) interactions change signs as μ′

changes.

where ω̃l = ωn′ − ωn is the bosonic Matsubara frequency, and
nF(ξ ) is the Fermi distribution function. If we consider t ′ 
 t ,
we can ignore the retardation effects, i.e., only the ω̃l = 0
component is important. In this limit, we obtain effective
interactions among 2D fermions as

H F
eff = 1

2N2

∑
r,r′,q,s,s ′

UF
eff(q)ei(r′−r)qc†rsc

†
r′s ′cr′s ′crs , (14)

with

UF
eff(q) = V 2

∑
p,k,k′

sin2(kN ′a) sin2(k′N ′a)

N2N ′2

× nF(ξpk) − nF(ξp+q,k′)

ξpk − ξp+q,k′
. (15)

We assume zero temperature in the following calculations. As
we see in Sec. IV, the critical temperatures of density-wave or
pairing instabilities are smaller than t . Therefore, to observe
these phases, the 3D fermions need to be also as cold as t
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(a) on-site interaction, U=1 (b) NN interaction

FIG. 3. The total “bare” on-site and nearest-neighbor interaction
for 2D fermions with the original on-site interaction U = 1. Dashed
lines show the line where the interaction is zero.

at least. Considering the assumption t ′ 
 t , using the zero-
temperature propagator is reasonable and self-consistent in
the regime of interests.

We show the induced interaction in momentum space in
Fig. 2(a) for N ′ = 11. We note that the dependence on the
bulk thickness is marginal even in the limit of N ′ = 1 as we
discuss in the Appendix. The 3D fermionic bath induces an
attractive interaction peaked at momentum q∗ determined by
the filling; q∗ = (π,π ) when μ′ = 0 at half-filling while it
gradually shifts to (0,0) as μ′ increases.

In Fig. 2(b), we show the effective on-site, NN, and
next-nearest-neighbor (NNN) interactions as functions of μ′.
In real space, the interaction oscillates with roughly the
period 2π/q∗, while it also decays rapidly so that the NNN
interaction is negligible. This indicates that we can map the
2D part of the system onto the extended Hubbard model with
various interaction strengths by controlling the filling of the
3D fermions. We note that for the induced interaction to be
non-negligible, the interspecies interaction V needs to be larger
than t . This is because the effective interaction is proportional
to V 2/t ′, and we assume t ′ 
 t to ignore the retardation effect.
At the same time, to ignore the effect of V on the 3D fermions,
we need V � 12t ′.

The total on-site interaction, U + UF
eff(r = 0), and the NN

interaction are plotted in Fig. 3 with U = 1 for different V ’s
and μ′’s. We can control these two interactions by shifting
U , V , and μ′. In Sec. II D, we show that the obtained phase
diagrams can be well understood based on these values.

C. Method

Based on the effective interaction, phase diagrams are
obtained by a fRG scheme. Here we briefly outline the standard
N -patch scheme [34–41], which we employ in this work.
We divide the Brillouin zone into Npatch = 28 patches as
shown in Fig. 4. The nth patch has a patch momentum k̄n

at the center of the Fermi surface. The interaction is now
approximated as U (k1,k2,k3) → Un1n2n3 , where ni is the patch
that ki belongs to, and the fourth momentum (not explicitly
written above) is automatically determined by the momentum
conservation. Naively the total number of coupling constants is
N3

patch = 21 952. However, we can reduce this number by using
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the symmetry of the Hamiltonian, and by ignoring the coupling
constants that deviate from the momentum conservation
significantly. The RG equation is obtained after integrating
out the high-energy degrees of freedom around the ultraviolet

cutoff 	. By parametrizing the cutoff as 	(l) = 	0e
−l with

the initial value of the cutoff 	0, the coupling constants at
lower energies are obtained by integrating the RG equations
[39,41]:

∂Un1n2n3

∂l
= −

∑
n


̇−(n,qpp)
(
Un1n2nUn4n3n + Un2n1nUn3n4n

) +
∑

n


̇+(n,qfs)
(
2Unn4n1Unn2n3 − Un4nn1Unn2n3 − Unn4n1Un2nn3

)

+
∑

n


̇+(n, − qfs)
(
2Unn1n4Unn3n2 − Un1nn4Unn3n2 − Unn1n4Un3nn2

)

−
∑

n


̇+(n,qex)Un3nn1Un2nn4 −
∑

n


̇+(n,−qex)Un1nn3Un4nn2 , (16)

where qpp = k̄n1 + k̄n2 , qfs = k̄n3 − k̄n2 , and qex = k̄n1 − k̄n3 .

̇±(n,Q) is a differential of a bubble integral over frequency
ω and momentum k inside the nth patch,


̇±(n,q) = ±	

∫
ω

∫
k∈n

Ġ(ω,k)G[±ω,±(k − q)], (17)

with G(ω,k)=�(|εk|−	)/(iω−εk) and εk= − 2t[cos(kxa)+
cos(kya)] − μ. Use of this free propagator means that we
ignore the self-energy correction along the RG flows.

A RG flow is started from an ultraviolet cutoff 	0 � 4t and
integrated until one of the coupling constants becomes ∼30t or
	 = 10−6t . The former indicates an ordering instability, while
the latter indicates no instability, i.e., the Fermi-liquid fixed
point. To figure out the dominant instability, we decompose
the renormalized interaction Ũ into six channels: spin-density
wave (SDW), charge-density wave (CDW), ferromagnetic,
Pomeranchuk, spin-singlet superconductivity (sSC), and spin-
triplet superconductivity (tSC) orders [41,48],

∑
k1,k2,k3,s,s ′

Ũ (k1,k2,k3)c†k1,s
c
†
k2,s

ck3,s ′c−k1−k2−k3,s

=
∑

i=SDW,...,tSC

∑
k1,k2

Wi(k1,k2)Oi,†
k1
Oi

k2
, (18)

π

π- π- π

μ=-0.1 , -1
π

π- π- π

μ=-0.025π

π- π- π

μ=0

28

1

78

14

15

21 22

4

2518

11

FIG. 4. Schematics of the patching scheme we use and the Fermi
surface. Thick lines represent Fermi surfaces for various chemical
potentials in each panel. [In the right panel, the inner (outer) path is
for μ = −1 (−0.1).] Thin lines in the left panel show how to dissect
the first Brillouin zone into narrow 28 patches.

where Oi
k is the order parameter given by fermion bilinears.

For example, the spin-singlet SC has

W sSC(k1,k2) = Ũ (k1,−k1,−k2) + Ũ (−k1,k1,−k2), (19)

OsSC
k = 1√

2
(ck↑c−k↓ − ck↓c−k↑). (20)

With the patch approximation, Wi(k1,k2) can be expressed
as a Npatch × Npatch Hermitian matrix W̃ i whose (n1,n2)
component is W̃ i

n1n2
= Wi(k̄n1 ,k̄n2 ). We diagonalize these

matrices into the following forms:

W̃ i
n1n2

=
Npatch∑
λ=1

ωi
λf

i,∗
λ

(
k̄n1

)
f i

λ

(
k̄n2

)
. (21)

f i
λ(k̄n) gives the form factor of the order parameter. The leading

instability is the one with the largest negative eigenvalue
among ωi

λ’s.

D. Phase diagrams

Figure 5 shows phase diagrams as a function of μ′ and V for
various cases. We use N = 50, N ′ = 11, and t ′ = 8t . At half-
filling (μ = 0) [Fig. 5(a)], we found SDW, CDW, s-wave SC,
and dx2−y2 -wave SC. These can be well understood from the
effective interactions in Fig. 3. When V is weak, the original
repulsive Hubbard interaction U is dominant, which leads to
SDW. At small μ′, once V is strong, the on-site interaction
becomes attractive, while the NN interaction is repulsive. This
naturally leads to CDW with an ordering vector at (π,π ).
At intermediate μ′, the NN interaction becomes attractive as
well as the on-site one, leading to s-wave SC and dx2−y2 -wave
SC. We would like to emphasize that this dx2−y2 -wave SC
is induced by the attractive NN interaction. At large μ′, the
induced interactions are weak, and the phase goes back to
SDW dominated by the original on-site U .

When the 2D system is slightly away from the half-filling
μ = −0.025 [Fig. 5(b)], SDW is replaced by dx2−y2 -wave
SC, as the simple Hubbard model [35–37]. We note that
this d-SC is induced by doping, and can be found even at
V = 0. We also find gxy(x2−y2)-wave SC at V = t ′/8 and low
μ′. However, this instability is relevant only at very low energy
scales 	 ∼ 2×10−6t , and therefore may not be experimentally
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FIG. 5. Phase diagrams of a 2D Fermi gas in contact with a noninteracting 3D Fermi gas. We use N = 50, N ′ = 11, and t ′ = 8t . Blank
regions correspond to Fermi liquid; no instability is found.

realizable. As the filling is further reduced, the Fermi-liquid
fixed point becomes dominant for most of the parameter
regions [Figs. 5(c) and 5(d)], while still s-wave pairing is
induced for strong V and small μ′. We note that mapping the
induced interactions onto on-site and NN interactions allows us
to explore a wide range of parameters of the extended Hubbard
model. For example, if we take U = 4t , we can create p-wave
SC, which was found in Ref. [16] [Fig. 5(e)].

III. FERMI-BEC MIXTURE

A. Model

Next, we turn to the case when the 3D system is a BEC.
Assuming weakly interacting bosons, the Hamiltonian is

H B
3D = −tB

∑
〈rz,r′z′〉

ψ†
rzψr′z′ − μB

∑
r,z

ψ†
rzψrz

+ UB

2

∑
r,z

ψ†
rzψ

†
rzψrzψrz, (22)

where ψ
(†)
rz is the annihilation (creation) operator of a boson at

site (r,z), tB is the hopping amplitude, μB is the chemical po-
tential, and UB is the weak on-site interaction. We decompose
the wave function into the condensed part ηz and fluctuations
φrz [49,50],

ψrz = ηz + φrz, (23)

where we assume a uniform condensate along the in-plane
directions (along the z axis, the open boundary condition
induces modulation). Up to quadratic order in the fluctuations,

this leads to

H B
3D � −tB

∑
〈rz,r′z′〉

φ†
rzφr′z′ − μB

∑
r,z

φ†
rzφrz

+ UB

2

∑
r,z

η2
z (4φ†

rzφrz + φ†
rzφ

†
rz + φrzφrz), (24)

if the condensed part satisfies the Gross-Pitaevskii equation

−tB

[∑
z′

(δz′,z+1 + δz′,z−1)ηz′

]
− μBηz + UBη3

z = 0. (25)

The interaction between 2D fermions and a BEC is approxi-
mated as

H B
int = V

∑
r,s

nrsψ
†
rN ′ψrN ′

� V
∑
r,s

nrsηN ′(φ†
rN ′ + φrN ′ ). (26)

B. Bogoliubov transformation and effective interactions

Integrating out the BEC fluctuations can be easily done
in the Bogoliubov modes. For this purpose, we show the
details of the Bogoliubov theory with open boundary con-
ditions. We start from Eqs. (24) and (25). First, we solve
the Gross-Pitaevskii equation numerically. Figure 6 shows a
condensation density along the z axis for N ′ = 11, tB = 10t ,
μB = −5.5tB, and UB = 0.2t . We see that the condensed
density is depleted near the open boundaries, while in the
center of the system the density is close to the value of a
homogeneous system ∼nB = (6tB + μB)/UB.

With the obtained density profile, we diagonalize the
quadratic Hamiltonian of the fluctuating part. The Hamiltonian
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FIG. 6. The spatial profile of the condensation obtained for the
parameters we used for the calculations.

can be written as

H B
3D =

∑
p

1

2

[ �φp
�φ†
−p

]†[
A(p) B
B A(p)

][ �φp
�φ†
−p

]
+ const., (27)

with a vector �φp = [φp1, . . . ,φp,2N ′−1]T and φpz is a partially
Fourier-transformed operator along the in-plane directions.
A(p) is a (2N ′ − 1) × (2N ′ − 1) matrix that corresponds to
the particle conserving part of the Hamiltonian,

A(p)
zz′ = −tB[δz,z′−1 + δz,z′+1] + {−2tB[cos(pxa) + cos(pya)]

−μB + 2UBη2
z

}
δzz′ , (28)

and B is a (2N ′ − 1) × (2N ′ − 1) matrix that corresponds to
the particle nonconserving part of the Hamiltonian,

Bzz′ = UBη2
zδzz′ . (29)

The diagonalization is done by a general Bogoliubov
transformation W(p) for each p [51],[ �φp

�φ†
−p

]
= W(p)

[ �bp
�b†−p

]
, (30)

leading to the final form

H B
3D =

∑
p

2N ′−1∑
λ=1

ωpλb
†
pλbpλ (31)

with positive eigenvalues ωpλ.
Integrating out the bosons [46,47], we obtain the effective

interaction as in Eq. (14),

UB
eff(q) = −2V 2η2

N ′

2N ′−1∑
λ=1

(
W(q)

N ′λ + W(q)
3N ′−1,λ

)2

ωqλ

. (32)

An example of the effective interaction UB
eff(q) is plotted in

Fig. 7(a). The strong negative peak at q = 0 indicates attractive
on-site and NN interactions.

For the spatially homogeneous case or when the boundary
effects can be ignored, the real-space interaction decays
exponentially, and the interaction range is roughly the healing
length of the BEC, ξ = √

tB/2nBUB ∼ 2.2a [45,46]. In our
setup, we find that the induced interaction UB

eff(r) also decays
quickly in real space over a few lattice constants. Therefore, the
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FIG. 7. (a) The effective interaction UB
eff(q) in Eq. (32) in units of

V 2. We take N ′ = 11, tB = 10t , μB = −5.5tB, and UB = 0.2t . (b) A
phase diagram obtained by fRG with the same parameters as (a) and
V = 0.8t . Blank regions correspond to Fermi liquid; no instability is
found.

essential features of the induced interaction do not depend on
the specifics of the system as long as we assume a well-defined
BEC.

C. Phase diagrams

The zero-temperature phase diagram obtained by fRG is
given in Fig. 7(b). We take N ′ = 11, tB = 10t , μB = −5.5tB,
UB = 0.2t , and V = 0.8t . The induced interaction reduces the
on-site interaction as

U → U − ∣∣UB
eff(r = 0)

∣∣, (33)

and thus for U < |UB
eff(r = 0)| ≈ 0.33t , the model is reduced

to the attractive Hubbard model leading to s-wave SC.
When U > |UB

eff(r = 0)|, the model is nearly identical to the
repulsive Hubbard model except for negligible attractive NN
interactions. Thus, at half-filling (μ = 0) we find SDW for
large U , and dx2−y2 -wave SC for intermediate U . Slightly
away from half-filling, the system shows dx2−y2 -wave pairing,
which disappears as the filling deviates further away from
half-filling. This phase diagram is qualitatively similar to the
one in Ref. [46] obtained for a 2D Bose-Fermi mixture.

IV. DISCUSSIONS

A. Critical temperatures

Here we discuss the critical temperatures Tc or gap energies
of ordering phases, which are estimated from the ultraviolet
cutoff energy where these instabilities occur. (We note that the
determination of Tc depends on minor complications such as
when we stop the RG flows [52,53].) Figure 8(a) shows the
critical temperatures for the Fermi-Fermi mixture at V/t ′ =
1 and U = 1 at half-filling [see Fig. 5(a)] for different 3D
chemical potentials. The critical temperatures of SDW, CDW,
and s-wave SC are comparable to the Fermi energy ∼ t , and it
seems possible to detect these orders experimentally [54].

On the other hand, the critical temperature of d-wave SC
is rather small, Tc ∼ 5.0×10−3t . However, we note that this
value is an order of magnitude bigger than that of the same
pairing induced by doping in the simple Hubbard model with
only on-site interaction U . For example, at μ = −0.025 with
U = 1 and V = 0 [see Fig. 5(b)], we find the gap energy
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FIG. 8. (a) The critical temperatures of phases found in the
Fermi-Fermi mixture at half-filling and V ′/t ′ = 1 as in Fig. 5(a). (b)
The critical temperatures of phases found in the Fermi-BEC mixture
at μ = −0.016 as in Fig. 7(b). The vertical dotted lines are phase
boundaries.

of the d-wave SC as 5.0×10−5t . While we expect that the
gap of the interaction-induced d-wave SC depends on the
NN interaction strength, our finding indicates that the d-wave
ordering induced by the NN interaction is more stable than the
one induced by doping within the regime we have studied. In
the simple Hubbard model, it is known that the NNN hopping
enhances the d-wave pairing by destroying the perfect nesting
at q = (π,π ) [35,37,38]. Similarly in our model, we expect
that the NNN hopping may further enhance the gap energy of
the d-wave SC induced by the NN interaction.

Figure 8(b) shows the critical temperatures for the Fermi-
BEC mixture at slightly away from half-filling μ = −0.016
and V = 0.8t with various U [see Fig. 7(b)]. The maximal
critical temperature of the d-wave SC, Tc ∼ 5.0×10−3t , is
comparable to that of the Fermi-Fermi mixture at half-filling.

B. Experimental perspectives

One of the important control parameters in our model is
the interspecies interaction V . We propose that the following
atomic mixtures in species-specific optical lattices can be
employed to realize our setup with control over V . For Fermi-
Fermi mixtures, recent experiments have achieved control of
the interaction strength from the weak to strong interactions
by interspecies Feshbach resonances for 6Li-40K mixtures
[55–59]. For Fermi-Bose scattering, a 23Na-40K mixture [60]
and a 87Rb-40K mixture [61–63] show Feshbach resonances. In
other combinations, the s-wave triplet scattering length ∼20aB

between 87Rb and 87Li has been measured [64]. A scattering
length ∼13aB was observed in a 6Li-174Yi mixture [65,66].
Isotopes of Yb are also used to realize a Bose-Fermi-Hubbard
system with V ∼ 100t in Ref. [67].

Finally, we note that the various high angular-momentum
pairings that we find may be detected experimentally by,
for example, phase-sensitive measurements [68–71], or using
noise correlations [72,73].

V. CONCLUSIONS

In this paper, we have investigated the mediated pairing
in a 2D Fermi gas embedded in a 3D system: either a
noninteracting Fermi gas or a BEC. The induced interaction
among 2D fermions obtained by integrating out the 3D degrees

of freedom lead to various pairing instabilities such as s-wave,
p-wave, dx2−y2 -wave, and gxy(x2−y2)-wave superconductivity.
In particular, we have shown that by using the 3D fermions,
we can explore various parameter regimes of the extended
Hubbard model, once we map the induced interaction onto
on-site and nearest-neighbor interactions.

We also find that the d-wave superconductivity induced by
the attractive nearest-neighbor interaction can have a higher
critical temperature than that of the same pairing induced by
doping in the simple Hubbard model. The former mechanism,
combined with the next-nearest hopping (known to enhance
the d-wave pairing instability), may be used to realize this
exotic pairing in cold atom experiments.
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APPENDIX: TWO-DIMENSIONAL LIMIT: EFFECTIVE
INTERACTIONS AND PHASE DIAGRAMS

In this Appendix, we discuss the case in which the bulk
system is in the two-dimensional limit, N ′ = 1. The effective
interaction in momentum space and in real space is depicted
in Fig. 9. We find that the scattering along the diagonal
directions |qx | = |qy | are enhanced near half-filling compared
to the bulk case (N ′ = 11) where we only have a sharp peak
at q = (π,π ). This results in larger next-nearest-neighbor
interactions as shown in Fig. 9(b). However, the overall
tendency and dependence on the filling is quite similar to
the bulk case, and the obtained phase diagrams shown in
Fig. 10 are also qualitatively the same as the bulk case.
This is because that the Lindhard function or particle-hole
propagator in Eq. (15) shows oscillatory behaviors regardless
of the dimensionality. While for the 3D case we need to
project it onto the 2D plane to get the effective interaction,
this does not modify the oscillatory nature of the function
qualitatively.

We note that when the bulk system is truly two dimensional,
the effect of V on the bulk part and of retardation effect may
not be ignorable due to larger quantum fluctuations, and our
approximations need to be carefully examined. Treating both
atomic species by fRG as in Ref. [48] seems more appropriate
in this case.
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