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Spin-incoherent Luttinger liquid (SILL) is a different universal class from the Luttinger liquid. This difference
results from the spin incoherence of the system when the thermal energy of the system is higher than the
spin excitation energy. We consider one-dimensional spin-1 Bose gas in the SILL regime and investigate its
spin-dependent many-body properties. In Tonks-Girardeau limit, we are able to write down the general wave
functions in a harmonic trap. We numerically calculate the spin-dependent (spin-plus, minus, and zero) momentum
distributions in the sector of zero magnetization which allows us to demonstrate the most significant spin-
incoherent feature compared to the spinless or spin-polarized case. In contrast to the spinless Bose gas, the
momentum distributions are broadened and in the large momentum limit follow the same asymptotic 1/p4

dependence but with reduced coefficients. While the density matrices and momentum distributions differ between
different spin components for small N , at large N they approach each other. We show these by analytic arguments
and numerical calculations up to N = 16.
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I. INTRODUCTION

A plethora of studies on one-dimensional (1D) quantum
systems of gaseous atoms [1] thrive recently due to the
experimental achievements of 1D confined bosons [2–4].
Many studies focus on the ground-state properties of spinless
bosons [5–7] such as spatial and momentum distributions
[8–10], quantum magnetism in a spinful Bose gas [11–16],
and low-energy excitations in the Luttinger liquid model
[17,18]. Meanwhile, a spinful quantum system in the spin-
incoherent regime [19] also provides a new avenue for studying
1D quantum many-body systems. This regime is termed
as spin-incoherent Luttinger liquid (SILL) which forms a
different universality class from the Luttinger liquid, where the
temperature is high enough that different spin configurations
can be regarded as degenerate while low enough that charge
excitation is suppressed. For 1D spin-1 Bose gas with s-wave
scattering lengths satisfying |a0 − a2| � a0,2 [20], there exists
a window of temperature for the gas in SILL regime. This
happens since the sound velocity is much larger than the
spin velocity.

In the crossover regime between Luttinger liquid and
SILL, 1D fermions with tunable spins [21] and their high
momentum tails [22] have been studied, which show an
evident broadening in the momentum distributions [23,24].
Quantum criticality [25] and Pomeranchuk effect [26] in
the spin-incoherent regime are also theoretically predicted
in the two-dimensional Hubbard model. Here in contrast
we investigate 1D spin-1 Bose gas in the SILL regime in a
harmonic trap, which is studied only recently [27]. We shall
focus on the Tonks-Girardeau (TG) regime [28,29] where the
density is sufficiently low that the effective repulsion between
particles can be regarded as infinite. TG spinor Bose gas is
a special case of SILL since the exchange energy vanishes
in this limit [13–16]. Therefore, TG gas automatically is in
the regime of SILL. In TG gas limit, we can write down
the exact spatial wave functions since bosons are fermion-
ized and impenetrable due to effectively infinitely strong

atom-atom interactions. We then numerically calculate the
momentum distributions for the three individual components
of the spin-1 Bose gas (spin-plus, minus, and zero). These
predictions can be measurable in spin-resolved matter-wave
experiments, either the time-of-flight experiment [30–33] or
Bragg scattering spectroscopy [34–39]. This system allows for
better demonstrations of SILL physics which is within reach of
present experimental conditions. As compared with electronic
spin-1/2 systems [19,24], ultracold atom experiments not
only provide controllable spatial dimensions but also tunable
atom-atom interactions via Feshbach resonances, thus making
our investigations testable in the quantum many-body systems.

In Ref. [27], we have derived the wave functions and
density matrix for 1D spin-1 Bose gas in TG limit. We
numerically calculate its momentum distributions, summed
over spin components, up to six bosons. The momentum
distributions are uniformly broadened as the number of bosons
N grows. We have also derived the analytical large momentum
(p) asymptotic in one-body momentum distributions, which
shows the universal 1/p4 dependence. The coefficients of the
asymptotic 1/p4 are also formulated for arbitrary N . Here we
present the spin-dependent properties of density matrix in 1D
spin-1 Bose gas in TG limit, and show the spin-dependent
momentum distributions up to N = 16. We also obtain the
spin-dependent coefficients of 1/p4 for asymptotic large p.
Though the momentum distributions vary between different
spin components for small N , they approach each other
as N increases. We show this from the numerical results
accompanied by analytical arguments in the large N limit.

The rest of the paper is organized as follows. In Sec. II we
introduce the general wave functions for 1D spin-1 Bose gas.
In Sec. III, we derive the general forms of density matrices for
each spin component with individual spin function overlaps
in SILL regime, and present the numerically calculated
results using Monte Carlo integration method implemented
with Gaussian unitary ensemble. In Sec. IV, we discuss the
analytical derivation of high momentum asymptotic for each
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component, which we compare with numerically calculated
momentum distributions. We also investigate the momentum
distributions in large N limit using the method of steepest
descent or stationery phase, and compare them with the
numerical results. Finally, we conclude in Sec. V.

II. GENERAL WAVE FUNCTIONS IN TG LIMIT

Our effective Hamiltonian of ultracold 1D spin-1 Bose gas
in TG limit can be expressed as [11,40,41]

H =
N∑

i=1

[
− h̄2

2m

∂2

∂x2
i

+ 1

2
mω2x2

i

]
Ispin

+
∑
i<j

δ(xi − xj )U0Ispin, (1)

where m and ω are respectively the mass of the bosons and the
axial trap frequency. U0 is the spin-independent interaction,
which in TG limit becomes infinite. Here we have already
ignored a spin-dependent interaction term since, in TG limit,
all spin configurations are degenerate [13–16]. In general we
can express the wave function of N bosons as

|�〉 =
∑

s1,s2,...,sN

ψs1,s2,...,sN
(�x)|s1,s2, . . . ,sN 〉, (2)

where we denote �x = (x1,x2, . . . ,xN ) and |s1,s2, . . . ,sN 〉 ≡
|�s〉 as the spatial distributions and the spin configurations,
respectively. Here we can label si = +, −, or 0, respectively
for spin-plus, minus, and zero components for the ith particle.
The total wave function must satisfy the bosonic symmetry;
therefore, it is sufficient to just consider the ordered region of
x1 < x2 < · · · < xN , and we can obtain all other regions via
permutations of this ordered region. In TG gas limit, the atoms
become fermionized that their spatial wave functions take the
Slater determinant form of noninteracting fermions. For the
symmetrized spatial part of the wave function, we denote it as
ψ

sym
�n (�x) which can be expressed in terms of the eigenfunctions

φnj
(xj ) of the noninteracting fermions in a harmonic trap,

ψ
sym
�n (�x) = 1√

N !
A[φn1 (x1),φn2 (x2), . . . ,φnN

(xN )]

× sgn(x2 − x1)sgn(x3 − x2) . . .

× sgn(xN − xN−1). (3)

We denote the sign function as sgn and the antisym-
metrizer as A for later convenience. The orbital indices are

(n1, n2, . . . nN ), and the prefactor
√

N ! normalizes the wave
function. For convenience we use the dimensionless forms of
the eigenfunctions φn(y),

φn(y) = 1√
2nn!

1

π1/4
Hn(y)e−y2/2, y ≡ x/xho, (4)

where Hn are Hermite polynomials. The harmonic-oscillator
length is xho ≡ √

h̄/(Mω), where ω is the trap frequency and
M is the atomic mass.

To eventually evaluate the density matrix for say the “+”
component, we need to obtain the wave-function amplitude
where at least one particle has spin +. First we consider
some degenerate and normalized spin configuration state
|χ〉 in some sector of magnetization, and the wave function
can be expressed as |�〉 = ψ

sym
�n (�x)|χ〉. Take N = 3 for an

example; we obtain the probability amplitude ψ
sym
+,s2,s3

(x,x2,x3)
for the first particle having spin + when we project |�〉 to
〈s1 = +,x1 = x| in the ordered region of x < x2 < x3. To
access the probability amplitudes in the other regions, we use
the permutation operators P12 and P123 on the projected states,
obtaining

x < x2 < x3, 〈(+,s2,s3)|χ〉,
x2 < x < x3, 〈(s2, + ,s3)|χ〉 = 〈P12(+,s2,s3)|χ〉,
x2 < x3 < x, 〈(s2,s3,+)|χ〉 = 〈P123(+,s2,s3)|χ〉, (5)

where we have suppressed the common ψ
sym
�n (�x) factors.

Similar construction applies for other N ’s. In the next section
we proceed to calculate the spin-dependent density matrices
for spin-1 Bose gas in the SILL regime.

III. DENSITY MATRICES FOR SILL OF SPIN-1 BOSE GAS

The spin-dependent single-particle density matrix can
be straightforwardly written down from the wave function
described above. For example of the spin-plus component,
we have

ρ+(x,x ′) = N
∑

�s ′

∫
dx̄ ψ∗

+,�s ′ (x,x̄)ψ+,�s ′ (x ′,x̄), (6)

where x̄ ≡ (x2,x3, . . . ,xN ) and �s ′ ≡ (s2,s3, . . . ,sN ). A factor
of N represents N possible choices of x and x ′.

Again we take N = 3 as an example, and consider only the
region of x < x ′ which is symmetric to x > x ′. The spin-plus
single-particle density matrix for N = 3 then becomes

ρ+(x < x ′) = 3 × 2

{∫
x<x ′<x2<x3

(E,E)+ +
∫

x<x2<x ′<x3

(E,P12)+ +
∫

x<x2<x3<x ′
(E,P123)+

+
∫

x2<x<x ′<x3

(P12,P12)+ +
∫

x2<x<x3<x ′
(P12,P123)+ +

∫
x2<x3<x<x ′

(P123,P123)+

}
×ψ

sym∗
�n (x,x2,x3)ψ sym

�n (x ′,x2,x3)dx2dx3, (7)

where the parentheses () in various integral regions represent the spin function overlaps. Taking (E,P12)+ as an example where
E is the identical permutation operator, we define

(E,P12)+ =
∑
s2,s3

〈E(+,s2,s3)|χ〉〈P12(+,s2,s3)|χ〉. (8)
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Similar forms apply to the other spin function overlaps in Eq. (7). Also the factor of 2 in Eq. (7) comes from the contribution of
the integral region x2 > x3, where the spin function overlaps are the same as those with x2 < x3.

In the SILL regime, we average the above individual spin function overlaps by the total number of spin state configurations,
which is denoted as Trχ (E) ≡ ∑

χ 〈χ |E|χ〉. It is simply the trace (Tr) of the identical operator over all spin configurations |χ〉
since 〈χ |E|χ〉 = 1. We define the normalized spin function overlap in general as (using the same notation as the non-normalized
one for simplicity)

(P12...j ,P12...k)+ =
∑

�s ′ 〈P12...j (+,�s ′)|P12...k(+,�s ′)〉
Trχ (E)

, (9)

where P12...j are j -particle permutation operators in the symmetric group SN . To derive Eq. (9), we have used the identity∑
χ |χ〉〈χ | = 1. (P12...j ,P12...k)+ in general represents the spin function overlap from the integration region where the particle at

x permutes to just behind xj , while the particle at x ′ permutes to just behind xk .
In general for arbitrary N , we obtain the spin-plus density matrix as

ρ+(x < x ′) = N !

{ ∫
x<x ′<x2···<xN

(E,E)+ +
∫

x<x2<x ′ ···<xN

(E,P12)+ +
∫

x<x2<x3<x ′ ···<xN

(E,P123)+ + · · ·

+
∫

x2<x<x ′ ···<xN

(E,E)+ +
∫

x2<x<x3<x ′ ···<xN

(E,P12)+ + · · · +
∫

x2<x3···<xN <x<x ′
(E,E)+

}
×ψ

sym∗
�n (x,x̄)ψ sym

�n (x ′,x̄)dx̄, (10)

where we have used the properties of (P12...j ,P12...j )+ =
(E,E)+ and (E,P12...j )+ = (P12...m,P12...m+j−1)+ for j,m � 2.
The first property can be proved from Eq. (9) by using
P −1

12...jP12...j = E−1E = 1. To prove the second property, we

can reduce P −1
12...mP12...m+j−1 to

(Pm−1,m . . . P23P12)−1Pm...m+j−1(Pm−1,m . . . P23P12)

= P −1
12 P −1

23 . . . P −1
m−1,mPm...m+j−1Pm−1,m . . . P23P12,

= P1,m+1...m+j−1,

such that (E,P1,m+1...m+j−1)+, using again Eq. (9), is exactly
the same as (E,P12...j )+.

Other spin components of the density matrices, ρ−(x < x ′)
and ρ0(x < x ′), can be derived similarly from characterizing
the respective normalized spin function overlaps ()−,0 which
we will evaluate below.

From now on we limit ourselves to the specific sector of
total Sz ≡ ∑N

i=1 si = 0. For Sz close to N , spin-1 Bose gas
will behave not much different from the polarized or spinless
one. Therefore, we choose the sector of zero Sz, which allows
the SILL of spin-1 Bose gas to distinguish most significantly
from the spinless bosons for Sz � N . The spin configurations
|χ〉 in this sector generally involve n pairs of (+−), that is
| + + + − − −00 . . . 0〉, with n = 3 for example. The total
number of states can then be calculated as

wN ≡ Trχ (E) =
N
2 or N−1

2∑
n=0

N !

(n!)2(N − 2n)!
, (11)

which we obtain by permuting n (±)’s and (N − 2n) (0)’s.
For the spin-plus component of the single-particle density
matrix in Eq. (10), the spin configuration |00 . . . 0〉 with
n = 0 never contributes. Therefore, we consider only the spin
configurations of at least one pair of (+−), and |χ〉 can be
generally expressed as

| + + · · · +︸ ︷︷ ︸
n−1

− · · · −︸ ︷︷ ︸
n

00 . . . 0︸ ︷︷ ︸
N−2n

〉.

The first + is projected out in ρ+(x < x ′), and thus we have
the normalized spin function overlap (E,E)+,

(E,E)+ = 1

wN

N
2 or N−1

2∑
n=1

(N − 1)!

(n − 1)!n!(N − 2n)!
, (12)

which is averaged by wN , the total number of states. We note
that all the arguments of the factorials should be equal and
larger than zero. (E,E)+ is proportional to the number of
states obtained by permuting the rest of (n − 1) (+)’s, n (−)’s,
and (N − 2n) (0)’s. For (E,P12...j )+, it has a contribution only
when the first j entries are (+)’s,

| + · · · +︸ ︷︷ ︸
j

+ · · · +︸ ︷︷ ︸
n−j

− · · · −︸ ︷︷ ︸
n

00 . . . 0︸ ︷︷ ︸
N−2n

〉,

such that we have

(E,P12...j )+ = 1

wN

N
2 or N−1

2∑
n�j

(N − j )!

(N − 2n)!n!(n − j )!
, (13)

which denotes the number of states obtained by permuting
the rest of (n − j ) (+)’s, n (−)’s, and (N − 2n) (0)’s. In this
specific sector of zero Sz, we note that in general (E,P12...j )+
is nonvanishing only when j � N/2.

These corresponding spin function overlaps in ρ−(x < x ′),
which are (E,E)− and (E,P12...j )−, should be the same as
those in ρ+(x < x ′). For ρ0(x < x ′), we have the spin function
overlaps as

(E,E)0 = 1

wN

N
2 or N−1

2∑
n=0

(N − 1)!

(n!)2(N − 2n − 1)!
, (14)

(E,P12...j )0 = 1

wN

N
2 or N−1

2∑
n=0

(N − j )!

(n!)2(N − 2n − j )!
, (15)

which respectively denote the number of states contributed
from the spin configurations with the first one and the first j
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FIG. 1. Single-particle density matrix of spin-1 and spinless
bosons for N = 10 in the sector of Sz = 0. The density matrix
of spin-1 bosons is ρ(x,x ′) = 2ρ+(x,x ′) + ρ0(x,x ′). The spatial
correlations are plotted at chosen x/xho = −1. Spinless (spl) bosons
(+) show broader spatial distributions than the spin-1 bosons (�),
indicating a narrower distribution in momentum space.

entries of (0)’s. We note of the identity that

2(E,E)+ + (E,E)0 = 1. (16)

This also corresponds to the particle number conservation,
that is 2N+ + N0 = N , where N±(0) ≡ ∫

dx ρ±(0)(x,x). Thus
the number of particles is proportional to the spin function
overlaps, N±(0) = N (E,E)±(0). Furthermore, we note that

2(E,P12...j )+ + (E,P12...j )0 = wjN/wN, (17)

where wjN was defined in Ref. [27],

wjN ≡
N
2 or N−1

2∑
n=0

[
(N − j )!

(n!)2(N − 2n − j )!

+ 2(N − j )!

(n − j )!n!(N − 2n)!

]
. (18)

A. Spatial correlation in SILL of spin-1 Bose gas

The effect of the spin function overlaps in the SILL regime
can be seen in Fig. 1 where we compare the spatial correlations
of spin-1 [ρ(x,x ′)] and spinless bosons [ρspl(x,x ′)] at some
chosen x in a harmonic trap. Spinless or spin-polarized
bosons show a wider spatial distribution than the spin-1
case, indicating a sharper momentum distribution. Large
|x − x ′| in the spatial correlation corresponds to the small
p region. For spinless bosons, it has been shown in the
bulk that ρspl,b(x,x ′) ∝ |x − x ′|−1/2; thus small p behavior
is proportional to |p|−1/2 [42–45]. This narrow momentum
distribution resembles the one of a Bose-Einstein condensate
but not quite since no condensation is allowed [46] due to
large quantum fluctuations in a 1D system. Therefore, no
off-diagonal long-range order can be present in the density
matrix of 1D Bose gas. However, a superfluid phase can exist in
1D quantum systems, possessing a power-law decay in spatial
correlations. This power-law decay can be well described in the
Luttinger liquid model using the bosonization method [17,18].

In a harmonic trap as shown in Fig. 1, the spatial correlations
of ρspl(x,x ′) are similar to the one in a bulk in a moderate region
of |x − x ′| until the correlation decays faster at the edge of the
trap (x ′ � 4xho). In the trap, ρspl(p = 0) is finite. It has also
been shown that ρspl(p = 0) ∝ N in the large N limit [7].

In sharp contrast to the spinless bosons in Fig. 1, the spin-1
Bose gas in the SILL regime shows an exponential decay in
its spatial correlation, which is therefore not condensed. This
exponential decay has been predicted in the single-particle
Green’s function of quantum wires in the SILL regime
[19,47,48], distinguishing from the Luttinger liquid with only
power-law decays. In the momentum distributions, on the other
hand, spin incoherence tends to broaden the distributions,
which have been investigated in the t−J model [24,49,50] or
the system of uniform two-component gas [23]. Similarly, the
spin-1 bosons in the SILL regime will also have a broadened
momentum distribution due to the averaging of the spin
function overlaps, which we discuss in more details below.
Large p behavior will be discussed later in Sec. IV A.

B. Momentum distribution in SILL of spin-1 Bose gas

We define the spin-dependent momentum distributions as

ρ±(0)(p) = 1

2π

∫ ∞

−∞
dx

∫ ∞

−∞
dx ′eip(x−x ′)ρ±(0)(x,x ′), (19)

where we set h̄ = 1. We then numerically calculate the
momentum distributions of the three components in 1D TG
Bose gas based on Eq. (10), ρ−(x < x ′), and ρ0(x < x ′). In
Fig. 2, both spin components of ρ+(p) and ρ0(p) are uniformly
broadened as N grows, and ρ+(p) �= ρ0(p) for finite N . The
effect of spin incoherence also averages out the oscillatory
structure that is present in the momentum distribution for
specific spin state of spinor Bose gas [11]. Furthermore, the
peaks of ρ0(p) are larger than ρ+(p) up to N = 16. This is
due to N0 � N± in general and the spin function overlaps
(E,P12...j )0 are always larger than (E,P12...j )+, which we will
show more specifically in Fig. 9 in the Appendix. For spinless
bosons, the peaks of ρspl(p) have a scaling of ρspl(p = 0) ∝ N

[7]. Here the spin-1 Bose gas in the SILL regime shows fitted
scalings of ρ+(p = 0) ∝ N0.49 and ρ0(p = 0) ∝ N0.66 from
Fig. 2. These reduced scalings again show the feature of
broadened momentum distributions in the SILL regime

To calculate ρ±(0)(x,x ′) we implement Gaussian unitary
ensemble (GUE) [7] to speed up the convergence in the
Monte Carlo (MC) integration method. The GUE draws a
series of (N − 1) random numbers in x̄, which are repul-
sively distributed due to the joint probability density of
�1�i<j�N−1(xi − xj )2. This implementation of GUE thus
enables our MC integration to simulate up to N = 16, which in
this case takes about 140 h with MC simulations of M = 106

sets of random numbers using 200 parallel CPU cores. All
MC simulations in Fig. 2 use M = 107 except for N = 16
with M = 106.

In the next section we investigate their asymptotic forms
in large momentum limit, which show 1/p4 decay, and their
momentum distributions in large N limit.

IV. MOMENTUM DISTRIBUTIONS IN HIGH
p AND LARGE N LIMITS

A. Asymptotic high p limit

For spinless bosons in the TG limit, relative wave function
between two particles in short distance is ψrel(x,x ′) ∝ |x − x ′|,
indicating impenetrable bosons and corresponding to the
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FIG. 2. Momentum distributions of (a) spin-plus [ρ+(p)] and (b) zero components [ρ0(p)] in the SILL regime. In the sector of Sz = 0, we
numerically calculate the momentum distributions of 1D spin-1 TG gas up to N = 16. They are uniformly broadened as N increases, and the
peaks of ρ0(p) are larger than ρ+(p) due to the spin function overlaps.

feature of fermionic repulsion. Again it has been shown
[42–45] in a bulk where ρspl,b(x,x ′) in short distance is
proportional to [1 + · · · + |x − x ′|3/(9π ) + · · · ]. Thus the
nonanalytic |x − x ′|3 term in the short-distance correlation
gives a universal 1/p4 asymptotic in large momentum limit.
This universal 1/p4 asymptotic is not unique for a Bose gas
with two-body contact interactions [8–10]. It also shows up
in Tan’s relation [51,52] in the two-component Fermi gas
[53–56]. We note that the coefficient of the scaling depends
on the many-body state and is related to the slope of energy
(−dE/dg−1

1D ) [9,22].
For 1D spin-1 TG Bose gas, on the other hand, the analytical

results for a high p asymptotic total momentum distribution
ρ(p) have been derived [27], showing also a universal 1/p4

dependence. Similarly for its spin-dependent components,
they can be straightforwardly written as

ρ±(0)(p) =
p→∞

2[(E,E)±(0) + (E,P12)±(0)]

2πp4

×
∑

(ni ,nj )

∫ ∞

−∞
dx

∣∣∣∣φ′
ni

(x) φ′
nj

(x)
φni

(x) φnj
(x)

∣∣∣∣2

, (20)

where (ni,nj ) denotes any possible pairs of N harmonic-
oscillator eigenfunctions. The asymptotic form depends on
the spin function overlap (E,P12)±(0) because it has significant
contributions only from the integral regions of x < xj < x ′
and x ′ < xj < x for all xj ∈ x̄ with x ≈ x ′. The asymptotic
form for the spinless bosons can be also obtained by replacing
[(E,E)±(0) + (E,P12)±(0)] with 2 in Eq. (20). We note that,
using Eqs. (20) and (18), we have 2ρ+(p) + ρ0(p) = ρ(p)
where the last quantity was computed in Ref. [27].

The spin-1 Bose gas in the SILL regime shows very differ-
ent properties from the spin-coherent ones in the coefficients
of high p asymptotics. The coefficients are always less than the
ones in spinless bosons since (E,E)±(0), (E,P12)±(0) < 1. This
is because the spin part of the wave function is no longer neces-
sarily symmetric under interchange of two particles. And for
large N , [(E,E)±(0) + (E,P12)±(0)] → [1/3 + (1/3)2] = 4/9

from Eq. (A22), less than 2 for the case of spinless bosons as
well. As an example, in Fig. 3 we compare the numerical and
analytical results of ρ+(p) in high p limit. The numerically
calculated high p asymptotics approach approximately the
analytical ones. For even larger pxho � 7, the trends either
drop and cross the analytical asymptotics, or bounce back
and oscillate, indicating the inaccuracy of numerical results in
these regions. To reach accurate high p asymptotics is quite
demanding in MC integrations and consuming more CPU time
for even larger N . However, MC simulations have already
achieved the accuracy of 10−3 and 10−2 of the momentum
distributions for N = 2–3 and 10, respectively.

We have also evaluated numerically the potential (〈V 〉) and
kinetic energies (〈K〉). Since our 1D bosonic TG gas has
the same density distribution as the one of a Fermi gas, we
have 〈V 〉 = 〈K〉 = N2h̄ω/4, equivalent to half of the total
energy, which complies with the virial theorem [57,58]. In
Ref. [27], we concatenate ρ(p) with the asymptotic tails

1 2 4 6 8 10 12 14
10

−5

10
−4

10
−3

10
−2

10
−1

px
ho

ρ +(p
)x

h
o

−1

FIG. 3. Asymptotics of high momentum distributions in Fig. 2.
High momentum distributions are plotted in logarithmic scales
and compared with analytic calculations (dash) in the spin-plus
component of 1D spin-1 TG Bose gas. The analytical asymptotics
are (0.085, 0.245, 0.694, 1.267, 2.131, 3.225, 8.305)/p4, respectively
for N = 2–7 and 10. The line symbols and colors are the same as
Fig. 2, and a vertical line (dash-dot) at around pxho ∼ 7 guides the
eye for the limitation in accuracy of the numerical calculations.
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FIG. 4. Difference between spin-plus and spin-zero momentum
distributions. The symbols and colors are plotted correspondingly as
in Fig. 2, where we choose N = 2–6 and 16. The case of N = 7 is
neglected here for it is too close to the one of N = 6. The difference
diminishes gradually as N increases.

analytically derived to improve the energy calculations. Here
we directly use the momentum distributions of ρ(p) calculated
by MC simulations implemented with GUE. We find that the
numerical results of these energies improve to the relative
errors below 7% and 10% for N = 2–7 and 16 respectively
to the exact values of 〈V 〉 and 〈K〉. This further shows the
advantage of GUE in the convergence and accuracy of our
numerical results.

In Fig. 4, we plot the difference of spin-plus and zero
momentum distributions numerically, ρ+(p) − ρ0(p), from
Fig. 2. The difference goes away gradually as N increases,
indicating these two components approach each other in large
N limit. The dips at around p ∼ 0 demonstrate that the peaks
of ρ0(p) are always higher than ρ+(p), which is due to larger
spin function overlaps for the spin-zero component. A special
feature of the peaks for the case of N = 2 shows a wider ρ+(p)
than ρ0(p), while this feature is not obvious for larger N .

B. Large N limit

Due to the limits of numerical integration, we can only
calculate the single-particle density matrix of spin-1 bosons up
to N = 16. For finite N , we have demonstrated numerically
ρ+(p) �= ρ0(p) since in general N0 � N+ and spin function
overlaps (E,P12...j )0 are always larger than (E,P12...j )+. Thus
the peaks of ρ0(0 = 0) are larger than ρ+(p = 0). In this sub-
section we attempt to investigate the momentum distributions
in large N limit. The study in this limit can give insight to
practical experiments where several hundreds or thousands of
atoms are involved.

To investigate the individual components of spin-1 mo-
mentum distributions in large N limit, we need the asymptotic
forms for various spin function overlaps. These spin function
overlaps in general can be written as

(E,E)+ = f
(N−1)
1

f
(N)
0

, (E,P12...j )+ = f
(N−j )
j

f
(N)
0

,

(E,E)0 = f
(N−1)
0

f
(N)
0

, (E,P12...j )0 = f
(N−j )
0

f
(N)
0

, (21)

100 200 300 400 500 600

10
−2

10
−1

10
0

N

FIG. 5. Relative deviations of Eq. (24) for the asymptotic forms
f̄

(N−j )
j and f̄

(N−j )
0 of the exact spin function overlaps (E,P12...j )+

and (E,P12...j )0, respectively. The relative deviations are plotted for
j = 2(�), 3(+), 4(×), 5(◦), and 10(�). The deviations decrease as N

increases, which indicates that the asymptotic forms are approaching
each other. It suggests that spin-plus and zero components of the
momentum distributions coincide in the large N limit.

where

f
(N)
k ≡

N−k
2∑

j=0

N !

(k + j )!j !(N − 2j − k)!
. (22)

We find the asymptotic form of f
(N)
k in large N limit in the

Appendix using the method of steepest descent or stationary
phase [59]. In Fig. 9 of the Appendix, the asymptotic forms in
Eq. (A20) are used to compare with the exact ones of Eqs. (12),
(13), (14), and (15), and they approach the exact ones in large
N limit for small j in Eq. (21). Therefore, we shall use the
asymptotic forms to compare the spin-plus with the spin-zero
components of the spin function overlaps for large N .

We define their relative deviations as∣∣∣∣ (E,P12...j )+ − (E,P12...j )0

(E,P12...j )0

∣∣∣∣, (23)

which asymptotically approaches to∣∣∣∣∣ f̄
(N−j )
j − f̄

(N−j )
0

f̄
(N−j )
0

∣∣∣∣∣, (24)

in large N limit, where f̄
(N−j )
j is the asymptotic form of

f
(N−j )
j . This asymptotic form allows us to compute the

deviations for even larger N than using the exact formulas. In
Fig. 5, the relative deviations decay as N increases for small
j and become below 10−2 for N ∼ 600 with j � 3. Note
that for a moderate j = 10, it only reaches 0.1 for as high
as N = 600. Since the spin function overlaps with smaller j

contribute much more to the momentum distributions than
j � N/2 [see Figs. 9(a) and 9(b)], along with much less
relative deviations, we expect that the spin-plus momentum
distribution approaches the one of spin-zero as N increases.
We have also shown this trend in Fig. 4 for finite N up to
sixteen particles.

This can be further confirmed by studying respective
contributions from the integral regions in the single-particle
density matrix ρ+(x < x ′) of Eq. (10). In Fig. 6 we plot the
results of most significant 12 out of a total 15 integral regions
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FIG. 6. Contributions from the integral regions for ρ+(x < x ′)
with N = 5. The values for each integral region without and with the
multiplications of spin function overlaps are shown in (a) and (b),
respectively. Four spatial correlations are chosen at (x,x ′) as denoted
in the legend of (a) along with the symbols (�, + , ◦ ,×) for clarity.
The inset in (b) displays 15 spin function overlaps for the case of five
bosons.

for the case of N = 5 with and without the multiplications of
spin function overlaps. The order of the integral regions can
be seen from Eq. (10). We denote the first five regions as
x < x2 with x ′ < x2 moving sequentially to x5 < x ′, the next
four regions (sixth to tenth) as x2 < x < x3 with x2 < x ′ < x3

moving sequentially to x5 < x ′, and so on for the rest of the
regions. A feature of hard core bosons in 1D harmonic trap is
that atoms prefer to distribute evenly in space. The particles at
x̄ repel each other due to their strongly repulsive interactions
in TG limit. Thus more significant peaks of the integral con-
tributions occur roughly at the corresponding integral regions
depending on (x,x ′). For example, in Fig. 6(a), the spatial
correlation at (x,x ′) = (−1,0) has the largest contribution
at the seventh integral region, x2 < x < x3 < x ′ < x4 < x5.
Similarly the spatial correlation at (x,x ′) = (−1,3) has the
largest contribution at the ninth integral region, x2 < x <

x3 < x4 < x5 < x ′. In Fig. 6(b) we multiply these values with
the spin function overlaps (inset), and show that significant
contributions come from the overlaps with small j . For four
specific spatial correlations we choose here, significant values
dwell in the sixth, seventh, tenth, and eleventh integral regions,
which correspond to the spin function overlaps (E,E)+,
(E,P12)+, (E,E)+, and (E,P12)+, respectively. Moreover, as
expected, the spatial correlations decay as |x − x ′| increases,
reminiscent of the exponential decay discussed in Sec. III A.

For TG bosons in the bulk with a length L in thermodynamic
limit, we can use the analytical expression of Eq. (20) and
let φni

(x) = eikix/
√

L with various eigenmodes ni → ki . The
spatial integral in Eq. (20) can then be calculated as

∫
dx

∣∣∣∣φ′
ni

(x) φ′
nj

(x)
φni

(x) φnj
(x)

∣∣∣∣2

= 1

L2

∫
dx

∣∣∣∣ikie
ikix ikj e

ikj x

eikix eikj x

∣∣∣∣2

= (ki − kj )2

L
. (25)

In the continuous limit of (ki,kj ) corresponding to the pairs of
(ni,nj ) in the summation, we have ρspl,b(p → ∞) in the bulk

ρspl,b(p → ∞)

L
= 2

πp4

∫ kF

−kF

dki

2π

∫ ki

−kF

dkj

2π
(ki − kj )2,

(26)

where kF = πN/L. Letting ki = kF x and kj = kF y, the above
becomes

ρspl,b(p → ∞)

L
= k4

F

2π3p4

∫ 1

−1
dx

∫ x

−1
dy(x − y)2

= 2k4
F

3π3p4
, (27)

which is the same as Eq. (67) in Ref. [45] up to a factor of 2π in
our definition of Fourier transform in Eq. (19). Our derivation
is parallel to using short-distance expansions in ρspl,b(x,x ′)
[45], where its nonanalytic term |x − x ′|3/(9π ) after Fourier
transform gives the same result.

For large N spinless bosons in a harmonic trap, we can use
the local-density approximation (LDA) for the local chemical
potential in Thomas-Fermi limit, which reads μ(x) = μ −
αx2/2 with α = Mω2. The cutoff momentum can be derived
as kF (x) =

√
2M(μ − αx2/2). Since the maximum mode in

1D hard core bosons at infinite interactions is approximately
nmax ≈ N , the chemical potential can be determined as μ =
nmaxω ≈ Nω. We further define the boundary of xmax =√

2Nω/α such that we reexpress kF (x) as
√

(Mα)(x2
max − x2).

Applying LDA to Eq. (27), we have the density matrix for
spinless bosons in a harmonic trap as

ρspl,LDA(p → ∞) = 2

3π3

∫ xmax

−xmax

dx
k4
F (x)

p4

= 2(Mα)2

3π3p4

∫ xmax

−xmax

dx
(
x2

max − x2
)2

= 27
√

2

45π3
N5/2 1

p4x3
ho

, (28)

where the scaling of N5/2 disagrees with Ref. [9], which
gave a different scaling of N3/2. N5/2 scaling has also been
reported for the 1D SU(κ) Fermi gas with κ �= 1 [22]. The
coefficient in Eq. (28) is the same as the TG Fermi gas in the
κ → ∞ limit.

For the spinful case of our spin-1 Bose gas in large N

limit, the asymptotic coefficient of [(E,E)±(0) + (E,P12)±(0)]
becomes [1/3 + (1/3)2] = 4/9 according to Eq. (A22), such
that the spin-dependent and total momentum distributions
respectively in thermodynamic limit become

ρ±(0)(p → ∞)|N→∞ = 1

2

4

9
ρspl,LDA(p → ∞)

= 28
√

2

405π3
N5/2 1

p4x3
ho

(29)
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FIG. 7. Comparisons of the coefficients in the momentum dis-
tributions of spinless and spin-1 Bose gas. We plot the coefficients
of (a) c(N ) (�) and (b) c+(N ) (�) and c0(N ) (×), respectively for
spinless bosons, spin-plus, and spin-zero components in high p limit.
These coefficients approach the asymptotic values c(∞) = 2 (dash)
and c+(0)(∞) = 4/9 (dash) when N increases.

and

ρ(p → ∞)|N→∞ = 3ρ±(0)(p → ∞)|N→∞

= 28
√

2

135π3
N5/2 1

p4x3
ho

, (30)

which is 2/3 of Eq. (28).
We denote the momentum distribution of spinless bosons

in high p limit as ρspl(p → ∞) which can be derived
by replacing [(E,E)±(0) + (E,P12)±(0)] with 2 in Eq. (20).
We then define c(N ) ≡ ρspl(∞)(26

√
2)−1N−5/2(45π3p4x3

ho)
and c(∞) = 2 according to Eq. (28). c±(0)(N ) can be also
defined in the same way for ρ±(0)(∞). These coefficients
can be calculated using Eq. (20). In Fig. 7 we plot c(N )
and c+(0)(N ) respectively to show how they approach the
asymptotic large N values. We find that Eqs. (28) and (29)
already give good enough estimates for N � 20 and 30
for spinless and spin-1 bosons, respectively. The relative
deviations |c(N ) − c(∞)|/c(∞) = 0.14% for N = 40, and for
the cases of c+(0)(40), they reach 1.9%(1.5%). In Fig. 7(b),
c0 > c+, which again indicates that the spin function overlaps
(E,P12...j )0 > (E,P12...j )+ and N0 > N+.

V. CONCLUSION

In conclusion, we have investigated the spin-dependent
properties of spin-1 Bose gas in the regime of spin-incoherent
Luttinger liquid (SILL). Three components (spin-plus, zero,
and minus) of the single-particle density matrix for this
universal class can be calculated by deriving respective spin
function overlaps. These spin function overlaps result from
the highly degenerate spin configurations in the SILL regime.
In contrast with the spinless bosons with a power-law decay
in its spatial correlation, spin-1 bosons in TG limit show an
exponentially decaying spatial correlation, which indicates a
broadened momentum distribution and a different universal
class from Luttinger liquid. The universal 1/p4 dependence in
high p limit is also present in the spin-dependent momentum
distributions. This asymptotic has a scaling of N5/2 with
a reduced coefficient than the one of the spinless bosons.
The coefficients of the asymptotic are proportional to Tan’s

contact and can be observed in experiments as one of the
signatures of SILL. We compare these analytical predictions
with the numerical results calculated by Monte Carlo (MC)
integration with Gaussian unitary ensemble (GUE) up to
sixteen bosons. The method of MC integration implemented
with GUE converges faster and gives more accurate results
such that we are able to calculate higher p regions. The high
momentum tails approximately and asymptotically follow the
reduced coefficients we analytically derived.

For the Sz = 0 sector, we show that the spin-zero
component always has a larger peak than the spin-plus
momentum distribution for finite N . This can be explained by
the spin function overlaps which are larger for the spin-zero
density matrix than the spin-plus case. While they differ for
small N , they coincide in the large N limit. This indicates
that highly incoherent bosons form in this limit with each
component occupying exactly one-third of the total number of
particles. The ultracold spinor Bose gas allows for a potential
realization of this universal class of SILL, and our results offer
a testable paradigm to study quantum many-body phenomena
in 1D strongly interacting bosons.
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APPENDIX: SPIN FUNCTION OVERLAPS IN LARGE
N LIMIT

Before we derive the spin function overlaps in large N limit,
first we express them in terms of an integral function, and then
introduce the method of stationary phase or steepest descent to
solve for their asymptotic forms [59]. Consider the following
function:

f (N)(x) = (x + x−1 + 1)N

=
N∑

j2=0

N−j2∑
j1=0

N !

j1!j2!(N − j1 − j2)!
xj1−j2 , (A1)

where the second line above can be derived by binomial
expansions. When we set k = j1 − j2 and j = j2, we have

f (N)(x) =
N∑

k=−N

N−k
2∑

j=0

N !

(k + j )!j !(N − 2j − k)!
xk, (A2)

where the upper bound of index j can be derived by solving
j2 in the equations of j1 + j2 = N and j1 − j2 = k. From
Eq. (A2), we define the coefficient of xk in f (N)(x) as f

(N)
k

which is the same as the one of x−k . f (N)
k is defined in Eq. (22)

in the main paper. Comparing with Eqs. (12), (13), (14), and
(15) in the main paper, we find that the spin function overlaps
can be expressed as Eq. (21) in the main text. These coefficients
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FIG. 8. Integration paths for calculating the asymptotic form of
f

(N)
k traversing through three saddle points (denoted as ×). Starting

from w = −π in the complex plane of w, we choose a vertical path
D−1 to reach the first saddle w−1 with increasing imaginary parts only.
Paths C±1 traverse through the saddle points w±1 from the left tangent
to the real axis, which connect to the path C0 crossing the third one
w0, again tangent to the real axis. The last path D1 reaches the end
point of w = π starting from w1. Paths C±1 and C0 follow the valleys
of steepest descent while D±1 do not.

can be calculated as follows:

f
(N)
k = 1

2πi

∮
C

dz zk−1(z + z−1 + 1)N, (A3)

where the coefficient f
(N)
k (of z−k in this case) is exactly the

residue at the pole of z = 0 with a complex number z. C

in the above denotes a contour integration on a circle in a
counterclockwise direction around the origin.

The asymptotic behavior of the integral can be obtained in
large N limit. We let z = eiθ ; the coefficient becomes

f
(N)
k = 1

2π

∫ π

−π

dθ eikθ (1 + 2 cos θ )N

= 1

2π

∫ π

−π

dθ eF(θ), (A4)

where F(θ ) ≡ N ln(1 + 2 cos θ ) + ikθ . Let θ → w in the
complex plane, using the method of steepest descent [59] for
the above highly oscillating integrals in large N limit, we first
find the saddle points which satisfy the first derivativeF ′(w) =
0. The integrals are then dominated by the local maxima
passing the saddle points along the integration contour.

The saddle points are therefore located at

− 2 sin w + ik

N
(1 + 2 cos w) = 0, (A5)

which, after replacing trigonometry functions with exponen-
tials, becomes

eiw = −k/N ±
√

(k/N)2 + 4(1 − k2/N2)

2(1 + k/N)
. (A6)

If k → 0, the above suggests a multiple of roots that satisfy
eiw = ±1, which are w = 2nπ and ±(2n + 1)π for integers n,
indicating multiple saddle points in this integral. We consider
an integration path in Fig. 8, where only three saddle points
(n = 0) are involved. Below we demonstrate why the contour
is valid and guarantees to follow the valleys of steepest descent

between these three saddle points, which can be determined
by the sign of F ′′(w).

First to calculate F ′′(w0), we define Q ≡
√

4 − 3(k/N)2,
and we have from Eq. (A6) with the “+” sign,

eiw0 = −k/N + Q

2(1 + k/N)
, e−iw0 = k/N + Q

2(1 − k/N)
, (A7)

where w0 should be purely imaginary in general. We further
use the above to reinterpret

cos w0 = (k/N)2 + Q

2[1 − (k/N)2]
, 1 + 2 cos w0 = 1 + Q

1 − (k/N)2
,

sin w0 = i

2

k

N

1 + Q

1 − (k/N)2
. (A8)

Now the second derivative of F(w0) becomes

F ′′(w0) = N

[ −2 cos w0

1 + 2 cos w0
− 4 sin2 w0

(1 + 2 cos w0)2

]

= −N
[Q(1 − (k/N)2)]

1 + Q
, (A9)

which is always less than zero. For example, F ′′(w0) =
−2N/3 and −Nε respectively at small and large k limit
(k/N = 1 − ε with ε � 0).

Next for F ′′(w±1) at the other two saddle points which we
denote as w±1, we have from Eq. (A6) with the “−” sign,

eiw±1 = −k/N − Q

2(1 + k/N)
, e−iw±1 = k/N − Q

2(1 − k/N)
, (A10)

where w±1 in general are complex. Setting w±1 = ±π + iy1

with real y1, we have e−y1 � 1 and e−y1 ≈ 1/2 respectively
when k → 0 and k → N , suggesting y1 � 0 at small k limit.
Again we can use the above to reinterpret

cos w±1 = (k/N)2 − Q

2[1 − (k/N)2]
, 1 + 2 cos w±1 = 1 − Q

1 − (k/N)2
,

sin w±1 = i

2

k

N

1 − Q

1 − (k/N)2
. (A11)

Now the second derivative of F(w±1) becomes

F ′′(w±1) = −N
Q[1 − (k/N)2]

Q − 1
, (A12)

which is again always less than zero, for example, F ′′(w0) =
−2N and −2N/3 respectively for small and large k limit.

Now we have located three saddle points, which are w0

and w±1. The asymptotic form of the integral for f
(N)
k in

Eq. (A4) can then be calculated using the contour in Fig. 8,
which traverses through these three saddle points on the paths
tangent to the real axis. Following the integration contour for
Eq. (A4), we have the asymptotic form f̄

(N)
k of f

(N)
k as

f̄
(N)
k = 1

2π

[∫
D−1

+
∫

C−1

+
∫

C0

+
∫

C1

+
∫

D1

]
dθ eF(θ).

(A13)
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We obtain the contributions of w0 in the path C0 as

1

2π

∫
C0

dw eF(w0)e
1
2 F ′′(w0)(w−w0)2

= eF(w0)

2π

∫
C0

dw e− 1
2 |F ′′(w0)|(w−w0)2

= eF(w0)

2
√

π
√−F ′′(w0)/2

, (A14)

where its next correction term is at least O(N−1/2) smaller.
Since the integration path C0(±1) follows the valley of steepest
descent, the integration is dominated near the region of the
saddle point w0(±1), where we are also able to allow the
boundary of w to ±∞. Similarly for the paths C±1, we have
the contributions from w±1,

eF(w1)

2π

[∫
C−1

dw e
1
2 F ′′(w−1)(w−w−1)2 +

∫
C1

dw e
1
2 F ′′(w1)(w−w1)2

]
,

(A15)

where F(w−1) = F(w1). Letting w = w±1 + x in the paths
C±1, respectively, we have

eF(w1)

2π

[∫ ∞

0
dx e− 1

2 |F ′′(w−1)|x2 +
∫ 0

−∞
dx e− 1

2 |F ′′(w1)|x2

]

= eF(w1)

2π

∫ ∞

−∞
dx e− 1

2 |F ′′(w1)|x2

= eF(w1)

2
√

π
√−F ′′(w1)/2

, (A16)

where we have usedF ′′(w−1) = F ′′(w1). For the paths of D±1,
though they do not follow the valleys of steepest descent,
their contributions cancel with each other since F(w) =
F(w + 2π ).

Finally we obtain the asymptotic form of f
(N)
k in large N

limit as

f̄
(N)
k = 1

2
√

π

[
eF(w0)

√−F ′′(w0)/2
+ eF(w1)

√−F ′′(w1)/2

]
. (A17)

Before we write down the explicit form for the above, it is
useful to derive

eF(w0) =
[

1 + Q

1 − (k/N)2

]N[
Q − k/N

2(1 + k/N)

]k

, (A18)

which become 3N and 1/εNε respectively for small and large
k. Also we have

eF(w±1) = (−1)N+k

[
Q − 1

1 − (k/N)2

]N[
Q + k/N

2(1 + k/N)

]k

,

(A19)

which become (−1)N+k and (3/4)N2Nε/(−1)Nε respectively
for small and large k. Inserting the functions of the saddle

50 100 150

10
−30

10
−15

10
0

N
50 100 150

10
−3

10
−2

N

10
−50

10
−25

10
0

50 100 150
10

−3

10
−2

N

(a)

(b)

(c) (d)

FIG. 9. Exact spin function overlaps and their relative devi-
ations from analytical derivations. Exact spin function overlaps,
(E,P12...j )+,0, for spin-plus and spin-zero components are plotted
in (a) and (b) respectively, top to bottom, from j/N = 1/8, 2/8, and
3/8 (solid) to j = N/2 − 1 (dash). The values decrease rapidly as j

increases. The relative deviations of the exact spin function overlaps
(E,P12...j )+,0 from f̄

(N−j )
j,0 /f̄

(N)
0 are plotted for j = 1/8, 2/8, and 3/8

(solid-� and ◦), and j = N/2 − 1 (dash), bottom to top, in (c) and
(d), respectively. The deviations increase as j increases. The relative
deviations of (E,E)+,0 from f̄

(N−1)
1,0 /f̄

(N)
0 are denoted as (+) in (c),

which almost overlap with each other. (E,E)+(0) reaches 0.333(0.334)
at N = 150 and should approach 1/3 for even larger N as indicated
by Eq. (A22).

points from Eqs. (A9), (A12), (A18), and (A19), we have

f̄
(N)
k =

[
(1 + Q)N+ 1

2

(
Q − k

N

)k

+ (−1)N+k(Q − 1)N+ 1
2

(
Q + k

N

)k
]

×
[
2
(
1 + k

N

)]−k

√
2NQπ

[
1 − (

k
N

)2
]N+ 1

2

. (A20)

We note that the main contribution in Eq. (A20) comes from
the saddle point w0. To have some estimates of Eq. (A20), we
have

f̄
(N)
k→0 = 3N

2
√

π
√

N/3
, f̄

(N)
k→N = 1√

2πNε · εNε
. (A21)

From the above result at small k and according to Eq. (21), we
can show that

(E,P12...j+1)+(0)

(E,P12...j )+(0)

∣∣∣∣
N→∞

= 1

3
,

(E,E)+
∣∣
N→∞ = (E,E)0

∣∣
N→∞ = 1

3
, (A22)

which respectively indicates one-third decrease for the spin
function overlaps when j increases by one, and the populations
of N+ and N0 coincide in large N limit. In the large N limit, de-
spite the constraint Sz = 0, the probability of finding a particle
in any of the spin states, +, zero, or −, is 1/3 and is irrespective
of the spins of the other particles (if j � N ). This decrease
in spin function overlaps also reflects on the exponential decay
in spatial correlations discussed in Sec. III A.

To have some estimates of the spin function overlaps
and their asymptotic forms in large N limit, in Fig. 9 we
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compare (E,P12...j )+,0 of Eqs. (13) and (15) with f̄
(N−j )
j,0 /f̄

(N)
0

from Eq. (A20). In Figs. 9(a) and 9(b), the values of spin
function overlaps decrease rather fast in logarithmic scales as j

increases, while (E,P12...j )0 is always larger than (E,P12...j )+.
As a comparison, we define the relative deviations as∣∣∣∣∣ (E,P12...j )+,0 − f̄

(N−j )
j,0 /f̄

(N)
0

(E,P12...j )+,0

∣∣∣∣∣, (A23)

which we show in Figs. 9(c) and 9(d), indicating a good
asymptotic form from our derivations for small j in large
N limit. However, a slow decay in the relative deviation
of (E,P12...N/2−1)+ to f̄

(N/2+1)
N/2−1 /f̄

(N)
0 in Fig. 9(c) shows the

worst case in the asymptotic form. It is due to a rather small
F ′′(w0) → −Nε in Eq. (A9) when we set k/N = 1 − ε with a
small value of ε, which makes the method of steepest descent
less accurate unless we go to N → ∞.
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