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Non-Hermitian systems with PT symmetry can possess purely real eigenvalue spectra. In this work two
one-dimensional systems with two different topological phases, the topological nontrivial phase (TNP) and the
topological trivial phase (TTP), combined with PT -symmetric non-Hermitian potentials are investigated. The
models of choice are the Su-Schrieffer-Heeger (SSH) model and the Kitaev chain. The interplay of a spontaneous
PT -symmetry breaking due to gain and loss with the topological phase is different for the two models. The SSH
model undergoes aPT -symmetry breaking transition in the TNP immediately with the presence of a nonvanishing
gain and loss strength γ , whereas the TTP exhibits a parameter regime in which a purely real eigenvalue spectrum
exists. For the Kitaev chain the PT -symmetry breaking is independent of the topological phase. We show that the
topologically interesting states—the edge states—are the reason for the different behaviors of the two models and
that the intrinsic particle-hole symmetry of the edge states in the Kitaev chain is responsible for a conservation
of PT symmetry in the TNP.
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I. INTRODUCTION

One of the best known relations of topology in solid-state
systems is the explanation of the quantized Hall effect, which
was discovered by von Klitzing et al. [1,2], in terms of
a topological invariant [3]. Today topological many-body
systems are a strongly investigated and well understood subject
[4], and in recent works a topological periodic table has
been proposed [5,6] to relate topological systems depending
on their symmetries, e.g., electron-particle hole symmetry or
time-reversal symmetry, to different classes.

Two simple and one-dimensional topological systems are
the Su-Schrieffer-Heeger (SSH) model [7], initially introduced
to investigate the one-dimensional polyacetylene, and the
Kitaev [8] chain, a model for the description of a one-
dimensional spinless superconductor. They possess an energy
spectrum exhibiting a band gap. In dependence of a certain
parameter two different topological phases can arise, which
can be distinguished by energies lying within the band gap.
The corresponding eigenstates of the gap-connecting energies
are called edge states. These edge states show a strong
localization at the edge of the system and can only exist in
the topologically nontrivial phase (TNP). Besides the TNP the
two one-dimensional systems feature a topologically trivial
phase (TTP), which is characterized by a fully gapped energy
spectrum, in which consequently no edge states appear.

In reality any topological system will always interact with
its nearby environment, which leads to dissipative effects. A
common way to handle such environmental effects in many-
body systems is the solution of the dynamics via Lindblad
master equations [9]. However, this can become numerically
very expensive, and in many cases an effective description
in terms of the stationary Schrödinger equation is sufficient.
An often used and elegant way of describing interactions
with an environment on the stationary level is given by
the application of non-Hermitian potentials [10]. Examples
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range from electromagnetic waves [11–15], dissipative electric
circuits [16], and optomechanics [17] to quantum mechanics,
where it is applied in atomic [18–21] or molecular [22]
physics, the scattering of particles [23–25], the explanation
of fundamental relations [26,27], and in many-body systems
[28,29].

A special class of non-Hermitian operators, viz. those
possessing a parity-time symmetry, has been introduced by
Bender and Boettcher in 1998 [30] because these operators
feature the interesting property that they can posses purely
real eigenvalues despite their non-Hermiticity. However, in
general the eigenvalues of the non-Hermitian PT -symmetric
operators can be complex. A Hamiltonian is considered to
be PT symmetric if it commutes with the combined action
of the parity operator P and the time-reversal operator T ,
i.e., [PT ,H ] = 0. The PT symmetry of the system can
become spontaneously broken, and this symmetry breaking
is related to the realness of the eigenvalues [31]. It can be
shown that PT -symmetric eigenstates of a PT -symmetric
Hamiltonian always possess purely real eigenvalues, while
eigenstates that are not PT symmetric appear in pairs with
complex and complex conjugate eigenvalues. It turned out that
PT symmetry is a powerful concept to effectively describe
systems interacting with an environment in such a way that
they experience balanced gain and loss. In particular, it was
shown in optical experiments that PT symmetry and PT -
symmetry breaking can be realized in the laboratory [32–34].
Proposals for the realization in quantum mechanics exist for
Bose-Einstein condensates [35,36].

Recently some models of topological insulators have been
investigated under gain and loss effects in terms of non-
Hermitian operators. This leads to interesting questions. In
particular, it has to be understood whether topologically
protected states can be found in the presence of the gain and
loss [37–44]. In an optical experiment of a modified SSH
model topological interface states were observed [45]. Even
though the SSH and Kitaev models are equivalent in some
special cases [46] they behave completely differently when
complex on-site potentials are applied. Zhu et al. [47] and

2469-9926/2017/95(5)/053626(7) 053626-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.053626


KLETT, CARTARIUS, DAST, MAIN, AND WUNNER PHYSICAL REVIEW A 95, 053626 (2017)

Wang et al. [48] have studied the connection between the
TNP and spontaneous PT -symmetry breaking due to external
gain and loss in the SSH and Kitaev models, respectively.
Comparing the results of the two investigations leads to a
discrepancy in the interplay between topological phases and
spontaneous PT -symmetry breaking. In the Kitaev chain
the PT symmetry is protected within the TNP when a
non-Hermitian potential is applied. On the other hand the SSH
model shows an instantaneous PT -symmetry breaking within
the TNP for every arbitrarily small gain and loss effect. Also
in further models it was sometimes found that completely
real eigenspectra do not appear in the TNP, whereas this was
possible in other models.

It is the purpose of this paper to give an unambiguous
answer to the question of how the relation between topolog-
ically nontrivial edge states and the effects of PT -symmetry
breaking can be established. To do so, we investigate the
SSH and Kitaev models in the presence of two different
non-Hermitian potentials generating PT -symmetric gain-loss
effects. In particular we study the eigenstates of the system and
the symmetries of the edge states. It will turn out that there is
no general relation between the PT symmetry of the system
and the topological phase as assumed previously [48]. The
symmetry of the specific edge states in the systems decides
whether or not these states spontaneously break the PT
symmetry. The symmetry the states exhibit in the Hermitian
case survives in the presence of the gain-loss effect. However,
in dependence of the imaginary potential applied to the system
also the bulk states may lead to a spontaneous PT -symmetry
breaking in both the TNP and the TTP.

The paper is organized as follows. In Sec. II the two
different Hamiltonians are introduced. In Sec. III energy
spectra of the two models are shown without and with the
application of external gain and loss potentials. This is used
to analyze the cause of PT -symmetry breaking in the TTP
and the TNP. In particular, the different symmetry behaviors
of the topologically interesting edge states are presented. For
the Kitaev chain the number of edge states is counted for
certain parameter values to investigate their dependence on
the imaginary potentials. The last section, Sec. IV, provides
conclusions.

II. MODELS

In this paper we consider two different one-dimensional
models with a lattice distance a = 1 and N lattice sites. The
Su-Schrieffer-Heeger model [7] is given by

HSSH =
∑

n

(t−c
†
2n−1c2n + t+c

†
2nc2n+1 + H.c.), (1)

where the alternating hopping strengths t± = t(1 ± � cos �)
contain the hopping amplitude t and the dimerization strength
� cos �, which can vary from −� to �. The second system
is the one-dimensional Kitaev chain [8], which is a toy model
for a topological p-wave superconductor,

HKi = μ
∑

n

c†ncn +
∑

n

(tc†ncn+1 − iδcncn+1 + H.c.), (2)

where the chemical potential is given by μ, t is again
the nearest-neighbor hopping, and δ is the p-wave pairing

amplitude. In both models the operator c
†
n (cn) is the creation

(annihilation) operator for electrons at lattice site n. In the
following all energies are measured in units of t , i.e., t = 1 is
always set, which defines the dimensionless units used in this
work.

In our study the two systems are described by the total
Hamiltonians

H = H0 + U, (3)

where H0 is either the Hamiltonian of the Kitaev model HKi

or the SSH model HSSH. The term U represents the gain and
loss effects via an additional PT -symmetric part. In this work
we distinguish between two potentials,

U1 = iγ c
†
1c1 − iγ c

†
NcN, (4)

in which electrons gain in probability amplitude at the first site
and lose at the last site. The second PT -symmetric potential,

U2 = iγ
∑

n

(−1)nc†ncn, (5)

corresponds to an alternating gain and loss effect of the whole
chain.

Due to the superconducting term in the Kitaev Hamiltonian
(2) a coupling between electrons and holes arises. The basis of
the Kitaev chain has to be expanded to respect the particle-hole
coupling. The particle number operator of an electron at site
i is given by the relation ne,i = c

†
i ci , whereas the number

operator for holes reads nh,i = cic
†
i . A matrix representation

of the Hamiltonian (2) can be achieved by choosing vectors in
the form of

|ψ〉 = (c,c†)T (6)

with c = (c1,c2, . . . cn) and c† = (c†1,c
†
2, . . . c

†
n). The projection

〈ψ |ψ〉 corresponds to all number operators of electrons and
holes.

III. ENERGY SPECTRA AND PHASE DIAGRAMS

In this section the numerical solutions of the single-particle
eigenvalue equation

H |ψ〉 = E |ψ〉
are calculated under open boundary conditions (OBCs).
The Hamiltonian is given by H = H0 + U , where H0

is the Hamiltonian of the considered model and U is one
of the two PT -symmetric potentials U1 or U2. Due to the PT
symmetry of the Hamiltonian solving the eigenvalue equation
for an applied gain and loss effect can lead to purely real
eigenvalues, however, in general the eigenvalues are complex
numbers E = E + i� with the real energy part E and the decay
or growth rate �.

A. Hermitian system

For the reader’s convenience we briefly recapitulate the
essential properties of both models. In the case of the isolated
models, i.e., H = H0, both energy spectra show domains, in
which a vanishing energy emerges. The presence of a zero
energy is connected to edge states. The parameter regime
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FIG. 1. First row: isolated (γ = 0) energy spectrum for (a) the
Kitaev chain with the parameters t = 1.0, δ = 1.0 and (b) the SSH
chain with t = 1.0, � = 0.3. In both cases the spectrum is computed
for a chain with N = 200 sites. Second row: One of the two edge
states for (c) the Kitaev model with the parameters μ = 1.0, t = 1.0,
and δ = 1.0 and (d) for the SSH model with � = 0.1π , t = 1.0, and
� = 0.3. The edge states shown feature a vanishing energy
eigenvalue.

hosting edge states belongs to the topological nontrivial phase
(TNP). This phase is called topologically nontrivial since a
topological invariant can be found. The edge states differ in this
invariant from the bulk states [8,49–52]. In the Kitaev chain
the topologically nontrivial phase ranges from μ = −2 . . . 2,
whereas the TNP reaches from � = −π/2 . . . π/2 in the SSH
model; see Fig. 1 for N → ∞ lattice sites. The calculation
of the expectation value of each particle number operator at
every lattice site can be used to illustrate the localization of
the electrons in a certain eigenstate along the chain. The states
of interest are the edge states. For the SSH model the required
expectation value of the occupation of lattice site i is calculated
via

〈ni〉 = 〈ψed|c†i ci |ψed〉, (7)

where |ψed〉 is one of the two edge states with zero energy. For
the Kitaev chain one has to distinguish between the expectation
values of particles and holes,

〈ne,i〉 = 〈ψed|c†i ci |ψed〉, 〈nh,i〉 = 〈ψed|cic
†
i |ψed〉. (8)

In Fig. 1 one edge state for each model is shown. As one can
see the edge state of the Kitaev model fulfills particle-hole
symmetry, i.e., 〈ne,i〉 = 〈nh,i〉. Even though no potential is
applied the PT symmetry of the edge states shown can be
explored. In the SSH model the PT symmetry is broken by
the edge states, whereas the edge states of the Kitaev model
conserve the PT symmetry. Though every single expectation
value 〈ne〉, respectively 〈nh〉, of the Kitaev edge state is notPT

symmetric, it is the particle-hole symmetry which ensures the
PT symmetry of the edge state. Due to the anticommutation
relation of fermions {ci,c

†
j } = δi,j a gain γ of an electron at site

i corresponds to the equal loss of a hole at the same lattice site.
Applying a PT -symmetric potential generates gain and loss
effects to specific lattice sites in the Kitaev chain depending
on the potential U1, respectively U2. For one lattice site the
net gain-loss effect is zero if a particle-hole symmetry in the
occupation probabilities is present. If an eigenstate preserves
particle-hole symmetry throughout the whole system, the
net gain is zero and therefore the corresponding eigenstate
accomplishes PT symmetry. The crucial question now is
whether this symmetry survives in the case that imaginary
potentials are indeed applied.

B. Small gain and loss effects

For small gain and loss strengths γ the spectra of the energy
real parts do not change much under variation of the imaginary
potential as compared to the isolated cases. Moreover the
parameter regimes of the TNP stay the same in the Kitaev
model as well as in the SSH model, and therefore also edge
states are available in the case of small imaginary potential
strengths. The calculation of the edge state expectation values
generates the same localization as in the isolated case. Thus
the total situation does not change and the edge states remain
PT symmetric in the Kitaev chain, whereas both edge states
of the SSH model are PT -broken eigenstates.

A purely real energy spectrum can only occur if every
eigenstate of the system obeys PT symmetry. Due to the fact
that even for any arbitrarily small gain and loss effect at least
the two edge states of the SSH model break PT symmetry the
energy spectrum has to show complex energies in the TNP.
This is indeed the case which is illustrated in the first row of
Fig. 2. For both potentials two complex energies emerge in the
case of the SSH model. The spectrum performs a PT phase
transition at the same parameter, at which a topological phase
transition occurs in the isolated case, i.e., at � = ±π/2.

In the second row of Fig. 2 the imaginary parts of the energy
spectrum for the Kitaev chain with applied potentials U1 and
U2 are shown. In contrast to the SSH model the potential
U1 preserves a purely real spectrum. Both topological phases
show the same behavior related to the PT symmetry, and
therefore the imaginary parts of the eigenvalues cannot be
used to distinguish between the TNP and TTP. For the Kitaev
model with applied potential U2 the imaginary part of the
energy shows a nonvanishing value for disappearing chemical
potential μ = 0. Still the energy spectrum of the imaginary
part cannot be used to provide any information about the
topological phases. Taking a closer look at the eigenstates
corresponding to the violation of the PT symmetry for μ = 0
reveals the fact that all states with complex energies are bulk
states.

The important finding is that the properties of the edge states
in both models are not altered immediately by the presence of
the gain-loss effect. In particular, the symmetries of the edge
states survive, which leads to an immediate PT -symmetry
breaking in the SSH model by the edge states and a preserved
PT symmetry in the Kitaev chain. This explains that it is
the symmetry of the actual edge states that is connected to
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FIG. 2. First row: Imaginary parts of all energies of the SSH
model with potentials U1 (left) and U2 (right). In both calculations
the parameters t = 1.0, � = 0.3, N = 200, and γ = 10−5 were used.
Second row: Imaginary parts of all energies of the Kitaev chain with
the parameters t = 1.0, δ = 1.0, N = 200, and γ = 10−5.

the PT symmetry of the whole system not the existence of a
topologically nontrivial phase alone.

C. PT -symmetry breaking in dependence of γ

Leaving the field of a low gain and loss effect a PT phase
diagram can be realized by plotting the imaginary parts of the

energies over the potential strength γ . In the case of the SSH
model the phase diagrams for both the potentials U1 and U2 are
shown in Fig. 3. For the dimerization strength � = 0.1π , i.e.,
in the TNP, the potential U1 only shows one pair of complex
conjugate eigenvalues, which vanish for � = 0.9π in the TTP.
The same pair also appears if the potential U2 is applied. The
corresponding eigenstates for the two complex eigenvalues
appearing in both potentials are the two existing edge states. In
contrast to the potential U1 both of the dimerization strengths
shown for U2 possess a critical value, at which the system
gets completely PT broken and therefore not a single energy
eigenvalue remains purely real.

For the Kitaev chain with applied potentials U1 and U2 the
imaginary parts of the eigenvalues are shown in Fig. 4 for two
different chemical potentials, where each value represents one
of the topological phases in the isolated case, i.e., μ = 0.5 for
the TNP and μ = 2.5 for the TTP. For both potentials there
is no obvious difference in the imaginary part of the energies
for the different values of μ. As in the scenario of the SSH
model the potential U2 also exhibits a critical parameter value
γ at which no purely real energy eigenvalue exists. Due to
the fact that the chemical potential has no appreciable influence
on the behavior of the imaginary parts of the eigenvalues the
bulk states are responsible for breaking thePT symmetry. The
edge states in the Kitaev model are particle-hole symmetric and
therefore always conserve the PT symmetry as long as they
exist. Due to a complete PT -symmetry breaking in the case
of the potential U2 the chemical potential capable of hosting
edge states is dependent on the potential strength.

D. Phase diagram for the Kitaev model

Since the potential U2 shows a completely PT -broken
regime when the gain and loss strength is increased, the
chemical potential at which topological edge states can be
present has to be a function of the potential strength, i.e.,
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FIG. 3. Imaginary parts of all energies in dependence on the gain and loss strength of all eigenstates of the SSH model. For each plot the
parameters t = 1.0, � = 0.3, and N = 200 are used. For (a) and (b) the potential U1 is used, whereas for (c) and (d) the potential U2 is applied.
The black crosses in (a) and (c) represent the purely imaginary energies of the two edge states appearing in the TNP.
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μ(γ ). For each μ a critical parameter value γc can be found at
which the topological edge states disappear. The definition of
topological edge states in the sense of the Kitaev chain is the
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FIG. 5. The number of states fulfilling the property of Eq. (9)
for the Kitaev chain with N = 200 lattice sites and the parameters
t = 1.0 and δ = t in combination with the potential U1 in (a) and
U2 in (b). The color represents the number of states, where yellow
(bright) stands for the value 2 and black (dark) for the value 0.

fact that the energy has to fulfill the property

E = E = � = 0, (9)

i.e., it has a vanishing real and imaginary part. To obtain a phase
diagram a constant gain and loss effect γ is assumed and for a
chemical potential representing the TTP in the isolated model,
e.g., μ = 4.0, the energy is calculated. Then the chemical
potential is decreased in steps of equal size and for each
step the number of eigenvalues fulfilling Eq. (9) is counted.
This is repeated for further values of γ . In general, numerical
calculations do not supply accurate zero values, and therefore
in this work we measure a numerical zero if the modulus is
smaller than 10−8. The value selected for zero is in this way not
a critical choice because the energy spectra show a pronounced
jump to small numbers if any topological edge state is present.
In Fig. 5 the number of states, which are in agreement with
Eq. (9) are counted for the ranges μ = 0 . . . 4 and γ = 0 . . . 2.
By applying the potential U2 one can find values of γ for
which no chemical potential supports the existence of edge
states. This is in contrast to the Kitaev chain in the case that
electrons gain in probability at the first site and lose at the last
site as described with the potential U1. In fact the number of
edge states does in the latter case not depend on the value of γ

and is only limited by the chemical potential as in the isolated
problem. The TNP can host two edge states for μ � 2.0. In
total, the Kitaev chain is an example, in which gain and loss
effects can have an influence on the parameter regime with
edge states. However, the two model potentials U1 and U2

show that this behavior of the TNP depends on the shape of
the gain and loss effects, and therefore there is no general
statement on the existence of edge states in the presence of
non-Hermitian potentials in the Kitaev chain.

IV. SUMMARY

In conclusion we studied both the Kitaev and the SSH model
with two different PT -symmetric non-Hermitian potentials.
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Our investigation of the topological interesting edge states
explains why the topological nontrivial phase in the SSH
model shows an instantaneously PT -broken spectrum for an
arbitrary small potential strength γ , and that the edge states
in the case of the Kitaev chain are protected from violating
PT symmetry due to an intrinsic particle-hole symmetry.
The important fact is that this symmetry survives in presence
of the gain-loss effect. For the Kitaev chain the number of
existing edge states at a certain value pair (μ,γ ) depends on
the applied gain and loss effect, and therefore the range of the
topological nontrivial phase can be a function of the potential
strength γ .

Both results clearly demonstrate that the previously as-
sumed connection between a spontaneously broken PT
symmetry and the topological phase [47,48] does not exist
in general. Only the symmetry of the individual edge states
decides whether their presence has an influence on the PT
symmetry of the whole system. Their existence alone does not
give a useful answer. It is necessary to always determine the
states and to investigate their probability distribution.

Even though this work can explain the role of the edge
states in non-Hermitian PT -symmetric systems there remain

a few open questions. The imaginary potentials are an effective
description of the in- and outfluxes of the probability amplitude
and thus for the interaction with an environment. Much more
realistic is the addition or removal of electrons, which can
be simulated very well in the context of master equations
[9,53,54]. It will be interesting to see whether signatures
of the results of this work can be found in the dynamics
of the master equation, and investigations in this direction
are under way. Furthermore, for non-Hermitian operators
the often used Berry phase [55] or its formulation in the
Brillouin zone, i.e., the Zak phase [56], needs extensions to
understand the influence of imaginary potential contributions.
Some extensions exist [57,58], however, they are restricted to
special cases. A more general way of identifying topologically
different states would be valuable. Since similar Bosonic
systems with topologically nontrivial states are known [59]
and in the case of cold atoms much better controllable in an
experiment it seems also worthwhile to extend these studies to
Bosons. This might be in particular interesting since Bosonic
many-body systems already with very simple interactions
feature an unusual dynamics such as purity oscillations in
the presence of balanced gain and loss [60,61].
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