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Quantum dark solitons as qubits in Bose-Einstein condensates
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We study the possibility of using dark solitons in quasi-one-dimensional Bose-Einstein condensates to produce
two-level systems (qubits) by exploiting the intrinsic nonlinear and coherent nature of the matter waves. We
calculate the soliton spectrum and the conditions for a qubit to exist. We also compute the coupling between the
phonons and the solitons and investigate the emission rate of the qubit in that case. Remarkably, the qubit lifetime
is estimated to be of the order of a few seconds, being only limited by the dark-soliton “death” due to quantum
evaporation.
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I. INTRODUCTION

Quantum effects strive to disappear for macroscopic ob-
jects. Typically, quantum effects become depreciated out into
their classical averages, and therefore the manipulation of
quantum states, relevant for quantum computation, becomes
unsustainable at the macroscopic scale. However, Bose-
Einstein condensates (BECs) constitute one important excep-
tion where quantum effects are perceptible on a macroscopic
level. With the advent and rapid development of laser cooling
and trapping of neutral atoms over the past decade, micron-
sized atomic gases at ultralow temperatures are routinely
formed in the laboratory [1–3]. Moreover, quantum optic
techniques allow for an unprecedented versatile and precise
control of internal degrees of freedom, putting cold atoms
as one of the most prominent candidates to test the complex
aspects of strongly correlated matter and to applications in
quantum information processing [4–11].

Quantum information has been introduced in cold-atom
systems at various levels [12,13]. One way consists in defining
a qubit (a two-state system) via two internal states of an
atom. This approach, however, requires each atom to be
addressed separately. A similar problem appears when the
qubit is introduced via a set of spatially localized states
(e.g., in adjacent wells of an optical lattice potential) of
an atom or a BEC. The complication is due to the fact
that the number of atoms in a BEC experiment significantly
fluctuates from run to run. As a result, any qubit system
dependent on the number of atoms becomes problematic. A
second way of producing qubits in these systems relies on
the collective properties of ultracold atoms. Here, a two-level
system can be formed by isolating a pair of macroscopic
states that are set sufficiently far away from the multiparticle
spectrum. At the same time, however, the energy gap between
these lowest states must remain small enough to allow
measurable dynamics [14]. Experiments performed in the
double-well potential configuration are a pioneer example of
such an approach [15,16]. Nevertheless, despite an appealing
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similarity with single-particle two-level states, double-well po-
tentials are insufficient to achieve a macroscopic superposition
allowing for a measurable dynamics [16]. To overcome the
superposition issue, a more recent proposal based on BEC
superfluid current states in the ring geometry, analogous to
the superconducting flux qubit [17], has been discussed [18].
More recently, the concept of a phononic reservoir via the
manipulation of the phononic degrees of freedom has pushed
quantum information realizations to another level, comprising
the dynamics of impurities immersed in BECs [19–23] and
reservoir engineering to produce multipartite dark states
[24–29]. Another important difference with respect to the
quantum optical system is the possibility to use phononic
reservoirs to test non-Markovian effects in many-body sys-
tems [30,31]. The implementation of quantum gates has been
recently proposed in Ref. [32].

Another important family of macroscopic structures in
BECs with potential applications in quantum information are
the so-called dark solitons (DSs). They consist of nonlinear
localized depressions in a quasi-one-dimensional (1D) BEC
that emerge due to a precise balance between the dispersive
and nonlinear effects in the system [33–36], being also
ubiquitous in nonlinear optics [37], shallow liquids [38],
and magnetic films [39]. Quasi-one-dimensional BECs with
repulsive interatomic interactions are prone to the inception of
dark solitons by various methods, such as imprinting the spatial
phase distribution [35], inducing density defects in BEC [40],
and by the collision of two condensates [41,42]. The stability
and dynamics of DSs in BECs have been a subject of intense
research over the last decade [43,44]. Recent activity in the
field involve studies on the collective aspects of the so-called
soliton gases [45], putting dark solitons as a good candidate to
investigate many-body physics [46].

In this paper, we combine the intrinsic nonlinearity in quasi-
one-dimensional BECs to construct two-level states (qubits)
with dark solitons. As we will show, owing to the unique
properties of the DS spectrum, perfectly isolated two-level
states are possible to construct. As a result, a matter-wave qubit
with a few kHz energy gap is achieved. Moreover, the phonons
(quantum fluctuations around the background density) play the
role of a proper quantum reservoir. Remarkably, due to their
intrinsic slow-time dynamics, BEC phonons provide small
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decoherence rates of a few Hz, meaning that under typical
experimental conditions, DS qubits have a lifetime comparable
to the lifetime of the BEC, being only limited by the soliton
quantum diffusion (“evaporation”). As we show below, this
effect is not critical and the qubit is still robust within the
100 ms–0.1 s time scale.

The paper is organized as follows: In Sec. II, we discuss
the properties of a single DS in a quasi-1D BEC immersed
in a dilute gas of impurities. We start with a set of coupled
Gross-Pitaevskii and Schrödinger equations and find under
which conditions DSs can define a two-level atom (qubit).
In Sec. III, we compute the coupling between phonons and
DSs. Section IV discusses the Weisskopf-Wigner theory to
determine the emission rate of the qubit. Some discussion
and conclusions about the implications of our proposal
in practical quantum information protocols are stated in
Sec. V.

II. MEAN-FIELD EQUATIONS AND
THE DARK-SOLITON QUBIT

We consider a quasi-1D BEC immersed in a dilute gas of
impurities. The BEC and the impurity particles are described
by the wave functions ψ1(x,t) and ψ2(x,t), respectively. A
quasi-1D gas is produced when the transverse dimension of the
trap is larger than or of the order of the s-wave scattering length
and, at the same time, much smaller than the longitudinal
extension [47,48]. At the mean-field level, the BEC is governed
by the Gross-Pitaevskii equation

ih̄
∂ψ1

∂t
= − h̄2

2m1

∂2ψ1

∂x2
+ g11|ψ1|2ψ1 + g12|ψ2|2ψ1, (1)

while the impurities—which we consider to not interact—are
governed by

ih̄
∂ψ2

∂t
= − h̄2

2m2

∂2ψ2

∂x2
+ g21|ψ1|2ψ2. (2)

Here, g11 is the one-dimensional coupling strength between
particles in the BEC and g12 = g21 is the interspecies coupling
constant, h̄ is the Planck constant, and mi (i = 1,2) denotes
the mass of the species. We restrict the discussion to repulsive
interactions, g11 > 0. In what follows, we assume that the
dark soliton is not disturbed by the presence of impurities.
This situation can be achieved if we choose the impurity gas
to be sufficiently dilute, |ψ2|2 � |ψ1|2, and if the impurities
are much less massive than the BEC particles (a discussion
about the experimental realization can be found in Sec. IV).
The impurities can therefore be regarded as free particles that
feel the soliton as a potential (see Fig. 1). As such, Eq. (2) can
be written as

ih̄
∂ψ2

∂t
= − h̄2

2m

∂2ψ2

∂x2
+ g21|ψsol|2ψ2, (3)

where the soliton profile, a singular nonlinear solution to
Eq. (1), is given by [49–52]

ψsol(x) = √
n0 tanh

(
x

ξ

)
. (4)

Here, n0 is the background density which is typically of the
order of 108 m−1 in elongated 85Rb BECs, and the healing

FIG. 1. Schematic representation of the system. A BEC contains a
dark soliton, which acts as a potential to the impurity particles. Under
certain circumstances, exactly two bound states can be formed. Due to
quantum fluctuations, the BEC also support phonons (wiggly lines),
which will interact with the dark soliton and, consequently, provide
some dephasing.

length ξ = h̄/
√

mn0g11 is of the order (0.2–0.7) μm. We
also consider the experimentally accessible trap frequencies
ωr = 2π×(1–5) kHz � ωz = 2π×(15–730) Hz and the cor-
responding length amount to be the value lz = (0.6–3.9) μm
[53]. More recent experiments produced much larger traps,
lz ∼ 100 μm [54], which led the eventual trap inhomogeneities
to be much less critical. Notice that the previous results
can be easily generalized for the case of gray solitons
(i.e., solitons traveling with speed v) by replacing Eq. (4)
with

ψsol(x) = √
n0

[
iθ + 1

γ
tanh

(
x

ξγ

)]
, (5)

where θ = v/cs , γ = (1 − θ2)−1/2, and cs = √
gn0/m is the

BEC sound speed [46,55,56]. Therefore, the time-independent
version of Eq. (3) reads

E′ψ2 = − h̄2

2m

∂2ψ2

∂x2
− g21n0 sech2

(
x

ξ

)
ψ2, (6)

where E′ = E − g21n0. Here, the dark soliton acts as a
potential for the particles of the reservoir. Analytical solutions
to Eq. (6) can be obtained by casting the potential term in the
form

V (x) = − h̄2

2mξ 2
ν(ν + 1)sech2

(
x

ξ

)
, (7)

where ν = (−1 + √
1 + 4g12/g11)/2. The particular case of

ν being a positive integer belongs to the class of reflection-
less potentials [57], for which an incident wave is totally
transmitted. For the more general case considered here, the
energy spectrum associated with the potential in Eq. (7)
reads

E
′
n = − h̄2

2mξ 2
(ν − n)2, (8)

where n is an integer. The number of bound states is given by
nbound = �1 + ν + √

ν(ν + 1)�, where �·� denotes the integer
part. A two-level system (qubit) can thus be perfectly isolated
when the value of ν ranges as

1
3 � ν < 4

5 .

At the critical point ν = 1
2 , the two-energy levels merge and

the qubit is ill defined. For ν � 4
5 , three-level systems (qutrits)
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(a) (b)

(c) (d)

FIG. 2. Dark soliton acting as a binding potential for the free
particles. (a) depicts a single bound state obtained for ν < 1

3 , while
(b) illustrates the case of a two-level system (qubit) case obtained
for 1

3 � ν < 4
5 . (c) illustrates the pathological case ν = 1

2 for which
a degeneracy in the two-level system is obtained. A qutrit case is
depicted in (d) for ν = 0.83.

can also be formed, but this case is out of the scope of the
present work and will be discussed in a separate publication.
The features of the spectrum (8) are illustrated in Fig. 2.

III. QUBIT-PHONON INTERACTION

The mean-field soliton solution in Eq. (4) is accompanied
by quantum fluctuations (phonons). In that case, the total wave
function is given by ψ1(x) = ψsol(x) + δψ1(x), where

δψ1(x) =
∑

k

[uk(x)bke
ikx + vk(x)∗b†ke

−ikx], (9)

with bk denoting bosonic operators satisfying the commuta-
tion relation [bk,b

†
q] = δkq . uk(x) and vk(x) are amplitudes

verifying the normalization condition |uk(x)|2 − |vk(x)|2 = 1
and are explicitly given by [58]

uk(x) =
√

1

4πξ

μ

εk

[(
(kξ )2 + 2εk

μ

)[
kξ

2
+ i tanh

(
x

ξ

)]
+ kξ

cosh2
(

x
ξ

)]
,

and

vk(x) =
√

1

4πξ

μ

εk

[(
(kξ )2 − 2εk

μ

)[
kξ

2
+ i tanh

(
x

ξ

)]
+ kξ

cosh2
(

x
ξ

)]
.

Similarly, the impurity wave functions are eigenstates of
Eq. (6), being therefore spannable in terms of the bosonic

operators a� as

ψ2(x) =
1∑

�=0

ϕ�(x)a�, (10)

where ϕ0(x) = sech(x/ξ )/(
√

2ξ ) and φ1(x) = i
√

3 tanh(x/ξ )
ϕ0(x). The total Hamiltonian then reads

H = Hqubit + Hph + Hint. (11)

The first term Hqubit represents the dark-soliton (qubit)
Hamiltonian

Hqubit = h̄ω0σz, (12)

where ω0 = h̄(2ν − 1)/(2mξ 2) is the qubit gap frequency
and σz = a

†
1a1 − a

†
0a0 is the corresponding spin operator. The

second term describes the phonon (reservoir) Hamiltonian

H =
∑

k

εkb
†
kbk, (13)

where the Bogoliubov spectrum is given by εk =
μξ

√
k2(ξ 2k2 + 2), with μ = gn0 denoting the chemical po-

tential.
The interaction Hamiltonian Hint between the qubit and the

reservoir is defined as

Hint = g12

∫
dxψ

†
2ψ

†
1ψ1ψ2, (14)

which, with the prescriptions in Eqs. (9) and (10), can be
decomposed as

Hint = H
(0)
int + H

(1)
int + H

(2)
int , (15)

respectively containing zero-, first-, and second-order terms in
the operators bk and b

†
k . Owing to the small depletion of the

condensate, and consistent with the Bogoliubov approximation
performed in Eq. (9), we ignore the second-order term H

(2)
int ∼

O(b2
k). The first part of Eq. (15) corresponds to a Stark shift

term of the type

H
(0)
int = g12n0δ��′a

†
�a�′f��′ , (16)

where f��′ = ∫
dxϕ

†
�(x)ϕ�′(x) tanh2 (x/ξ ). The latter can be

omitted by renormalizing the qubit frequency as ω̃0 = ω0 +
n0g12. In its turn, the first-order term O(bk) is given by

H
(1)
int =

∑
k

∑
�,�′

a
†
�a�′[bkg�,�′(k) + b

†
kg�,�′(k)∗] + H.c., (17)

where

g�,�′(k) = √
n0g12

∫
dxϕ

†
�(x)ϕ�′(x) tanh

(
x

ξ

)
eikxuk. (18)

As we can observe, Eq. (17) contains intraband (� = �′) and
interband (� 
= �′) terms. However, for small values of the
coupling between the system and the phonon reservoir, the
qubit transition is driven by near-resonance phonons only, for
which the interband coupling amplitude |g01(k)| = |g10(k)∗|
is much larger that the intraband terms |g00(k)| and |g11(k)|
(see Fig. 3). As such, within the rotating-wave approximation
(RWA), we can safely drop the intraband contribution and
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FIG. 3. Intraband g00(k) (dashed line) and g11(k) (dotted-dashed
line) and interband g10(k) (solid line) coupling functions. Around
the resonant values k ∼ ξ−1 (shadowed region), the interband term
is dominant, allowing us to neglect the intraband contribution within
the rotating-wave approximation.

obtain

H
(1)
int = −

∑
k

g(k)σ+bk −
∑

k

g(k)∗σ−b
†
k + H.c., (19)

where σ+ = a
†
1a0, σ− = a

†
0a1, and the coupling constant gk ≡

g0,1(k) = −g1,0(k) is explicitly given by

gk = ig12k
2ξ 3/2

80εk

√
n0π

6
(2μ + 8k2μξ 2 + 15εk)

× (−4 + k2ξ 2)csch

(
kπξ

2

)
.

We notice that invoking the RWA also implied the dropping of
the counter-rotating terms proportional to bkσ− and b

†
kσ+ that

do not conserve the total number of excitations. The accuracy
of such an approximation can be verified a posteriori, provided
that the emission rate �, which we calculate below, is much
smaller than the qubit transition frequency ω0.

IV. SPONTANEOUS DECAY OF
THE DARK-SOLITON QUBIT

Neglecting the effect of temperature and other external
perturbations, the only source of decoherence of a dark-soliton
qubit is the phonon bath. Because cold-atom experiments are
typically very clean, and considering that the zero-temperature
approximation is an excellent approximation for quasi-1D
BECs [59,60], we employ the Wigner-Weisskopf theory in
order to compute the lifetime of the qubit. We assume the
qubit to be initially in its excited state and the field to
be in the vacuum state. Under such conditions, the total
system+reservoir wave function can be parametrized as

|�(t)〉 = α(t)e−iω0t |e,0〉 +
∑

k

βk(t)e−iωkt |g,1k〉, (20)

where α(t) and βk(t) are the probability amplitudes. The
Wigner-Weisskopf ansatz (20) is then allowed to evolve under
the total Hamiltonian in Eq. (19), for which the corresponding

Schrödinger equation yields

α̇(t) = i

h̄

∑
k

gke
−i(ωk−ω0)tβk(t), (21)

βk(t) = i

h̄
g∗

k

∫ t

0
α(t ′)ei(ωk−ω0)t ′dt ′. (22)

Due to separation of time scales between the phonons and the
decay process, we may assume that the coefficient α(t) evolves
much slower than βk(t), which allows us to invoke the Born
approximation and write∫ t

0
α(t ′)e−i(ωk−ω0)(t−t ′)dt ′  α(t)

∫ t

0
e−i(ωk−ω0)τ dτ,

where τ = t − t ′. Moreover, since we expect α(t) to vary at a
rate � � ω0, the relevant decay dynamics is expected to take
place at times t � 1

ω0
, which allows us to take the upper limit

of the above integral to ∞ (Markov approximation). Therefore,
we have

α(t)
∫ ∞

0
e−i(ωk−ω0)τ dτ

= α(t)πδ(ωk − ω0) − iα(t)℘

(
1

ωk − ω0

)
, (23)

where ℘ represents Cauchy’s principal value describing an
additional energy (Lamb) shift. Because it represents a small
correction to the qubit energy ω0, we do not compute its
contribution explicitly. Thus, the excited state amplitude
decays exponentially as

α(t) = e−�t/2, (24)

where � is the population decay rate given as

� = L√
2h̄ξ

∫
dωk

√
1 + ηk

ηk

|gk|2δ(ωk − ω0) (25)

= πN0g
2
12

76 800h̄μ5ξ 2η0

√
μ+η0

μ

(−μ + η0)(−5μ + η0)2

×
[

8η0 + 3μ

(
−2 + 5ξ

√
h̄2ω2

0

μ2ξ 2

)]2

× csch2

(
π

√−μ + η0

2
√

μ

)
, (26)

and η0,k =
√

μ2 + h̄2ω2
0,k . As depicted in Fig. 4, the decay

rate � is orders of magnitude smaller than the qubit gap
ω0, confirming the validity of both RWA and Born-Markov
approximations. Remarkably, for a quasi-1D of a chemical
potential of a few kHz, we can obtain a qubit lifetime
τqubit ∼ 1/� of the order of a second, a time comparable to
the BEC lifetime itself. Notice that the value of g12 (and,
consequently, the qubit natural frequency ω0 and lifetime
τqubit) can be experimentally tuned with the help of Feshbach
resonances. The only immediate limitation to the performance
of our proposal may be related to the dark-soliton quantum
diffusion [58]. Since they interact with the background

053618-4



QUANTUM DARK SOLITONS AS QUBITS IN BOSE- . . . PHYSICAL REVIEW A 95, 053618 (2017)

(a) (b)

FIG. 4. Dependence of (a) the transition frequency ω0 and (b)
decay rate � on the coupling constant g12. The shadowed region
corresponds to the range 1

3 � ν < 4
5 for which the qubit can be

exactly defined. The case ν = 1
2 produces a degenerate two-level

system.

phonons, they are expected to evaporate within the time
scale τdiffusion = 8ξ/cs

√
3n0ξ/2. For typical 1D BECs with

ξ ∼ 0.7–1.0 μm and cs ∼ 1.0 mm/s, we estimate τdiffusion ∼
0.05–0.1 s, which reduces τqubit by about 20%. Additional
experimental limitations may be associated with the soliton
radiation in the presence of a trap. Although the soliton-phonon
interaction has been shown to be balanced if the trap is
harmonic (i.e., that does not lead to the decay of the soliton
oscillations [61,62]), the ensuing dynamics are sensitive to
trap anharmonicities [63], for which the soliton oscillations
may be destroyed after a few hundred milliseconds. However,
for the experimental condition of Ref. [62], the observed
lifetime of the solitons goes up to 2.8 s for sufficiently shallow
traps. In any case, soliton oscillations are not expected to
be relevant here, since we are considering the dark-soliton
limit v ∼ 0. To circumvent this problem, one may consider
loading the BEC in box-shaped potentials, for which the
condensate is homogeneous along a trap of size lz ∼ 70 μm,
largely exceeding the soliton core ξ and therefore rendering
finite-size effects to be less important [64]. The advantage
offers additional advantages regarding the scalability (i.e.,
in a multiple-soliton quantum computer), as a long-range
phonon mediated soliton-soliton interaction appears when
inhomogeneities exist [65]. Another important effect that may
hinder the stability of the soliton is the scattering with the
impurities, leading, for example, to Brownian diffusion [66].
In this case, 87Rb dark solitons live up to 1 s in the presence
of an impurity concentration of 6.3%. We expect this effect
to be further reduced if we consider 174Yb BECs immersed in
dilute 7Li impurities, since the mass imbalance mLi/mYb � 1
quenches the value of the friction coefficient. The caveat is
that the qubit potential depth also depends on this ratio, so a
delicate balance between the soliton diffusion and qubit energy
split is necessary. Moreover, if the concentration of (bosonic)
impurities is sufficiently high, impurity condensation on the
bottom of the soliton may occur, leading to a spurious qubit
energy shift and the single-particle assumption to break down.
This can be avoided if fermionic impurities are used instead,
e.g., 6Li [67].

Finally, by putting Eqs. (22) and (24) together, we can
evaluate the evolution of the amplitude coefficient βk(t) as

βk(t) = i

h̄
g∗

k

∫ t

0
e−[ �

2 −i(ωk−ω0)]t dt, (27)

FIG. 5. Emission spectrum of a soliton qubit due to the interaction
with the background phonons. Red (solid) and blue (dashed) curves
are respectively obtained for ν = 0.33 and ν = 0.79.

which yields the following Lorentzian spectrum,

S(ωk) = lim
t→∞ |βk(t)|2 = 1

h̄2

|gk|2
�2

4 + (ωk − ω0)2
, (28)

as depicted in Fig. 5. As expected, it is observed that the
Lorentzian spectrum is narrower for a weak-coupling constant
g12.

V. CONCLUSION

In conclusion, we have shown that a dark soliton in a
quasi-one-dimensional Bose-Einstein condensate can produce
a well-isolated two-level system, which can act as a matter-
wave qubit with an energy gap of a few kHz. This feature is
intrinsic to the nonlinear nature of Bose-Einstein condensates
and does not require manipulation of the internal degrees
of freedom of the atoms. We observe that the decoherence
induced by the quantum fluctuations (phonons) produces a
finite qubit lifetime. Quite remarkably, leading calculations
indicate a qubit lifetime of the order of a few seconds, a time
scale comparable to the duration of state-of-the-art cold atomic
traps. A major limitation to the qubit robustness is the quantum
diffusion of the soliton, which is estimated to reduce the qubit
lifetime to around 20% its value, and an eventual phonon-
soliton interaction due to the presence of inhomogeneities
introduced by the trap. Moreover, impurity scattering could,
in principle, decrease the qubit coherence, but a clever choice
of BEC particle and impurity mass ratio may circumvent this
problem. With all these limitations in mind, we believe that
qubits made of dark solitons are excellent candidates to store
information for large times (∼0.01−1s), offering an appealing
alternative to quantum optical solid-state platforms. While
dark solitons may not compete in terms of quantum scalability
(the number of solitons in a typical elongated BEC is not
expected to surpass a few tens), their unprecedented coherence
and lifetime will certainly make them attractive for the design
of new quantum memories and quantum gates. Moreover,
due to the possibility of interfacing cold atomic clouds with
solid-state and optical systems, our findings may inspire
further applications in hybrid quantum computers. We notice
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that the present dark-soliton qubits could also be considered
in a pure one-dimensional case, i.e., for a Tonks-Girardeau
gas. However, quantum fluctuations are more important and
the analysis based on the Bogoliubov theory fails.
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