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Infinite barriers and symmetries for a few trapped particles in one dimension
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This article investigates the properties of a few interacting particles trapped in a few wells and how these
properties change under adiabatic tuning of interaction strength and interwell tunneling. While some system
properties are dependent on the specific shapes of the traps and the interactions, this article applies symmetry
analysis to identify generic features in the spectrum of stationary states of few-particle, few-well systems.
Extended attention is given to a simple but flexible three-parameter model of two particles in two wells in one
dimension. A key insight is that two limiting cases, hard-core repulsion and no interwell tunneling, can both
be treated as emergent symmetries of the few-particle Hamiltonian. These symmetries are the mathematical
consequences of infinite barriers in configuration space. They are necessary to explain the pattern of degeneracies
in the energy spectrum, to understand how degeneracies are broken for models away from limiting cases, and to
explain separability and integrability. These symmetry methods are extendable to more complicated models and
the results have practical consequences for stable state control in few-particle, few-well systems with ultracold
atoms in optical traps.
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I. INTRODUCTION

One motivation for the symmetry analysis of few-body, few-
well models is experiments with a few ultracold atoms trapped
in an optical potential, either a single well or an arrangement of
wells like a lattice or crystal. In some recent experiments [1–6],
a deterministic number of atoms are loaded into a trap, and then
the shape and arrangement of the wells and the strength of the
interparticle interaction are changed.

These experiments, with the already-exquisite and always-
improving control they offer, present an irresistible playground
for pure and applied quantum theorists for at least three
reasons:

(i) Starting with a few particles and a few wells, we can
take a “bottom-up” approach to studying many-body physics
and emergent phenomena. Models with strong interactions
and multiple competing length scales and energy scales can
be difficult to characterize and solve, especially identical
particles with internal degrees of freedom. However, these
kinds of models are important in condensed-matter physics
and their dynamical and thermodynamical properties are
rich and varied. For example, few-body and effectively one-
dimensional single-well and few-well systems have already
been used to investigate magnetism and quantum phase
transitions in Heisenberg spin-chain models [7–13] and to
check the consistency of the approximations used to solve
Hubbard-type models [14–17].

(ii) The control possible over a few atoms in a few
wells allows unprecedented possibilities for quantum state
preparation and manipulation. For example, there are protocols
to construct highly entangled NOON states from a few particles
in a double well [14,18]. This kind of multiparticle coherence
has been demonstrated to be a resource for application in
quantum sensing and measurement and for other quantum
information processing tasks [19–21]. This article provides
a specific example of a quantum-state control mechanism that
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generates superpositions using cyclic adiabatic tuning. Also,
a speculative proposal explored below uses the large but con-
trollable degrees of freedom of a few-well, few-body system
to embody combinatoric problems in a quantum system.

(iii) Finally, generalizing the previous two reasons, sys-
tems of ultracold atoms in tunable traps with tunable inter-
actions allow us to explore and test quantum dynamics like
never before. The consequences of integrability and chaos,
the interrelations among interaction, indistinguishability, and
entanglement, and other questions at the boundaries of quan-
tum mechanics can be directly interrogated in the cold-atom
laboratory.
As the number of particles and wells increases, the degrees of
freedom and complexity of the problem grow exponentially.
This makes analytical and even numerical progress difficult
for the bottom-up approach except in certain limiting cases
with enhanced solvability, such as contact interactions in
harmonic traps or an infinite square well. This motivates
the need for generating solvable few-atom, few-well models,
and for identifying universal features on nonsolvable models.
Symmetry analysis is key to both of these tasks.

The primary focus of this article is one-dimensional,
double-well models. As a motivating example, consider the
experiment described in Ref. [4]: two fermions are loaded
into an effectively one-dimensional double well with tunable
shape and interaction strength. Even though such systems have
just two degrees of freedom, they have been a testing ground
for quantum dynamics since the beginning of the subject.
Some recent relevant investigations on the dynamics of two
(or a few) particles in a double well include analyses of
interaction-influenced tunneling [17,22], spatial state super-
positions [14], quantum integrability [23–25], state control
and logic gates [26], phase measurements [27], interference
dynamics [3,28], fermionic quantum number pinning [29],
and entanglement and quantum information theory [6,29–32].
Some of these references are motivated by applications to
many-atom gases in arrays of double-well optical traps (for
example, see Refs. [33–35]). One-dimensional double-well
models also have applications as effective theories for systems
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with more degrees of freedom (e.g., ion chains in Paul traps
[36], Josephson junctions, spontaneous symmetry breaking,
etc.) and are extensively used as pedagogical examples [37,38].

This article attempts to organize this double-well phe-
nomenology using symmetry methods. Particle exchange and
parity are familiar symmetries and certainly useful, but this
article goes beyond these and describes how the special cases
of (1) no interactions, (2) no tunneling, and (3) hard-core
interactions can be formulated as kinematic symmetries of
the Hamiltonian. These symmetries are used to characterize
the spectrum of double-well, interacting-particle Hamiltonians
and to make spectral maps among models related by symmetry
breaking. This analysis reveals what dynamical effects are
particular to a specific trap or interaction, and what are generic.
These symmetries can be exploited to enhance analytical
methods like exact diagonalization, perturbation theory, and
variational methods. Finally, this article shows how the sym-
metries that are preserved under parametric variation between
two models can be exploited for adiabatic state control.

A. The model

This article considers a three-parameter model for two
interacting particles in two wells:

Hτ
γ = − h̄2

2m

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
+ V (x1) + V (x2)

+ τ (δ(x1 − a) + δ(x2 − a)) + γ δ(x1 − x2). (1)

This Hamiltonian describes a symmetric trap V (x) = V (−x)
that is split by a δ-function barrier with strength τ a distance
a from the middle (see Refs. [39,40] for general analysis
of traps split by δ barriers). The two particles experience a
contact interaction with strength γ . Figure 1 schematically
depicts the potential energy of Hamiltonian (1) as a contour
plot in configuration space for a purely quartic trap when
a = 0. The corners of Fig. 1 represent the four limiting cases
of Hτ

γ : no interactions and no barrier, H 0
0 ; no interactions and

no tunneling (infinite barriers), H∞
0 ; unitary limit of contact

interactions and no barrier, H 0
∞; and unitary interactions

and no tunneling, H∞
∞ . Table I summarizes the degeneracies

in the energy spectrum of some of these limiting cases of
Hamiltonian (1).

In principle, how spectral properties change as the Hamil-
tonian Hτ

γ is tuned can be inferred from symmetry. For the
Hamiltonian (1) many systematic degeneracies (as opposed
to accidental degeneracies, a distinction clarified below) are
independent of the specific trap shape V (x); see Table I. These
degeneracies can be explained using the extra symmetries
that arise from impenetrable barriers. Furthermore, how these
levels map to one another under adiabatic changes of pa-
rameters sometimes can be established from symmetry alone.
Other times, such energy-level mappings must be completed
with the assistance of perturbation theory, exact diagonaliza-
tion, variational methods, or other numerical approximation
schemes, all of which are simplified using symmetry. Adiabatic
mappings can then provide pathways for coherent state control,
especially when combined with spin or other internal states that
affect the allowed state space of identical particles through
bosonic or fermionic symmetrization. In full disclosure, many

FIG. 1. The potential energy of Hamiltonian (1) for a quartic trap
with a = 0. Black lines represent impenetrable barriers; gray lines
are finite barriers that allow tunneling. The first column depicts H 0

0 ,
Hτ

0 , and H∞
0 ; these three Hamiltonians are integrable for any trap

shape and for any number of identical particles. The last column
depicts the unitary limit of contact interactions H 0

∞, Hτ
∞, and H∞

∞ ;
these three Hamiltonians are also integrable for any trap shape or
number of particles. The middle column with arbitrary interaction
strength depicts H 0

γ , Hτ
γ , and H∞

γ . Generally, these Hamiltonians are
not integrable, but H 0

γ and H∞
γ are integrable for two particles in a

harmonic trap or any number of particles in the infinite-square-well
trap.

of these tasks can be efficiently accomplished numerically
without exploiting all the symmetries of a Hamiltonian for
two particles in two wells. However, as we build up from
the bottom, using group theory to turn combinatorics into
algebraic observables on the Hilbert space may allow us to
push deeper into the emergence of many-body phenomena.

B. Kinematic symmetries

The kinematic symmetry group of the Hamiltonian (i.e.,
the set of all unitary operators that map all energy eigenstates
into energy eigenstates with the same energy) can be used

TABLE I. Systematic degeneracies of Hamiltonian for various
values of the parameters of the barrier location a, zero-range barrier
strength τ , and zero-range interaction strength γ .

Degeneracies

Hamiltonians Parameters a �= 0 a = 0

H 0
0 , Hτ

0 τ � 0, γ = 0 1,2 1,2
H 0

γ , Hτ
γ τ � 0, γ �= 0 1 1

H 0
∞, Hτ

∞ τ � 0, γ → ∞ 2 2
H∞

0 τ → ∞, γ = 0 1,2 4,8
H∞

γ τ → ∞, γ �= 0 1,2 2,6
H∞

∞ τ → ∞, γ → ∞ 2 2,8
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to classify states, categorize types of degeneracies, and
select useful observables [41]. In principle, if the correct
kinematic symmetry is found, then every degenerate energy
subspace will carry an irreducible representation (irrep) of this
symmetry. This article describes and exploits the following
three kinematic symmetries:

(i) The symmetry of separability. Identical noninteracting
particles have independent time evolutions. In particular,
when the Hamiltonian splits into a sum of identical sub-
Hamiltonians, then this symmetry can be described by the
wreath product Tt � SN , where SN is the symmetric group
on N particles, Tt is the time-translation subgroup for
each independent particle, and � is the wreath product that
interweaves SN with N copies of Tt (described in more detail
below). Interactions break this symmetry into the subgroup
Tt × SN [42,43].

(ii) Well permutation symmetry. When there is no tunnel-
ing, then each well has independent dynamics. If there are M

identical wells, then there is a symmetry isomorphic to Tt � SM

that corresponds to permuting the individual, disconnected
wells. Tunneling breaks this local symmetry in a manner that
depends on the global structure of the wells [44].

(iii) Ordering permutation symmetry. N particles in a one-
dimensional single well with hard-core interactions cannot
tunnel past each other. Therefore, there are N ! identical N -
dimensional wells corresponding to each dynamically stable
possible ordering and the symmetry has the form Tt � SN! [44].
In the near-unitary limit, this symmetry is broken in a way that
can be calculated exactly for contact interactions [9,10,43].

The second and third of these symmetries depend on the
presence of infinite barriers in space or configuration space.
To understand the importance of infinite barriers for symmetry
in a few-atom, few-well system, consider the following one-
particle, one-dimensional harmonic Hamiltonian:

H = − 1

2m

∂2

∂x2
+ 1

2
mω2x2 + τδ(x). (2)

Analytic solutions for the eigensystem of this Hamiltonian
are calculable for any value of τ to arbitrary accuracy by
solving a transcendental equation for energy [45,46]. However,
in the limit τ → ∞, the harmonic trap splits into two identical
wells with no tunneling allowed. Each side of the barrier is
dynamically decoupled from the other and their relative phases
have no physical meaning; i.e., the two sides cannot compare
clocks. The stationary states when τ → ∞ can be found by
patching together the odd solutions of (2) with τ = 0 into two
solutions (one with even parity, one with odd). Every energy
level in the spectrum is doubly degenerate. The singularity at
x = 0 severs the configuration space by forcing a node onto
every wave function with finite energy, and this invalidates the
standard proof that all bound-state energy eigenfunctions in
one dimension are nondegenerate [47].

Degeneracies must be consistent with the dimensions of
irreps of the kinematic symmetry group of the Hamiltonian. In
the case τ → ∞ the double degeneracy can be understood as
arising from the dynamical decoupling of the two domains
x > 0 and x < 0. In each domain, time evolution by an
amount t is represented by a unitary operator Ux>0(t) or
Ux<0(t) that rotates the phase of the wave function only on
one side of the barrier. These two operators commute with

the total Hamiltonian and with each other. This doubling
of time-evolution symmetry can explain the doubling of the
spectrum.

Well permutation symmetry manifests whenever identical
traps are dynamically decoupled, and it occurs in any dimen-
sion. In the limit of impenetrable one-dimensional particles,
the Hamiltonian similarly decouples into independent sub-
systems. The few-particle configuration space is sectioned
into fixed orderings by the interactions, and these sections
are equivalent and exchangeable for identical particles. Each
ordering is a “subsystem” that is decoupled from all the other
orderings. If the particles are totally or partially indistinguish-
able, then there are phase relations among different orderings
that are induced by particle exchange symmetries. In the
case of totally indistinguishable bosons and fermions, these
phase relations lift the degeneracy completely (i.e., the famous
Bose-Fermi mapping of Girardeau [48]); otherwise it is more
complicated for more than two particles [42,43,49,50].

C. Outline of paper

The outline of this paper is as follows. Section II goes
“beneath the bottom” and looks at symmetries for one particle
in double-well scenarios. Besides the familiar global symme-
tries of parity and particle exchange, infinite barriers induce
piecewise-linear local symmetries. Local symmetries have
been shown to be useful for wave propagation and scattering in
one-dimensional systems with partial symmetry [51,52]. This
section also clarifies how this article makes the distinction
between systematic and accidental symmetries (following the
definitions in Ref. [53]). Section III describes symmetries
and symmetry breaking for two interacting particles in an
arbitrary double-well system. Sections II and III both focus
on the puzzle of identifying sufficient kinematic symmetries
to explain spectral degeneracies. Readers less interested in
the structural analysis of symmetries and irreps may want to
skim these sections and start in Sec. IV, which applies these
symmetries to analyze the three-parameter model (1). For this
model, the zero-range nature of the barrier and interaction
provides additional symmetry, leading to integrability and
solvability for a variety of limiting cases. In Sec. V, the
additional symmetry provided when the trap potential V (x)
is the infinite square well or the harmonic trap is exploited
to construct explicit adiabatic maps between limiting cases.
Section VI briefly indicates how these ideas can be extended
to a few particles in a few wells, and the concluding section
provides an outlook on possible extensions and applications
of this work.

II. SYMMETRIES FOR ONE PARTICLE IN TWO WELLS

From the perspective of kinematic symmetries, there are six
kinds of impenetrable double wells in one dimension. They are
distinguished depending on whether the wells have the same
shape, whether the wells are individually symmetric under
reflection, and whether the pair of wells is symmetric under
a global reflection. The six distinct possibilities are depicted
schematically in Fig. 2. In the top three, the two wells are
different and have different energy spectra. For the bottom
three, wells are identical (or mirror images, as in case V).
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FIG. 2. Schematic representation of six symmetry cases of double
wells in one dimension with different configuration space and
kinematic symmetries, described in the text.

A. Configuration-space symmetries

Consider the configuration-space symmetry group for one
particle in a double well. Configuration-space symmetries are
transformations of one-particle configuration space X ∼ R
that commute with the Hamiltonian and are a subgroup of
the kinematic symmetry. Equivalently, configuration-space
symmetry transformations map stationary state wave functions
into other stationary state wave functions with the same
energy. Following Ref. [51], we further distinguish global
and local configuration-space symmetries. An example of a
global symmetry transformation is a linear transformation
of the entire space X that commutes with the Hamiltonian.
Generally in one dimension, any global linear transformation
is a translation, reflection, or glide reflection. For double
wells, only the global reflection is possible. Local symmetry
transformations include piecewise-linear transformations, for
example, a transformation like “apply a reflection to well a but
leave well b alone.” Local symmetries are only possible when
there are infinite barriers and the configuration-space wave
functions have nodes at the boundaries between the different
domains of the piecewise transformations. The one-particle
configuration space X can be divided into three domains: the
left well Xa , the barrier Xτ , and the right well Xb.

Using these definitions, consider the following six cases,
also summarized in Table II.

Case I. There is no global or local symmetry, so the
configuration-space symmetry group is the trivial group E

TABLE II. This table lists the configuration-space symmetry for
one particle in two wells for the case of no tunneling, C∞

1 , and
tunneling, Cτ

1 . The groups are expressed using notation explained
in the text. The order of the groups (i.e., the number of elements
including the identity) is listed in the column after each group. In
each case, Cτ

1 is the subgroup of C∞
1 preserved when the no-tunneling

symmetry is broken.

Type C∞
1 |C∞

1 | Cτ
1 |Cτ

1 |
I E 1 E 1
II O(1)a 2 E 1
III O(1)a × O(1)b 4 E 1
IV W2 2 E 1
V W ′

2 2 O(1) 2
VI O(1) � W2 8 O(1) 2

of just the identity transformation on X , whether or not there
is tunneling.

Case II. There is a single local symmetry transformation,
a parity reflection πa in domain Xa . The configuration-space
symmetry is denoted O(1)a and has order 2. When tunneling
occurs, this local symmetry is broken.

Case III. Each well is parity symmetric, so without
tunneling there are two local reflections πa and πb, giving
O(1)a × O(1)b ∼ Z4, where Z4 is the abstract cyclic group of
order 4. Again, tunneling breaks the local symmetry and there
are no global configuration space symmetries.

Case IV. There are no single-domain local symmetries, but
domain Xa can be translated right and domain Xb can be
translated left. Call this piecewise-linear transformation wab

and call the order-2 group it generates W2 ∼ Z2. If there is
tunneling, then this discontinuous transformation will not map
stationary states into stationary states, and there is no global
symmetry.

Case V. The domains can be flipped and then exchanged,
i.e., the transformation πaπbwab. This is the same abstract
group as case IV, but it is denoted by W ′

2 to signify that it is a
different realization. The transformation πaπbwab is equivalent
to the total parity transformation π . This global symmetry
transformation is preserved in the presence of tunneling.

Case VI. Counting the identity e, there are eight
configuration-space symmetry transformations for impene-
trable wells: πa , πb, πaπb, wab, πawab, πbwab, πaπbwab.
This group is isomorphic to D4, the dihedral group with
four reflections, also realized as the two-dimensional point
symmetries of a square. Unlike the other five cases, this group
is not Abelian, for example, πawab = wabπb. As with case V,
tunneling breaks almost all of these symmetries, leaving only
global parity.

One way to describe the symmetry of case VI is using
the wreath product �, a kind of semidirect product that is
used in combinatorics to describe the permutations of objects
with structure. In case VI, the configuration-space symmetry
group can be expressed as O(1) � W2. The first term in the
wreath product is the symmetry of the well; the second term
is the exchange symmetry of the wells. Generally, in the
wreath product G � SN between a finite group G with order
g and a permutation group SN with order N !, the order
of the wreath product is (gN · N !). A well-known example
of a wreath product is the hyperoctahedral group Z2 � SN ,
the symmetry of an N -dimensional cube. Other examples of
wreath products include the lamplighter group Z2 � Z and the
group of transformations of a Rubik’s cube [54]. In the next
section, the wreath-product structure is used to generalize local
symmetries to the few-body case.

B. Degeneracies and kinematic symmetries

In the limit of no tunneling, each well is assumed have a
discrete and singly degenerate spectrum: σa = {α0,α1,α2, . . .}
for the left well and σb = {β0,β1, . . .} for the right well.
For cases IV, V, and VI, the spectra are the same: σa = σb.
When wells are not the same shape, they may have energy
levels that line up “by accident,” but in general this requires
highly specific fine tuning. For example, the depth, width,
or other shape parameters are tuned “just right” so that
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one or more levels line up perfectly. Counterexamples of
different-shaped wells with many overlapping levels are wells
that are supersymmetric pairs, or infinite square wells with
rational ratios, but these seemingly “accidental” degeneracies
derive from dynamical or spectrum-generating symmetries and
are in fact systematic.

So when there is no tunneling, and barring accidental degen-
eracies, the double-well energy spectra σ1 = σa ∪ σb for cases
I–III are singly degenerate and for cases IV–VI the spectra σ1 =
σa = σb are doubly degenerate. Systematic degeneracies like
these should be explained by the kinematic symmetry group
of the Hamiltonian. When the correct kinematic symmetry
group has been identified, the degeneracies of the energy
levels correspond to the dimensions of the unitary irreps of
the symmetry group [55]. Configuration-space symmetries
alone cannot explain the twofold degeneracy for cases IV–VI.
The configuration-space symmetry groups for cases IV and
V only have one-dimensional irreps. The configuration-space
symmetry group for case VI is isomorphic to the symmetry
of a square and does have a two-dimensional irrep, but
explicit construction of wave functions shows that not all
double-degenerate energy levels correspond to that irrep [42].

So what symmetry group gives the correct twofold sys-
tematic degeneracies for cases IV–VI when there is no
tunneling? As mentioned in the introduction, the solution
to this puzzle lies in the observation that in the absence of
tunneling the two wells are dynamically independent. The
one-particle Hamiltonian ĥ can be decomposed into a sum
of sub-Hamiltonians ĥa and ĥb by restricting the position
representation [56] of the Hamiltonian h(x),

〈x|ĥ|x ′〉 = h(x)δ(x − x ′), (3)

to the well regions Xa and Xb:

ha(x) = h(x)|Xa
⇒ ĥa,

hb(x) = h(x)|Xb
⇒ ĥb. (4)

These sub-Hamiltonians are defined on disjoint domains and
they commute with each other and the total Hamiltonian.
They each generate a time translation operator Ûa(t) =
exp(−iĥat/h̄). As unitary operators that commute with ĥ,
they generate a subgroup of the kinematic symmetry group.
For case I (which has the least symmetry), the kinematic
symmetry group is the product of each well’s time translation
group Ta × Tb [57]. For cases II and III, the kinematic
symmetry groups for no tunneling are O(1)a × Ta × Tb and
O(1)a × O(1)b × Ta × Tb, respectively. In all three cases,
these groups only have irreps that are one dimensional, and
spectra that are therefore nondegenerate except for “accidents.”

For cases IV and V, the time translation group irreps are
the same, Ta = Tb, and the kinematic symmetry group can
be expressed as Ta � W2 and Ta � W ′

2, respectively. Case VI is
[Ta × O(1)] � W2. These groups have two-dimensional irreps
that correspond to the familiar energy eigenspaces spanned by
left-right localized basis states [18].

When tunneling is present, coupling of the wells breaks
local time-translation symmetry. The kinematic symmetry for
cases I–IV is just time translation T and for cases V and VI it is
global time translation and parity T × O(1). These groups only
have one-dimensional irreps, and therefore tunneling splits the

doubly degenerate levels for cases IV–VI. The splitting energy
cannot be inferred from symmetry, although the familiar result
that the parity-symmetric states for cases V and VI have lower
energy can be derived from symmetry alone.

III. SYMMETRIES FOR TWO PARTICLES IN TWO WELLS

It is mathematically equivalent, and sometimes conceptu-
ally convenient, to treat a system with two particles in one
dimension as though it were a system with one particle in
two dimensions. When the barrier between the wells prevents
tunneling, then the system is equivalent to one particle trapped
in four (not necessarily identical) two-dimensional wells.
Figure 3 depicts sample two-dimensional potential energies
V (x1) + V (x2), where V (xi) is one of the six cases of single-
particle double wells. Figure 4 depicts the same six poten-
tials with the addition of finite-range, repulsive interactions
g exp(−λ|xi − x2|). The local and global configuration-space
symmetries can be classified, and these symmetries depend on
the nature of the wells and the nature of the interactions. The
cases of noninteracting, finite-range interactions, zero-range
interactions, and the unitary limit of contact interactions have
different symmetries, and these are listed for the six cases in
Table III. When there is tunneling, all the parity-symmetric
and parity-asymmetric cases collapse and the analysis is much
simpler, as shown in Table IV.

Most of the configuration-space analysis summarized in
Tables III and IV can be inferred directly from Figs. 3 and 4.
The groups represent all the piecewise-linear transformations
that map the configuration space onto itself. Despite the rich
symmetry structures possible, the degeneracy of states for
two particles in two wells generally cannot be explained by
the irreps of the configuration-space symmetry group. Like
the one-particle case, the full kinematic symmetry group
of the Hamiltonian is required. Section III A describes the
kinematic symmetry group for any separable system and

FIG. 3. Contour plots of the potentials for two particles in each
of the six double-well-trap types in Fig. 1 without interactions. In
each panel, the sector in the upper right corner is the domain XA,
where both particles are in the right well b, and the upper right
corner is domain XC , where both particles are in the left well a.
The off-diagonal domains XB and XD correspond to the particles in
different wells. Note that without interactions, all four sectors are
separable in all six cases.
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FIG. 4. Contour plots of the potentials for two particles in each
of the six double-well-trap types in Fig. 2 with a repulsive two-
body interaction with a strength that decreases exponentially. Note
that when the range of interactions is further than the barrier width,
then no sectors are separable in any of the six cases. For zero-range
interactions, sectors XB and XD remain separable.

Secs. III B and III C describe how well permutation symmetry
and ordering permutation symmetry manifest for two particles.

A. Symmetry of separability

First, consider two noninteracting particles in a single
one-dimensional well with one-particle energy spectrum σ1 =
{ε0,ε1,ε2, . . .}. The two-particle energy spectrum  is just the
sum of two copies of σ1, and each energy level is either singly
degenerate like the ground state with energy 2ε0 or doubly
degenerate like the first excited state ε0 + ε1. The group that
describes this kinematic symmetry is T � P2. This group is
isomorphic to the one-particle, double-well kinematic group
Ta � W2 for cases IV and V, but the correspondence between
energy levels and irreps is not the same. The difference is that
T � P2 is the symmetry of a system with two identical separable
degrees of freedom. The Hamiltonian can be written in terms
of an operator like

Ĥ = ĥ1 ⊗ Î + Î ⊗ ĥ2 (5)

acting on a tensor product structure like

L2(X1) ⊗ L2(X2) ∼ L2(R2), (6)

TABLE IV. This table lists the configuration-space symmetries
for each of the six types of double wells depicted in Figs. 3 and 4 when
there is tunneling for two particles that are noninteracting, interacting,
and interacting via a contact interaction at the unitary limit. The
group Pj is the particle permutation group and is isomorphic to
the symmetric group Sj . See the caption of Table III for additional
notation.

Type No interactions Interactions Unitary limit

I–IV P2 ∼ D1 P2 ∼ D1 O2 ∼ P2 ∼ D1

V and VI O(1) � P2 ∼ D4 O(1) × P2 ∼ D2 D1 � O2

where Xi is the one-dimensional configuration space for each
particle. On the other hand, the one-particle, identical double-
well kinematic group Ta � W2 is the symmetry for a system with
a single degree of freedom segmented into disjoint intervals.
The Hilbert space for that problem is

L2(Xa) ⊕ L2(Xb) ∼ C2 ⊗ L2(Xa). (7)

So, although the groups are isomorphic and have the same
irreps, for Ta � W2 not all of those irreps occur in the reduction
of the Hilbert space (7).

For noninteracting identical two-particle systems, the
kinematic group always has T � P2 as a subgroup [42]. Its
subgroup T1 × T2 ⊂ T � P2 is the product of two commuting
continuous symmetry transformations in phase space. Since
there are two degrees of freedom, in this case separability
symmetry is enough to guarantee Liouville integrability for
two noninteracting particles.

Interactions break the symmetry of separability but preserve
the subgroup of total time translations and particle exchange
T × P2 for cases I–IV. Total parity is additionally preserved
for cases V and VI, giving T × O(1) × P2. This is not enough
symmetry to preserve integrability for general traps since there
is only one continuous symmetry transformation. Additionally,
these groups only have one-dimensional representations, so
interactions split the degeneracies created by the symmetry of
separability.

B. Well permutation symmetry

When there is no tunneling, the two-particle configuration
space X 2 is split into four decoupled sectors. Starting from

TABLE III. For each of the six types of impenetrable double wells depicted in Figs. 3 and 4, the configuration-space symmetries for two
particles that are noninteracting, interacting via an interaction with range wider than the barrier domain, interacting via a contact interaction, and
the unitary limit of the contact interaction. The group Dj is the two-dimensional dihedral point group with j reflections and j − 1 rotations. The
group Wj is the well permutation group and is isomorphic to the symmetric group Sj . The ordering permutation group Oj is also isomorphic
to the symmetric group Sj . In these expressions, the wreath product is taken before the direct product in the order of operations, and the wreath
product is associative so (D1 � O2) � W2 = D1 � (O2 � W2).

Type No interactions Finite-range interactions Contact interactions Unitary limit

I D1 × W2 × D1 D1 × W2 × D1 D1 × W2 × D1 O2 × W2 × O2

II D4 × D1 � W2 × D1 D2 × W2 × D1 D2 × D1 � W2 × D1 D1 � O2 × D1 � W2 × O2

III D4 × D2 � W2 × D4 D2 × W2 × D2 D2 × D2 � W2 × D2 D1 � O2 × D2 � W2 × D1 � O2

IV D1 � W4 D1 � W2 × W2 D1 � W2 × D1 � W2 O2 � W2 × D1 � W2

V D1 � W4 D1 � W2 × D1 � W2 D1 � W2 × D1 � W2 O2 � W2 × D1 � W2

VI D4 � W4 D2 � W2 × D1 � W2 D2 � W2 × D4 � W2 D1 � O2 � W2 × D4 � W2
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the upper right corner in any panel of Fig. 3 and moving
counterclockwise, label these sectors A (both particles in well
b), B (particle 1 in well b, particle 2 in well a), C (both
particles in well a), and D (particle 1 in well a, particle 2
in well b). Piecewise-linear transformations of configuration
space X 2 ∼ R2 that shuffle similar sectors and commute with
the Hamiltonian are local symmetries.

For all six cases of double wells, sectors B and D are
mirror images whether there are interactions or not. These
are the sectors corresponding to one particle in each well,
and their similarity is a consequence of particle permutation
symmetry. However, global particle permutation symmetry
does not just exchange sectors B and D; it also reflects sectors
A and C about the line x1 = x2. When the double wells are
impenetrable, the operator wBD that exchanges wells B and
D can be (in principle) implemented as a local symmetry
independent of the operators σA and σC that reflect sectors
A and C along the line x1 = x2. The global action of the
particle-exchange operator p12 can be decomposed into a
product of three operators:

p12 = σAσCwBD.

Well permutations like wBD and “well-local” operators like σA

do not need to be physically feasible. The physical protocol
that σA represents “exchange particle 1 and 2 if they are both
in the right well, otherwise leave them alone” does not need
to have an active realization. Well permutations are still valid
symmetries even if they are only passive transformations of
coordinate systems.

To explain the degeneracies in the nontunneling limit, the
configuration-space symmetry must be combined with inde-
pendent time translations for each well. Without interactions,
the Hamiltonian restricted to each of the four sectors is still
separable. As an example, consider case I with no tunneling
and no interactions. The total kinematic symmetry can be
written as

(Ta � P2) × ((Ta × Tb) � W2) × (Tb � P2). (8)

The first factor Ta � P2 and third factor Tb � P2 are the symmetry
of separability combined with particle permutation for the
cases when both particles are in the same wells A and C. The
second factor is the symmetry of separability combined with
well permutation symmetry for the two cases of one particle in
each well B and D. Assuming no accidental degeneracies,
irreps for the first and third factor subgroup are one and
two dimensional, and the relevant irreps for the second factor
subgroup are two dimensional.

When interactions are turned on for case I, separability is
broken and the kinematic symmetry that remains is

(TA × P2) × (TBD � W2) × (TC × P2). (9)

Now the first and third factor subgroups only have one-
dimensional irreps. The well permutation symmetry for sectors
B and D continues to hold, and so there are still irreps
corresponding to twofold-degenerate energy levels. Note that
if the interaction is zero range (or of a range shorter than
the barrier width) then the sectors B and D retain their
separability symmetry. This distinction does not change the
symmetry for case I, but it becomes relevant for cases II–VI,

and it is necessary to explain the degeneracy pattern found for
Hamiltonian (1) in Table I with a �= 0.

The other cases that are important for subsequent examples
with Hamiltonian (1) are cases V and VI. For these cases,
all four two-particle sectors are equivalent when there are
no interactions, so the configuration-space symmetry has a
larger well permutation subgroup W4 ∼ S4. Additionally,
each well in case V has D1 ∼ O(1) symmetry (one reflection)
and each well in case VI has O(1) � P2 ∼ D4 symmetry
(four reflections, three rotations). So without interactions, the
configuration-space symmetries are D1 � W4 for case V and
D4 � W4 for case VI. Each well is separable, and therefore
by including the kinematic symmetries this is extended to
(T � P2) � W4 for case V and ((T × O(1)) � P2) � W4 for case
VI. Both these groups have four- and eightfold-degenerate
irreps that correspond to two-particle, two-well infinite barrier
energy levels.

Adding interactions distinguishes wells A and C from wells
B and D and breaks separability. For finite range interactions,
the remaining kinematic symmetries are

(TAC × P2) � W2 × (TBD × D1) � W2, (10)

(TAC × D1 × P2) � W2 × (TBD × D1) � W2, (11)

for cases V and VI, respectively. Both factor subgroups have
two-dimensional irreps that correspond to physical states. For
contact interactions, the remaining kinematic symmetries are

(TAC × P2) � W2 × (TBD � D1) � W2, (12)

(TAC × D1 × P2) � W2 × (TBD × D1 � P2 � W2. (13)

The second subgroup factor has two-dimensional irreps and
four-dimensional irreps, and the four-dimensional irrep has the
same energy as the two-dimensional irrep of the first subgroup
factor. Therefore, there are sixfold-degenerate energy levels
in addition to twofold-degenerate levels. See Sec. IV for
examples with Hamiltonian (1).

C. Ordering permutation symmetry

The final two-particle, two-well symmetry to be discussed
here occurs in the unitary limit of the contact interaction, or
more generally when strong, finite-range repulsive interactions
effectively split configuration space X 2 into two identical
sections, XI for x1 < x2 and XII for x2 < x1. See Fig. 1 for
a depiction. Then each of these sectors can again be thought of
as a one-particle, two-dimensional well and piecewise-linear
transformations of X 2 that commute with the Hamiltonian
are configuration-space symmetries. Denote the group by O2.
One might think this would be equivalent to particle exchange,
and for asymmetric wells and asymmetric double wells like
cases I–IV, one would be right. However, for symmetric traps
(including double wells like cases V and VI), each section also
allows an independent reflection. The total configuration-space
symmetry group is therefore at least as large as D1 � O2.

When there is a global parity-symmetric double well with
no transmission like cases V and VI, then there are two wells
A and C that have ordering permutation symmetry. Therefore,
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case V has a total configuration-space symmetry of

(O2 � W2) × (D1 � W2), (14)

where the first factor subgroup is for sectors A and C and the
second is for sectors B and D. For case VI the configuration-
space symmetry is

(D1 � O2 � W2) × (D4 � W2). (15)

The final step is to include the kinematic symmetries, which
enlarge (14) and (15) into

(TAC � O2 � W2) × (TBD � D1 � W2) (16)

and

((TAC × D1) � O2 � W2) × ((TBD × D1) � P2 � W2). (17)

For both cases the physical irreps for the first factors have
dimension 4 and for the second factor dimension 2 or 4.
Because the spectrum of sectors A and C shares energy levels
with the spectrum of sectors B and D, the energy levels are
either two- or eightfold degenerate.

Note that for more than two particles, ordering permutation
symmetry has a richer structure [43,44] because the number
of orders, N !, is greater than the number of particles, N .

IV. SPLIT-WELL HAMILTONIAN

This section applies kinematic symmetries to analyze the
model Hamiltonian (1). Physically, one can imagine this
Hamiltonian is a good model for a highly elongated, effectively
one-dimensional trap that has been severed in two pieces by a
sheet of repulsively tuned light. For a �= 0 the Hamiltonian has
the well pattern of case I and for a = 0 it is case V generally
and case VI for the infinite square well.

Two observations are worth emphasizing:
(a) The Hamiltonian with no interactions but any barrier

strength Hτ
0 is integrable in the Liouvillian sense. The

Hamiltonian is separable into two one-particle systems and
the energy of each particle is an independent integrable of the
motion.

(b) In the unitary limit of contact interactions γ → ∞,
the Hamiltonian Hτ

∞ is again integrable, now in the Bethe-
ansatz sense. The infinite barrier along x1 = x2 provides
diffractionless scattering and solutions in each sector are
constructed by superpositions of separable solutions. This is
the essence of the famous observation of fermionization of
trapped hard-core bosons by Girardeau [48].

For any other value of interaction strength, the Hamiltonian
generally is not integrable in either sense. The notable excep-
tions of the infinite square well and harmonic trap are treated in
the next section. For other trap shapes, the interacting region of
model space can be interrogated by perturbation expansions,
exact diagonalization, or variational methods using eigenstates
of the noninteracting limit Hτ

0 . One can also do perturbation
expansions (or other methods) from the unitary limit Hτ

∞,
but some caution is required because wave functions for the
finite-energy eigenstates of Hτ

∞ necessarily have nodes along
the line x1 = x2. No superposition of Hτ

∞ eigenstates will
ever have a nonzero wave function along the line x1 = x2.
Equivalently, the operator Hτ

∞ is not self-adjoint on L2(R2),

but only on the subdomain

L2(R2/{x|x1 = x2}) = L2(XI ) ⊕ L2(XII ) ∼ C2 ⊗ L2(XI ).

As a consequence, the first-order perturbed state and second-
order perturbed energy require renormalization [39,58,59].
Note that a similar difficulty would also exist when using
perturbation theory to extrapolate from the solutions of H∞

γ

(which is solvable for certain traps shapes) to Hτ
γ . Another

idea is to use variational methods to interpolate between the
ground state of Hτ

0 and the ground state of Hτ
∞ (or the lowest

state in a symmetrized sector; see below) to approximate the
ground state as a function of γ [60].

A. Asymmetric case a �= 0

For the asymmetric case, the only symmetry valid for all τ

and γ is particle permutation P2. This means the Hilbert space
can be reduced into permutation symmetric and antisymmetric
sectors:

H = H[2] ⊕ H[12], (18)

where we use the notation [2] for symmetric and [12] for
antisymmetric. There are no matrix elements of Hτ

γ (or any
operator that has P2 symmetry) between vectors in different
sectors. Note that in Fig. 5, which schematically depicts the
potentials for a harmonic trap split by an off-center barrier,
all panels have reflection symmetry across the line x1 = x2.
When τ = 0, parity is restored and so the potentials for the
Hamiltonians depicted in the top line of Fig. 5 all have at
least D2 symmetry, which includes two reflections and one π

rotation. The left column depicts the limit γ = 0 where the
symmetry of separability applies, the bottom row depicts the

FIG. 5. Potential energy of Hamiltonian (1) for a harmonic trap
with a �= 0. Same ordering of panels as in Fig. 1. Note that the
left and right columns are integrable and are analytically solvable to
arbitrary precision in terms of transcendental equations with parabolic
cylindrical functions.
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limit τ → ∞ where well permutation symmetry applies, and
the right column depicts the limit γ → ∞ where ordering
permutation symmetry applies. When there are additional
symmetries, there are additional reductions of the Hilbert space
into “smaller” sectors.

For an arbitrary a �= 0, any one-particle energy degen-
eracies between the left and right sides of the barrier are
accidental. For example, such a degeneracy would occur if
the zero-range barrier was raised exactly at the nodal point
of a single-particle energy eigenfunction. Neglecting this
kind of idealization, then the degeneracies of Hτ

γ for a �= 0
should follow the analysis for case I of the previous section,
summarized in the first column of Table I.

Denote the energy spectrum and energy eigenstates for
the single-particle Hamiltonian ĥ1 by σ1 = {ε0,ε1, . . .} and
{|0〉,|1〉, . . .}. The familiar solutions for H 0

0 that transform
irreducibly under P2 are algebraically constructed from the
single-particle solutions using superpositions of tensor product
states |n1n2〉 = |n1〉 ⊗ |n2〉:

|(n1n2)+〉 =
{|n1n2〉, n1 = n2

1√
2
(|n1n2〉 + |n2n1〉), n1 �= n2,

(19a)

|(n1n2)−〉 = 1√
2

(|n1n2〉 − |n2n1〉). (19b)

In this expression and in subsequent notations, without
loss of generality, the composition (n1n2) of two quantum
numbers is ordered so that n1 � n2. The spectrum of H 0

0 is the
sumset (or Minkowski sum) 0

0 = σ1 + σ1 with elements like
En1n2 = εn1 + εn2 . As expected from the kinematic symmetry
of separability, energies En1n2 are one- or twofold degenerate
depending on whether n1 equals n2. Note that without more
information about the set σ1, only a partial order can be
placed on 0

0 . For example, E00 < E01 < E11, but without
more information about the progression of energies in σ1 we
cannot know whether E11 or E02 is greater.

Adding a permeable barrier, the Hamiltonian Hτ
0 is sep-

arable for any τ and we denote the single-particle energy
eigenstates of h1 + τδ(x − a) by |n〉τ with energy ετ

n ∈ σ τ
1

for n a non-negative integer. Denote the eigenvectors of
Hτ

0 by |n1n2〉τ = |n1〉τ ⊗ |n2〉τ ; they can be permutation
symmetrized as in (19) to form |(n1n2)τ+〉 ∈ H[2] and
|(n1n2)τ−〉 ∈ H[12]. In addition to the Hilbert space reduction
(18), for the Hamiltonian Hτ

0 an alternate reduction that
exploits separability is

Hτ
0 =

⊕
(n1n2)

H(n1n2)τ0 , (20)

where the sum is over all compositions of two non-negative
integers. Because the Hamiltonian Hτ

0 is separable for any τ ,
the quantum numbers n1 and n2 are conserved as τ is varied
adiabatically, even though the state |n1n2〉τ and the energy
Eτ

n1n2
= ετ

n1
+ ετ

n2
change.

In contrast, when interactions are turned on, the symmetry
of separability is broken and the twofold-degenerate levels of
τ

0 = σ τ
1 + σ τ

1 split into singly degenerate levels. The states
|(n1n2)τ−〉 have nodes along x1 = x2 and so they do not
feel the zero-range contact interaction, whereas the symmetric
states |(n1n2)τ+〉 shift upwards in energy in a fashion that

generally depends on the shape of the trap, the strength of the
barrier, and the quantum numbers in the composition.

The eigensolutions at the unitary limit Hτ
∞ can be al-

gebraically constructed from the eigensolutions of Hτ
0 by

restricting the particle permutation antisymmetric states (19b)
to the domains XI and XII, also called the “snippet” basis
[42,43,49,50,61]:

ψI
(n1n2)τ (x) =

{√
2ψ(n1n2)τ −(x), x ∈ XI

0, x ∈ XII,
(21)

ψII
n1n2

(x) =
{

−√
2ψ(n1n2)τ −(x), x ∈ XII

0, x ∈ XI,
(22)

where

ψ(n1n2)τ −(x) = 〈x|(n1n2)τ−〉
and

ψI
(n1n2)τ (x) = 〈x|(n1n2)τ ; I〉.

For every energy level of the noninteracting spectrum τ
0 ,

there is a twofold-degenerate level in the spectrum of Hτ
∞,

denoted τ
∞. From the degenerate eigenvectors (21), the

simultaneous eigenvectors of energy and particle permutation
can be constructed:∣∣(n1n2)τ∞; [2]

〉 = 1√
2

(|(n1n2)τ ; I〉 + |(n1n2)τ ; II〉),
∣∣(n1n2)τ∞; [12]

〉 = 1√
2

(|(n1n2)τ ; I〉 − |(n1n2)τ ; II〉)

≡ ∣∣(n1n2)τ [12]
〉
. (23)

This is an example of bosonic fermionization à la Girardeau
for the unitary limit of the contact interaction [18]. These two
wave functions have the same energy and configuration-space
density, although they have different momentum distributions.

A final comment before moving to the symmetric case is
that, just like Hτ

0 , the integrability of Hτ
∞ means that the quan-

tum number composition (n1n2) of the states |(n1n2)τ∞; [2]〉
and |(n1n2)τ∞; [12]〉 do not change as τ is adiabatically varied,
even though the states and energies do.

B. Symmetric case a = 0

When the barrier is erected in the middle of the symmetric
trap, then parity and permutation symmetry are preserved for
all values of τ and γ . This means that all states can be reduced
into one of four irreps of P2 × O(2): [2]+, [2]−, [12]+, and
[12]−. In other words, the total Hilbert space for the system is
broken into four sectors,

Hτ
γ = H[2]+ ⊕ H[2]− ⊕ H[12]+ ⊕ H[12]− , (24)

and there are no matrix elements of the Hamiltonian Hτ
γ

for vectors in different sectors. The parities of Hτ
0 eigen-

states |(n1n2)τ+〉 and |(n1n2)τ−〉 are (−1)n1+n2 . For the Hτ
∞

eigenstates, the permutation symmetric state |(n1n2)τ∞; [2]〉
has parity −(−1)n1+n2 , whereas for the antisymmetric state
|(n1n2)τ∞; [12]〉 the parity has the normal form (−1)n1+n2 .

Another consequence of the centered barrier is that solu-
tions for H∞

0 (which has well permutation symmetry) and H∞
∞
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(which has well and ordering permutation symmetry) can also
be constructed from the eigensolutions of H 0

0 . This occurs
because the barrier is raised exactly where every negative-
parity single-particle eigenstate |ni〉 of ĥi has a node. The
spectrum ∞

0 is the subset of 0
0 derived from compositions

of odd positive integers. Following the same argument as the
algebraic construction of the unitary limit solutions of Hτ

∞, the
odd-parity single-particle states can be used to form a snippet
basis for H∞

0 . Each composition (n1n2) of two odd states leads
to a fourfold- (n1 = n2) or an eightfold-degenerate (n1 �= n2)
energy level (assuming no additional symmetries or accidental
degeneracies), in agreement with the analysis of the kinematic
symmetries and degeneracies for cases V and VI. To see this,
define the quadrants in configuration space x = (x1,x2) ∈ X :

XA = {x|x1 > 0,x2 > 0}, XB = {x|x1 < 0,x2 > 0},
XC = {x|x1 < 0,x2 < 0}, XD = {x|x1 > 0,x2 < 0}.

Then for a composition (nn) with n odd there are four snippet
basis vectors, one for each quadrant. The snippet basis vector
ψA

(nn)(x) = 〈x|nn;A〉 for the XA quadrant is defined using the
position representation ψ(nn)(x) = 〈x|nn〉, i.e.,

ψA
(nn)(x) =

{
2ψnn(x), x ∈ XA

0, x /∈ XA.
(25)

The same definition holds for |nn; C〉. For |nn; B〉 and |nn; D〉,
the phase convention

ψB
(nn)(x) =

{−2ψnn(x), x ∈ XB

0, x /∈ XB,
(26)

is convenient because all quadrants have the same phase.
Similarly, the following eight degenerate energy eigen-

vectors can be defined when n1 �= n2 using restrictions to
quadrants and the same phase convention:

|n1n2;A〉, |n2n1;A〉, |n1n2;B〉, |n2n1; B〉,
|n1n2;C〉, |n2n1;C〉, |n1n2;D〉, |n2n1;D〉.

Simultaneous eigenvectors of energy, particle exchange,
and parity can be constructed from these snippet vectors. For
compositions of a single odd quantum number, they are

∣∣(nn)∞0 ;[2]+;1
〉 = 1√

2
(|nn;A〉 + |nn;C〉), (27a)

∣∣(nn)∞0 ;[2]+;2
〉 = 1√

2
(|nn;B〉 + |nn;D〉), (27b)

∣∣(nn)∞0 ;[2]−
〉 = 1√

2
(|nn;A〉 − |nn;C〉), (27c)

∣∣(nn)∞0 ;[12]−
〉 = 1√

2
(|nn;B〉 − |nn;D〉). (27d)

Note that the two states (27a) and (27b) have the same energy,
parity, and exchange symmetry, so any linear combination
of them is also a simultaneous eigenvector of the three
symmetry operators. For compositions of two odd numbers,

(n1n2) are

∣∣(n1n2)∞0 ;[2]+;1
〉 = 1√

2
(|(n1n2)+;A〉 + |(n1n2)+;C〉),

∣∣(n1n2)∞0 ;[2]+;2
〉 = 1√

2
(|(n1n2)+;B〉 + |(n1n2)+;D〉),

∣∣(n1n2)∞0 ;[2]−;1
〉 = 1√

2
(|(n1n2)+;A〉 − |(n1n2)+;C〉),

∣∣(n1n2)∞0 ;[2]−;2
〉 = 1√

2
(|(n1n2)−;B〉 − |(n1n2)−;D〉),

∣∣(n1n2)∞0 ;[12]+;1
〉 = 1√

2
(|(n1n2)−;A〉 + |(n1n2)−;C〉),

∣∣(n1n2)∞0 ;[12]+;2
〉 = 1√

2
(|(n1n2)−;B〉 + |(n1n2)−;D〉),

∣∣(n1n2)∞0 ;[12]−;1
〉 = 1√

2
(|(n1n2)−;A〉 − |(n1n2)−;C〉),

∣∣(n1n2)∞0 ;[12]−;2
〉 = 1√

2
(|(n1n2)+;B〉 − |(n1n2)+;D〉).

Every simultaneous eigenvector of O(1) × P2 is twofold
degenerate for these levels. Note that six of these vectors have
no support along the line x1 = x2, either because they have
no support in quadrants XA and XC , or because they have
nodes due to particle permutation antisymmetrization. These
six states form an invariant subspace under variations of γ

because they do not feel the zero-range contact interaction.
If a small finite range were included, this sixfold degeneracy
would break into three twofold-degenerate levels.

Finally, these results are combined with the previous section
to find the spectrum of H∞

∞ . Now there are six regions of
configuration space, denoted XAI, XAII, XB , XCI, XCII, and
XD . The spectrum of this Hamiltonian is the same as H∞

0 ,
i.e., energies for every composition (n1n2) of two odd positive
integers. Compositions with n1 = n2 are twofold degenerate,
and compositions n1 �= n2 are eightfold degenerate. Without
presenting all the definitions but relying on the notation to
carry the semantic load, the simultaneous eigenvectors for
energy, particle permutation, and parity for n1 = n2 = n an
odd positive integer are

∣∣(nn)∞∞;[2]+
〉 = 1√

2
(|nn;B〉 + |nn;D〉),

∣∣(nn)∞∞;[12]−
〉 = 1√

2
(|nn;B〉 − |nn;D〉). (28)

For n1 �= n2 odd positive integers, the definitions are

∣∣(n1n2)∞∞;[2]+;1
〉 = 1

2
(|(n1n2)−;AI〉 + |(n1n2)−;AII〉

+ |(n1n2)−;CI〉 + |(n1n2)−;CII〉),∣∣(n1n2)∞∞;[2]+;2
〉 = 1√

2
(|(n1n2)+;B〉 + |(n1n2)+;D〉),

∣∣(n1n2)∞∞;[2]−;1
〉 = 1

2
(|(n1n2)−;AI〉 + |(n1n2)−;AII〉

− |(n1n2)−;CI〉 − |(n1n2)−;CII〉),
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∣∣(n1n2)∞∞;[2]−;2
〉 = 1√

2
(|(n1n2)−;B〉 − |(n1n2)−;D〉),

∣∣(n1n2)∞∞;[12]+;1
〉 = 1

2
(|(n1n2)−;AI〉 − |(n1n2)−;AII〉

− |(n1n2)−;CI〉 + |(n1n2)−;CII〉),∣∣(n1n2)∞∞;[12]+;2
〉 = 1√

2
(|(n1n2)−;B〉 + |(n1n2)−;D〉),

∣∣(n1n2)∞∞;[12]−;1
〉 = 1

2
(|(n1n2)−;AI〉 − |(n1n2)−;AII〉

+ |(n1n2)−;CI〉 − |(n1n2)−;CII〉),∣∣(n1n2)∞∞;[12]−;2
〉 = 1√

2
(|(n1n2)+;B〉 − |(n1n2)+;D〉).

If there were a finite range to the interaction, these eight
levels would break into two twofold-degenerate levels for
the states with two particles in the same well, and two
twofold-degenerate levels for the particles in different wells.

V. EXAMPLES OF SOLVABLE MODELS

The analysis of the limiting cases of Hτ
γ described above

holds for any symmetric external trap potential V (x) =
V (−x). The summary insights are as follows:

(i) For any a, the limiting cases of no interaction Hτ
0 and

infinite contact interactions Hτ
∞ are integrable for every τ .

(ii) When a �= 0, the energy spectrum (energies, degen-
eracies, and eigenstates) of Hτ

∞ can be determined from the
spectrum of H 0

τ using algebraic methods and all states are
classified by irreps of P2.

(iii) When a = 0, the energy spectrum of H 0
∞, H∞

0 , and
H∞

∞ can be determined from the spectrum of H 0
0 using

algebraic methods and all states are classified by irreps of
O(1) × P2.

To make these results more clear, and to show how the
spectra map onto each other as parameters are varied, the next
two sections provide examples for two familiar traps with extra
solvability (and therefore extra symmetry): an infinite square
well and a harmonic trap. For these wells the Hamiltonians H 0

γ

and Hτ
γ are also solvable.

A. Infinite square well

The infinite-square-well potential

V (x) =
{

0, 0 < x < L

∞, else,
(29)

(the x origin has been shifted by a/2 for convenience of
notation) has the familiar sinusoidal solutions

〈x|n1n2〉 ≡ ψn1n2 (x)

= 2

L
sin

(
(n1 + 1)πx1

L

)
sin

(
(n2 + 1)πx2

L

)
(30)

with energies

En1n2 = h̄2[(n1 + 1)2 + (n2 + 1)2]π2

2mL2

≡ [(n1 + 1)2 + (n2 + 1)2]ε0. (31)

TABLE V. This table describes the lowest energy levels for
H 0

0 , H∞
0 , H 0

∞, and H∞
∞ with the infinite-square-well potential. The

composition tells what single-particle states make up the energy level.
The inset figures for each energy are contour plots of 〈x|(n1n2)+〉 (for
n1 = n2 or n1 �= n2) and 〈x|(n1n2)−〉 (only for n1 �= n2). The 2 × 2
arrays for each energy and each Hamiltonian show the degeneracy
of the four types of irreducible representations of particle-exchange
symmetry and parity symmetry. The top row of each array is for [2]+

and [2]−, symmetric states with positive and negative parity. The
bottom row is for [12]+ and [12]− for the antisymmetric states of both
parities.

Energy
Wave functions Degeneracy pattern

(composition) Symmetric Antisymmetric H 0
0 H 0

∞ H∞
0 H∞

∞

2ε0

(00)
1 0
0 0

5ε0

(01)
0 1
0 1

1 0
0 1

8ε0

(11)
1 0
0 0

2 1
0 1

1 0
0 1

10ε0

(02)
1 0
1 0

0 1
1 0

13ε0

(12)
0 1
0 1

1 0
0 1

16ε0

(03)
0 1
0 1

1 0
0 1

18ε0

(22)
1 0
0 0

20ε0

(13)
1 0
1 0

0 1
1 0

2 2
2 2

2 2
2 2

The stationary states provide the energy eigenbases of H 0
0 ,

H∞
0 , H 0

∞, and H∞
∞ with suitable superpositions and restrictions

defined above. The properties of the lowest energy states for
these four cases are summarized in Table V.

For the infinite-square-well potential, the Hamiltonians
Hτ

0 , Hτ
∞, H 0

γ , and H∞
γ are also solvable in terms of simple

transcendental equations for any value of τ or γ . As a result,
the spectra at the four limiting cases H 0

0 , H∞
0 , H 0

∞, and H∞
∞

can be mapped to each other using explicit solutions. Although
for any potential Hτ

0 and Hτ
∞ are integrable, the integrability

of H 0
γ and H∞

γ is special to homogeneous potentials and an
example of a system where the Bethe ansatz works [62,63].
In Figs. 6 and 7, the variation of the lowest energy levels is
depicted. The following are summarizing observations about
level mapping from these exact solutions:

(i) As τ increases from zero to ∞, the H 0
0 eigenstates with

energy E(n1−1)(n2−1), En1(n2−1), and E(n1−1)n2 are mapped to
H∞

0 eigenstates in the energy level En1n2 for n1 and n2 both
odd. This holds for both four- and eightfold-degenerate levels
of H∞

0 .
(ii) As γ increases from zero to ∞, the H 0

0 eigenstates
|(n1n2)+〉 are mapped to H 0

∞ eigenstates |n1(n2 + 1)0
∞;[2]π 〉,
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FIG. 6. Exact energy levels for Hτ
0 , H∞

γ , H 0
γ , and Hτ

∞ for two particles in the infinite-square-well potential. Energy is measured in units of
ε0. Parameters τ and γ are measured in units of ε0L. Solid (red) lines indicate a nondegenerate energy level, dashed (blue) lines are twofold
degenerate, and the thicker (brown) line with longer dashes is sixfold degenerate.

where the parity is the same as the original state π =
(−1)n1+n2 .

(iii) As τ increases from zero to ∞, the H 0
∞ eigenstates

follow the same rules for mapping to H∞
∞ eigenstates as the

H 0
0 eigenstates followed for mapping to H∞

0 eigenstates.
(iv) As γ increases from zero to ∞, for H∞

0 energy
levels with n1 = n2 = n, the eigenstates |(nn)∞0 ; [2]+;1〉 and
|(nn)∞0 ;[2]−〉 represent two particles in the same well and
they are mapped to H∞

∞ eigenstates |(n(n + 2))∞∞;[2]+;1〉
and |(n(n + 2))∞∞;[2]−;1〉. The two states |(nn)∞0 ;[2]+;2〉 and
|(nn)∞0 ;[12]−〉 corresponding to particles in separate wells are
invariant as γ is changed. Similarly, for H∞

0 energy levels with
n1 �= n2, the two states |(n1n2)∞0 ;[2]+;1〉 and |(n1n2)∞0 ;[2]−;1〉
shift to |(n1(n2 + 2))∞∞;[2]+;1〉 and |(n1(n2 + 2))∞∞; [2]−;1〉,
and the other six remain invariant.

What is the point of all this detailed analysis of level
mapping? One consequence is that the order in which trap
and interaction parameters are adiabatically tuned matters for
state control. For example, start at τ = 0 and γ = 0 in the
ground state |00〉. Slowly tune τ → ∞ and then γ → ∞, and

FIG. 7. Same as Fig. 6, but with four figures combined into a
three-dimensional representation that aligns with the edges in Fig. 1.
The gray vertical lines represent a break before the infinite limits. The
splitting and merging of energy levels and the asymmetry between
two solvable paths from H 0

0 to H∞
∞ can be seen.

the state transforms as

|00〉 τ→∞−−−→ 1√
2

(∣∣(11)∞0 ;[2]+;1
〉 + ∣∣(11)∞0 ;[2]+;2

〉)
γ→∞−−−→ 1√

2

(∣∣(13)∞∞;[2]+;1
〉 + ∣∣(11)∞∞;[2]+

〉)
, (32)

which is a superposition of energy eigenstates. On the other
hand, if the interactions are adiabatically ramped to the unitary
limit and then the tunneling is quenched, the state transforms
as

|00〉 γ→∞−−−→ ∣∣(01)0
∞;[2]+

〉 τ→∞−−−→ ∣∣(11)∞∞;[2]+
〉

(33)

into an energy eigenstate. If, additionally, spin control were
accessible and could change the effective symmetrization of
a state, then it seems state control schemes that exploit these
degeneracies are possible. However, an infinite square well
with a zero-range barrier and interactions, tunable to extreme
limits, can only ever be an approximation. Then the question
becomes, How sensitive is this kind of control to the vagaries
of real experiments, where multiple assumptions may fail by
a little or a lot? That is a question for further work.

B. Harmonic trap

For the harmonic oscillator trap, U(2) symmetry in phase
space provides for additional systematic degeneracies, as
well as renders the four limiting cases H 0

0 , H∞
0 , H 0

∞, and
H∞

∞ algebraically solvable. In fact there is enough additional
symmetry so that those cases are superintegrable and solvable
in both rectangular and polar coordinates. The N th energy
level of H 0

0 has (N + 1)-fold degeneracy because of the
equal energy level spacing, and then this degeneracy has
consequences for the other three limiting cases (see Table VI).

As always, Hτ
0 and Hτ

∞ are integrable. Furthermore, H 0
γ

and H∞
γ are also solvable [45,46,62] (but not algebraically

solvable). The additional U(2) symmetry provided by the un-
derlying isotropic harmonic trap allows separability in center-
of-mass and relative coordinates for H 0

γ . The Hamiltonian H∞
γ

can be solved by defining an extension of the Hamiltonian in
sectors A and C into sectors B and D, and then forming
suitable superpositions of separable solutions that solve the
nodal boundary conditions at x1 = 0 and x2 = 0. The energy
levels for all four limiting-case Hamiltonians are depicted in
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TABLE VI. This table describes the lowest energy levels for H 0
0 ,

H∞
0 , H 0

∞, and H∞
∞ with the harmonic potential. The 2 × 2 arrays for

each energy and each Hamiltonian show the degeneracy of the four
types of irreducible representations of particle-exchange symmetry
and parity symmetry. The top row of each array is for [2]+ and [2]−,
the symmetric states with positive and negative parity. The bottom
row is for [12]+ and [12]− for the antisymmetric states of both parities.

Energy h̄ω 2h̄ω 3h̄ω 4h̄ω 5h̄ω 6h̄ω 7h̄ω

H 0
0

1 0
0 0

0 1
0 1

2 0
1 0

0 2
0 2

3 0
2 0

0 3
0 3

4 0
3 0

H 0
∞ · · · 1 0

0 1
0 1
1 0

2 0
0 2

0 2
2 0

3 0
0 3

0 3
3 0

H∞
0 · · · · · · 2 1

0 1
· · · 2 2

2 2
· · · 4 3

2 3

H∞
∞ · · · · · · 1 0

0 1
· · · 2 2

2 2
· · · 3 2

2 3

Fig. 8. Numerical evidence from the exact solutions, confirmed
by perturbation theory, shows that the additional degeneracies
found for H 0

0 , H∞
0 , H 0

∞, and H∞
∞ with the harmonic oscillator

trap do not exist for the nonalgebraic solutions of Hτ
0 , Hτ

∞,
H 0

γ , and H∞
γ .

VI. MORE PARTICLES, MORE WELLS

The detailed symmetry analysis presented above may
seem like overkill for finding the particular spectrum of a
model with two particles in one dimension since numerical
methods converge speedily. Even for more complicated traps
and interactions, many numerical approximation schemes
can generate spectral results that are more accurate than
the effective model and experimental control of any real
experiment with ultracold atoms. What the symmetry analysis
does provide is an analysis of what spectral features are
universal for any trap and two-body interaction, and what
is particular to specific traps, barriers, and interactions. It
also provides a mechanism for generating relations between
models through symmetry breaking that can be used to track
how states change under adiabatic tuning of model parameters.

FIG. 9. Potentials in configuration space for a harmonic trap split
by thin barriers into well and sectioned by barriers in black and
contact interactions in gray (red online). The three cases are (left)
two particles in three wells with contact interactions, (center) three
particles in two wells, and (right) three particles in three wells.

For systems with more degrees of freedom, where numerical
methods are more difficult, symmetry methods may therefore
provide a boost to model analysis.

The most important general results are the following:
(i) For noninteracting particles, no matter how many wells

and how many particles, no matter the trap and the tunneling,
the system is separable and Liouville integrable. It may of
course be quite difficult to extract the spectrum for a strange
trap shape, but in principle it is solvable with arbitrary
accuracy.

(ii) At the unitary limit of contact interactions, the system
is Bethe-ansatz integrable and solutions are constructed via the
Girardeau mapping for any trap, barriers, and particle number.

(iii) Finally, for the infinite-square-well trap, for any
number of particles and contact interactions of any strength,
the system is integrable for no barriers and for infinite δ barriers
(or Heaviside step barriers). The Bethe-ansatz solution for the
finite interval works in each multiparticle square well.

As an example of the minimal case of an underfilled lattice
with interacting particles, the left panel in Fig. 9 depicts the
configuration space for two particles in a harmonic well that
is split symmetrically by two barriers into three wells. In the
limit of infinite barriers, there are nine two-particle sectors.
The central sector, corresponding to both particles in the
middle, is nondegenerate, but the rest break into two quartets
of exchangeable sectors. When there are no interactions,
combining the separability with well permutation gives singly
or doubly degenerate energy levels for both particles in the

FIG. 8. Exact energy levels for Hτ
0 , H∞

γ , H 0
γ , and Hτ

∞ for two particles in the harmonic potential. Energy is measured in units of h̄ω.
Parameters and τ and γ are measured in units of h̄ωσ , where σ is the harmonic oscillator length scale. Solid thin (red) lines indicate a
nondegenerate energy level, dashed thin (blue) lines are twofold degenerate, and dotted thin (green) lines are threefold degenerate. In the H∞

γ

graph only, the thick solid (purple) line is fourfold degenerate, the thick dashed (brown) line is sixfold degenerate, and the thick dot-dashed
black line is eightfold degenerate.
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central well, and four- or eightfold-degenerate energy levels
for one particle in the middle well and one in the edge well
or both in the edge wells. If the contact interaction is tuned to
the unitary limit, the three sectors with particles in the same
well split into subsectors, and the degeneracy is rearranged.
There are two fourfold and two twofold well permutation
symmetries, with one of each being separable.

The simplest overfilling is realized by three particles in
two wells, depicted in the middle panel in Fig. 9. Without
interactions, there is eightfold well permutation symmetry
for a symmetrically placed barrier in a symmetric trap.
Contact interactions of finite strength break that symmetry
into two- and sixfold exchangeable sectors, but the unitary
limit increases it back up to two 12-fold-degenerate sectors.
That means that the symmetry group has order (12!)2, and that
huge number makes evident both the power and the limitations
of exploiting this symmetry.

As a final comment on extensions, the three-particle, three-
well case depicted in the right-hand panel of Fig. 9 has a
symmetry group (in the case of no interactions or tunneling)
that contains the Rubik’s cube group as a subgroup [64].

VII. CONCLUSIONS

The group structure provided by impenetrable barriers,
whether they are “real” barriers that partition traps into wells or
“interaction” barriers that trap particles into specific orderings,
is surprisingly rich, especially when parity is preserved.
Even for two interacting particles in two wells, the possible
symmetry structures are varied and complicated. Building up
from the bottom, the order of the finite symmetry group grows
exponentially with the number of particles and impenetrable
wells, even when the interactions are intermediate. This is
promising, because the degrees of freedom are also growing
rapidly, but it is also a challenge because working through
the configuration-space combinatorics is a nontrivial task and
should only be undertaken if there is a meaningful payoff.

“Digitizing” the system by erecting impenetrable barriers
seems to offer both promise and peril.

One avenue that looks productive is using these symmetries
to induce degeneracies (and near degeneracies) which can then
be exploited for state control. One example for such an idea
was presented in the section on the infinite square well, where
it was shown that state evolution under adiabatic tuning of
the interaction parameter and the tunneling parameter from
zero to infinity depended on the order in which the tuning was
performed. This is perhaps not surprising, but does open the
possibility of using loops in parametrized “model space” to
generate novel and useful quantum superpositions.

Another, more speculative, idea is to see whether the
symmetries of the few-body, few-well problems with unitary
interactions and infinite barriers could be harnessed as an
“analog quantum computer” for combinatorics problems. Akin
to the boson sampling problem [65] for calculating matrix
permanents, perhaps there are combinatorics problems that (in
the near future) would take fewer resources to embody in a
few-body, few-well ultracold atomic system than to solve with
traditional computers.

A final question is whether and how few-body, few-well
models limit to the many-body, infinite lattice problem. Is it
really practical to explore many-body physics from the bottom
up? In particular, can the favorable growth of combinatoric
symmetries for the strong interacting, weak tunneling be
useful? This question and the previous ideas are worth further
investigation.
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