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Quantum dynamical response of ultracold few-boson ensembles in finite optical lattices
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The correlated nonequilibrium quantum dynamics following a multiple interaction quench protocol for few-
bosonic ensembles confined in finite optical lattices is investigated. The quenches give rise to an interwell
tunneling and excite the cradle and a breathing mode. Several tunneling pathways open during the time interval
of increased interactions, while only a few occur when the system is quenched back to its original interaction
strength. The cradle mode, however, persists during and in between the quenches, while the breathing mode
possesses distinct frequencies. The occupation of excited bands is explored in detail revealing a monotonic
behavior with increasing quench amplitude and a nonlinear dependence on the duration of the application of
the quenched interaction strength. Finally, a periodic population transfer between momenta for quenches of
increasing interaction is observed, with a power-law frequency dependence on the quench amplitude. Our results
open the possibility to dynamically manipulate various excited modes of the bosonic system.
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I. INTRODUCTION

Ultracold atoms in optical lattices offer the opportunity to
realize a multitude of systems and to study their quantum
phenomena [1–5]. Moreover, recent experimental advances in
optical trapping allow one to control the size and atom number
of these quantum systems, and furthermore include the tunabil-
ity of the atomic interactions via Feshbach resonances [6–8].
A promising research direction in this context is the nonequi-
librium quantum dynamics for finite atomic ensembles. Here,
the most frequently considered setting is a quantum quench
(see Refs. [9–11] and references therein), where one explores
the quantum evolution after a sudden change of an intrinsic
system parameter such as the interaction strength [12–15].
A complicating feature of the nonequilibrium dynamics is the
presence of interactions at a level that often precludes the use of
a perturbative analysis and/or mean-field (MF) approximation.
Specifically, the dynamics beyond the paradigm of linear
response has been a subject of growing theoretical interest
[16–24] triggered by the recent progress in ultracold atom
experiments particularly in one spatial dimension [25–28].

Referring to few-body systems in finite optical lattices, it
has been shown [14,15] that following an interaction quench
several tunneling pathways can be excited as well as collective
behavior such as the cradle or breathing mode are observed.
Furthermore, a sudden raise of the interactions [14] couples
one of the tunneling modes with the cradle mode giving rise
to a resonant behavior. On the other hand, a sudden decrease
of the interparticle repulsion [15] excites the cradle mode only
for setups with a filling larger than unity and no mode coupling
can be observed. From this it is evident that in order to steer
the dynamics the considered quench protocol plays a key role.
Naturally, one can then generalize the underlying protocol to a
multiple interaction quench (MIQ) scenario, which consists of
different sequences of single quenches. A specific case would
be a quench followed by its “inverse,” namely by going back to
the original interaction strength (single pulse). This enables the
system to dynamically return to its original Hamiltonian within
certain time intervals and the question emerges what properties

induced by the quench persist during the longer time evolution.
Very recently [29], a study of the effects of the MIQ protocol
on the one- and two-body correlation functions of a three-
dimensional ultracold Bose gas has been performed using the
time-dependent Bogoliubov approximation. It has been shown
that the system produces more elementary excitations with
increasing number of MIQs, while the correlation functions
tend to a constant value for long evolution times.

In the present work, we provide a multimode treatment of
few bosons in finite optical lattices in one spatial dimension,
where all correlations are taken into account. Such an approach
is very appropriate in order to extract information on the
resulting many-body dynamics and in order to obtain the
complete excitation spectrum. This will allow us to explore
how the MIQ protocol, reflected by the different temporal
interaction intervals, affects the system dynamics and as a
consequence the persistence of the emergent various collective
modes during the evolution.

Several protocols varying the number of quenches are
hereby investigated. Our focus is on the regime of intermediate
interaction strengths, where current state of the art analytical
approaches are not applicable. The lowest-band tunneling
dynamics involves several channels following a quench of in-
creasing interaction, while only a few persist when the system
is quenched back. Furthermore, the intrawell excited motion is
described by the cradle and the breathing modes being initiated
by the overbarrier transport which is a consequence of the
quench to increased interactions. We find that in the course
of the MIQ the cradle mode persists for all times, while the
breathing mode possesses distinct frequencies depending on
the different time intervals of the MIQ. In contrast to the single
quench scenario [14,15] here by tuning the parameters of the
MIQ we can manipulate both the interwell tunneling and the
intrawell excited modes. Moreover, the higher-band excitation
dynamics is explored in detail. A monotonic increase of the
excited to higher-band fraction for larger quench amplitudes
is observed and a nonlinear dependence on the time interval
of a single quench (pulse width) is revealed. Remarkably, the
interplay between the quench amplitude and the pulse width
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yields a tunability of the higher-band excitation dynamics. This
observation indicates a substantial degree of controllability of
the system under a MIQ protocol, which is an important result
of our work. Moreover, it is shown that in the course of a certain
pulse the presence of increased interactions leads to a periodic
population transfer between different lattice momenta, while
for the time intervals of the initial interaction strength this does
not happen. The frequency of the above-mentioned periodicity
possesses a power-law dependence on the quench amplitude.

This work is organized as follows. In Sec. II we introduce
the quench protocol and the multiband expansion as an analysis
tool. Section III focuses on the detailed investigation of the
impact of the MIQ on the quantum dynamics for filling factors
larger than unity, whereas Sec. IV presents the dynamics for
filling factors smaller than unity. We summarize our findings
and present an outlook in Sec. V. The Appendix describes our
computational method and delineates the convergence of our
numerical results.

II. QUENCH PROTOCOL AND MULTIBAND EXPANSION

We consider N identical bosons each of mass M confined
in an m-well optical lattice. The many-body Hamiltonian reads

H =
N∑

i=1

(
p2

i

2M
+ Vtr(xi)

)
+

∑
i<j

Vint(xi − xj ,τ,np,t), (1)

where the one-body part of the Hamiltonian builds upon
the one-dimensional lattice potential Vtr(x) = V0sin2(kx). The
latter is characterized by its depth V0 and periodicity l, with
k = π/l denoting the wave vector of the counterpropagating
lasers which form the optical lattice. To restrict the infinitely
extended trapping potential Vtr(x) to a finite one with m wells
and length L, we impose hard wall boundary conditions at
the appropriate positions, xm = ±mπ

2k
. Furthermore, Vint(xi −

xj ,t,τ,np) = g(t,τ,np)δ(xi − xj ) corresponds to the contact
interaction potential between particles located at positions {xi}
with i = 1,2, . . . ,N .

To trigger the dynamics we employ a MIQ protocol. At
t = 0 the interatomic interaction is quenched from the initial
value gin to a final amplitude gf , maintaining gf (positive
half) for time τ (pulse width). Then, the interaction strength is
quenched back from gf to its initial value gin, maintaining this
value gin (negative half) for time τ . This procedure is repeated
according to the number of the pulses np; see Fig. 1 for the
case of three pulses. Therefore, our protocol reads

g(t,τ,np) = gin + (gf − gin)

×
np−1∑
i=0

[�(t − 2iτ )�((2i + 1)τ − t)]. (2)

Here, each pulse is modeled by a temporal step function de-
pending on the parameters np and τ which refer to the number
of the considered pulses and the pulse width, respectively.
Moreover, δg = gf − gin denotes the quench amplitude of
the MIQ. Experimentally, the effective interaction strength in
one dimension can be tuned either via the three-dimensional
scattering length by using a Feshbach resonance [8,30] or
by a change of the corresponding transversal confinement
frequency ω⊥ [31–33].

FIG. 1. Sketch of a triple pulse MIQ protocol, g(t), with pulse
width τ . gin (gf ) refer to the pre-(post-) quenched interaction strength
and δg = gf − gin is the pulse or quench amplitude.

For reasons of simplicity we rescale the Hamiltonian (1) in
units of the recoil energy ER = h̄2k2

2M
. Thus the length, time,

and frequency scales are given in units of k−1, ω−1
R = h̄E−1

R ,
and ωR , respectively. To include three localized single-particle
Wannier states in each well we employ a sufficiently large
lattice depth of V0 = 10.0ER . Finally, for convenience we
set h̄ = M = k = 1. Hence all quantities below are given in
dimensionless units.

To solve the underlying many-body Schrödinger equation
we employ the multiconfiguration time-dependent Hartree
method for bosons (MCTDHB) [34,35]. In contrast to the MF
approximation, within this method we take all correlations
into account and employ a variable number of variationally
optimized time-dependent single-particle functions (see the
Appendix for more details). Below, when comparing with the
MF approximation we will refer to MCTDHB as the correlated
approach. For the interpretation and analysis of the induced
dynamics it is preferable to rely on a time-independent many-
body basis rather than the time-dependent one used for our
numerical calculations. We therefore project the numerically
obtained wave function on a time-independent number state
basis consisting of single-particle states localized on each
lattice site. Thus the total wave function is expanded in terms of
noninteracting multiband Wannier number states. The Wannier
states between different wells possess a fairly small overlap
for not too high energetic excitation as the employed lattice
potential (V0 = 10.0ER) is deep enough. Then, a many-body
bosonic wave function for a system of N bosons, m wells, and
j localized single-particle states [14,15] reads

|�(t)〉 =
∑

�n
C�n(t) |�n〉 , (3)

where |�n〉 ≡ |⊗j−1
λ=0 n

(λ)
1 ,

⊗j−1
λ=0 n

(λ)
2 , . . . ,

⊗j−1
λ=0 n(λ)

m 〉 denotes
the multiband Wannier number state. Each element can be
decomposed as

⊗j−1
λ=0 n

(λ)
i = n

(0)
i ⊗ n

(1)
i ⊗ · · · ⊗ n

(j−1)
i , where

n
(λ)
i denotes the number of bosons being localized in

the ith well, and λth band satisfying the closed subspace
constraint

∑m
i=1

∑j−1
λ=0 n

(λ)
i = N . For instance, in a setup
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with N = 4 bosons confined in a triple well m = 3, which
is our workhorse in the following, which includes λ = 3
single-particle states, the state |1(0),1(0) ⊗ 1(1),1(0)〉 indicates
that in every well one boson occupies the zeroth excited
band, but in the middle well there is one extra boson
localized in the first excited band. For this setup we can
identify four different energetic classes of number states.
The single pairs {|2(I1),1(I2),1(I3)〉+ �} (SP), the double pairs
{|2(I1),2(I2),0(I3)〉+ �} (DP), the triples {|3(I1),1(I2),0(I3)〉+ �}
(T), and the quadruples {|4(I1),0(I2),0(I3)〉+ �} (Q), where
� stands for all corresponding permutations and I =
(I1,I2,I3) indicates the order of the degree of excitation.
For our purposes we only consider the corresponding sub-
class with isoenergetic states, e.g., for the double pairs
{|2(I1),2(I2),0(I3)〉,|0(I1),2(I2),2(I3)〉,|2(I1),0(I2),2(I3)〉}. To charac-
terize the eigenstates in terms of number states we adopt the
compact notation |s〉α;I, where s denotes the spatial occupation
and α relates to each of the above classes. For instance, {|s〉1;I}
with I = (1,1,0) represents

{|2(1),1(1),1(0)〉,|2(1),1(0),1(1)〉,|1(0),2(1),1(1)〉,
|1(0),1(1),2(1)〉,|1(1),1(0),2(1)〉,|1(1),2(1),1(0)〉}

and s runs from 1 to 6.

III. QUENCH DYNAMICS FOR FILLING ν > 1

In this section the nonequilibrium dynamics following the
MIQs for a system with filling factor ν > 1 is analyzed. The
system is initially prepared in the ground state of four bosons
confined in a triple well with interparticle repulsion gin = 0.1.
It is thus dominated by the number state |10,20,10〉. To induce
the dynamics we focus on a double and five pulse quench
protocol [see Eq. (2) for np = 2 or np = 5 and τ = 50 or
τ = 25, respectively] and compare with the results for a single
interaction quench.

A. Tunneling dynamics

To investigate the dynamical response we employ the
fidelity evolution F (t ; τ ) = | 〈�(0)|�(t ; τ )〉 |2, which is the
overlap between the instantaneous and the initial wave function
[36–39]. Following a single quench, see Fig. 2(a), two different
dynamical regions arise in the fidelity evolution. For 0.1 �
gf � 1.0 the system is only weakly perturbed since F (t) ≈ 1.
For gf � 1.0 the fidelity deviates significantly from unity and
exhibits in time an oscillatory pattern. These oscillations are
amplified with increasing quench amplitude and characterized
both by a higher amplitude and frequency due to the increasing
deposition of energy into the system. For the double pulse
protocol the dynamical response is altered, as compared to
the single quench scenario, and it is characterized by four
distinct temporal regions; see Fig. 2(b). For t < τ the same
pattern as for the single quench is, of course, observed as
the two protocols are identical within this time interval,
i.e., g(t < τ ) = gf . At t = τ the system is quenched back
to gin and the oscillation of the fidelity almost vanishes.
Then, F (τ < t < 2τ ) ≈ F (t = τ ), where the value F (t = τ )
depends strongly on the phase of the oscillation at t = τ and
therefore on δg. During the positive half of the second pulse
2τ < t < 3τ an oscillatory pattern is observed, possessing the
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FIG. 2. As a function of the quench amplitude δg are shown the
following: (a),(b) fidelity evolution for a single quench and a double
pulse (np = 2) MIQ, respectively, and (c),(d) the corresponding
fidelity spectra. Parameter values are gin = 0.1, τ = 50, and N = 4.

same frequencies with those occurring during the positive
half of the first pulse. The system is driven further away
from the initial state as more energy is added. Note that the
dominant frequency of the oscillation depends on δg as in the
single quench scenario; see Fig. 2(a). At t = 3τ the system
is quenched back to gin and the oscillatory behavior of the
response again vanishes. Hereafter, F (t > 3τ ) ≈ F (t = 3τ ).
Remarkably enough, for 3.2 � gf � 3.7, the fidelity reduces
significantly after the second pulse to the value F (t > 3τ ) =
0.44 at gf = 3.4. The existence of such strong response
regions for certain combinations of δg and τ is caused by
the MIQ scenario and will be addressed below in more detail.

To identify the corresponding tunneling modes that partic-
ipate in the dynamics we inspect the spectrum of the fidelity
[14,15,40] for the single quench [Fig. 2(c)] and the double
pulse [Fig. 2(d)] protocols. Both scenarios excite the same
frequency modes possessing though some differences, caused
by the fact that in the finite time intervals that the system is
quenched back within the double pulse protocol, the response
remains mainly stable. The observed modes triggered by a
single (double-pulsed) quench can be energetically categorized
as follows: (α1) [(α′

1)] tunneling within the SP category, (α2)
[(α′

2)] tunneling between the SP and DP categories, and (α3)
[(α′

3)] tunneling between the SP and T categories. The latter
two processes are reminiscent of the atom pair tunneling which
has been experimentally detected in driven optical lattices
[41,42]. To gain more insight into the spectrum of the double
pulse scenario we have splitted the evolution into the different
temporal regions that the protocol imposes, i.e., g = gf or
g = gin. As nearly no oscillations occur in the negative halves
of the double pulse (τ < t < 2τ and t > 3τ ) all tunneling
branches except a1 are then suppressed. Note here that, in
principle, for g = gin all branches possess very small and
nearly equal frequencies which are resolvable in the case of a
large enough τ . However, for t < τ (positive half of the first
pulse) and 2τ < t < 3τ (positive half of the second pulse) the
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above-mentioned three modes occur; see also Fig. 2(d). The
latter enables us to dynamically manipulate or even switch
on and off certain tunneling processes due to the presence
or absence of increased interactions. Finally, we remark that
the branches denoted, e.g., by (α4),(α5) refer to higher-band
excitations and will be addressed below.

B. Dominant intrawell excitations: The cradle
and the breathing modes

Let us focus on the cradle and the breathing mode
in the following. The cradle mode represents a dipolelike
intrawell oscillation in the outer wells of the finite lattice.
Following an interaction quench it is induced by an overbarrier
transport of a boson initially residing in the central well (for
a detailed description on the generation of this mode, see
[14,15]). It breaks the parity symmetry within the outer wells
and can thus be quantified by the corresponding intrawell
asymmetry of the wave function. For instance, in the left
well �ρL(t) = ρL,1(t) − ρL,2(t), where ρL,1(t) and ρL,2(t)
denote the spatially integrated densities of the left and the
right half of the well. To investigate the frequencies that
characterize the cradle mode and how they are influenced
by the different quench protocols we employ the spectrum
�ρL(ω) = 1/π

∫
dt eiωt�ρL(t). Previously [14] it has been

shown that following a single interaction quench �ρL(ω),
as a function of the quench amplitude, possesses mainly
two distinct frequency branches [see Fig. 3(a)]. The latter
refer to a tunneling mode |2(0),1(0),1(0)〉 � |3(0),0(0),1(0)〉
[see branch b2 in Fig. 3(a)] and an interband overbarrier
process |1(0),2(0),1(0)〉 � |1(0) ⊗ 1(1),1(0),1(0)〉 [see branch b3

in Fig. 3(a)] being identified as the cradle mode. Remarkably,
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FIG. 3. As a function of the quench amplitude δg are shown
the following: (a),(b) spectrum of the intrawell asymmetry �ρL(ω)
following a single quench and a double pulse (np = 2) MIQ,
respectively. Spectrum of σ 2

M (ω) following (c) a single quench and
(d) a double pulse MIQ protocol. Parameter values are gin = 0.1,

τ = 50, and N = 4.

these two modes come into resonance in a certain region of
quench amplitudes [see the dashed rectangle in Fig. 3(a)], and
therefore it is possible to couple the interwell (tunneling) with
the intrawell (cradle) dynamics. However, following a double
pulse, see Fig. 3(b), the aforementioned resonance is hardly
visible as the tunneling mode is less pronounced compared
to the single quench scenario [compare also Figs. 2(c) and
2(d)]. Indeed, the tunneling mode [see branch b′

2 in Fig. 3(b)]
is present only when g(t) = gf , while the cradle mode [see
branch b′

3 in Fig. 3(b)] persists also after we quench back to gin.
The above can be explained as follows: when the interaction
strength is reduced, the bosons do not possess the required
energy to perform a second-order tunneling process, and
therefore the SP to T tunneling mode, see b′

2, is absent when
we quench back. On the contrary, the cradle mode persists
also when g(t) = gin, t > 0 as it is an intrawell mode and
has already been initialized previously. Therefore, a tunneling
process is required to initialize the cradle mode but is not a
prerequisite for it to persist. As a consequence the coupling
between the cradle mode and the SP to T tunneling mode
disappears when g = gin and occurs only for g = gf . Thus,
using a MIQ protocol, one can switch on and off the above
described mode resonance [see also the dashed rectangle in
Fig. 3(b)]. Finally, we note that the energetically lower visible
branch, e.g., b1, refers to tunneling within the SP mode [see
also Fig. 2(c)], while the energetically upper branch in both
spectra located at ω ≈ 3.5 belongs to the breathing mode and
is explained below in detail.

The breathing mode refers to an expansion and contrac-
tion of the bosonic cloud and can be excited by varying
the interaction strength or the frequency of the trapping
potential [43–45]. Here, due to the lattice symmetry it is
expected [14,15] to be more prone in the central well.
To identify the breathing mode we employ the second
moment σ 2

M (t) = 〈�(t)| P̂M (x − X(M)
c.m.)

2P̂M |�(t)〉 within the
spatial region of the middle well (denoted by the index M).
Here, the operator P̂M = ∫ π/2

−π/2 dx |x〉 〈x| projects onto the

spatial region of the middle well and X(M)
c.m. = ∫ π/2

−π/2 dx(x −
xM

0 )ρM (x)/
∫ π/2
−π/2 dx ρM (x), xM

0 , and ρM (x) refer to the cen-
ter of mass, the center position, and the single-particle
density of the middle well, respectively. To investigate
the frequency spectrum of the breathing mode we employ
σ 2

M (ω) = 1/π
∫

dt eiωtσ 2
M (t) [46–48]. For a single interaction

quench, it has been shown [14] that σ 2
M (ω) possesses two

distinct frequency branches, shown in Fig. 3(c). The upper
branch (denoted as c2) refers to the second-order process
|10,10,10 ⊗ 12〉 � |10,20,10〉 � |10 ⊗ 12,10,10〉, which indi-
cates the presence of a global interwell breathing mode induced
by the overbarrier transport. The fact that the breathing mode is
also visible in the intrawell asymmetry spectrum [see Fig. 3(a)]
of the left (right) well is another indication that it is indeed a
global mode. The lower branch (denoted as c1) corresponds to
the interwell tunneling mode |10,20,10〉 � |20,10,10〉. Both of
the above branches weakly depend on the quench amplitude
δg. Turning to the double pulse [Fig. 3(d)], the above two
branches now indicated by c′

1 and c′
2 persist but also two

additional and gf -independent branches marked by c′′
2 and c3

appear above c′
2. Note here that ωc′′

2
= limgf →gin ωc′

2
showing
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that these branches stem from the same eigenfrequencies,
while the branch c′

3 refers to an admixture of higher-band
states. Importantly, the gf -independent branches exist only
during the time intervals of gin, i.e., for τ < t < 2τ and
t > 3τ , whereas the gf dependence occurs only during the
positive halves of the MIQ, i.e., for g = gf . To conclude,
the double pulse MIQ protocol gives rise to two additional
gf -independent branches of breathing dynamics. The latter
suggests that by tuning the intrinsic parameters of the MIQ
protocol one can steer the induced breathing dynamics.

C. Excitation dynamics

To gain a deeper understanding of the excitation dynamics,
we investigate in the following the occupation of higher-band
states during the time evolution. We consider the probability
to find N0 < N bosons in the λth band

P
(λ)
N0

(t ; τ ) =
∑

�n∈N (λ)
N0

|〈�n|�(t ; τ )〉|2, (4)

where the notation �n ∈ N (λ)
N0

denotes that the sum is per-

formed over the configurationsN (λ)
N0

≡ {�n :
∑3

i=1

∑j−1
λ=0 n

(λ)
i =

4 and
∑3

i=1 n
(λ)
i = N0} that belong to the Hilbert space

consisting of four particles from which N0 reside in the λth
band.

The case of λ = 0 and N0 = N = 4 refers to the probability
to find all four bosons within the ground band, i.e., the ener-
getically lowest band. Then, the above excitation probability
reduces to P

(0)
N (t ; τ ) = ∑

�n∈N (0)
N

| 〈�n|�(t ; τ )〉 |2. To investigate
the impact of the quench amplitude δg we show in Fig. 4(a)
P

(0)
N (t ; τ ) following a five pulse MIQ protocol [see Eq. (2) for

np = 5 and τ = 25]. We observe that for gf � 1 the occupa-
tions P

(0)
N (t ; τ = 25) are approximately unity and thus within

this regime only to a minor degree excitations occur. However,
for gf > 1.0 an oscillatory pattern in time is formed [see also
Fig. 2(c)], indicating the consecutive formation of higher-band
excitations. In particular, within a positive half of the MIQ,
i.e., �τ < t < (� + 1)τ, � = 0,2,4,6,8, large amplitude oscil-
lations of P

(0)
N (t ; τ = 25) occur, while in the negative halves

of the MIQ, i.e., �τ < t < (� + 1)τ, � = 1,3,5,7 and t > 9τ ,
the oscillatory behavior of P

(0)
N (t ; τ = 25) almost vanishes

thereby forming an excitation plateau; see also Fig. 4(a1) which
presents P

(0)
N (2τ < t < 4τ ). In addition, focusing on t > 9τ a

nearly linear decrease of P
(0)
N (t > 9τ ; τ = 25) with increasing

δg is observed. This can be attributed to the fact that by
using higher quench amplitudes we import more energy to the
system and thus more excitations can be formed, though some
small deviations from this tendency exist, for instance, we
find a slightly lower P

(0)
N (t ; τ ) for gf = 3.8 than for gf = 3.9

[hardly visible in Fig. 4(a)]. To demonstrate the necessity of
correlations for the description of the excitation dynamics we
perform a comparison with the MF approximation. Figure 4(b)
presents P

(0)
N (t ; τ = 25) within the MF approximation for

varying δg. A similar qualitative overall behavior compared
to the above analysis is observed. For gf < 1 the occupations
P

(0)
N (t ; τ = 25) ≈ 1, while for gf � 1, P

(0)
N (t ; τ = 25) form

oscillatory patterns within the positive halves of the MIQ
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FIG. 4. Time evolution of the probability P
(0)
N (t ; τ = 25) to find

all four bosons within the ground band with respect to the quench
amplitude δg following a five pulse (np = 5) MIQ protocol. (a),(b)
P

(0)
N (t ; τ = 25) for varying δg including correlations and for the MF

approximation, respectively. The insets (a1),(b1) show P
(0)
N (t ; τ = 25)

of (a),(b), respectively, only within the second pulse. (c) Profiles of
P

(0)
N (t ; τ = 25) for different δg (see legend). For better visibility of

the oscillatory behavior during the positive half of the second pulse
we show in the inset P

(0)
N (45 < t < 80; τ = 25). The system consists

of four initially weakly interacting, gin = 0.1, bosons confined in a
triple well.

and remain steady in the negative halves of the MIQ [see
also Fig. 4(b1)]. However, P

(0)
N (t ; τ = 25) is always lower

when compared to the correlated approach; see Figs. 4(a)
and 4(b) and in particular Figs. 4(a1) and 4(b1), which show
P

(0)
N (t ; τ ) during the second pulse. Obviously, the oscillation

amplitudes during the positive halves of the MIQ as well
as the values of P

(0)
N (t ; τ ) for g = gin are larger within the

MF approximation than the correlated approach. In addition,
the linear dependence of P

(0)
N (t > 9τ ; τ = 25) is lost within

the MF approximation and therefore we cannot observe an
overall tendency of the excitation probability with increasing
interparticle repulsion. To explicitly demonstrate the excitation
process we show in Fig. 4(c) various profiles of P

(0)
N (t,τ ),

taken from Fig. 4(a), for different δg. For very short times
P

(0)
N (t,τ ) drops to a lower value and subsequently oscillates

with an amplitude smaller than the initial decrease exhibiting
multiple frequencies. Note that both the initial decrease as
well as the amplitude and the oscillation frequency depend on
δg; see also branch c′

2 in Fig. 3(d). During the positive halves
of the MIQ, i.e., �τ < t < (� + 1)τ, � = 0,2,4,6,8, P

(0)
N (t ; τ )

oscillates with a decreasing amplitude (particularly for larger
δg), but P̄ (0)

N (τ ) = 1/T
∫ (�+1)τ
�τ

dt P
(0)
N (t ; τ ) increases [e.g., see

the dashed red line in the inset of Fig. 4(c)]. To gain more
insight into the oscillation frequencies during the positive half
of the MIQ protocol, we calculate the spectrum P

(0)
N (ω) =
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FIG. 5. (a) Time evolution of the probability to find all four
bosons within the ground band P

(0)
N (t ; τ ) for varying pulse width

τ following a five pulse np = 5 MIQ protocol with δg = 1.0. (b) The
corresponding profiles of P

(0)
N (t ; τ ) for different values of τ (see

legend). (c),(d) The same as above but for δg = 2.9. The insets
(a1),(c1) show P

(0)
N (40 < t < 120; τ = 25) of (a),(c). The system

consists of four initially weakly interacting gin = 0.1 bosons in a
triple well.

1/π
∫ T

0 dt P
(0)
N (t)eiωt . The latter shows two dominant branches

from which the first one matches the frequency of the cradle
mode [see branch b′

3 in Fig. 3(b)] and the other one corresponds
to the frequency of the weakly δg-dependent breathing mode
[see branch c′

2 in Fig. 3(d)]. At the end of the positive half,
the amplitude of the above-mentioned oscillation suddenly
decreases and P

(0)
N (t ; τ ) remains almost steady exhibiting only

tiny oscillations (excitation plateaus). We again remark that the
value of P

(0)
N (t ; τ ) in a negative half of a certain pulse, where

the excitation plateaus appear, strongly depends on the phase
of the oscillation at t = �τ, � = 1,3, . . . ,9 (see also below).

Next, we focus on the impact of the pulse width τ on the ex-
citation dynamics. Fig. 5(a) shows P

(0)
N (t ; τ ) for varying pulse

width and employing a five pulse MIQ protocol with gf = 1.0.
Overall, we observe that P (0)

N (t ; τ ) for fixed τ exhibits a similar
oscillatory pattern as before within the positive halves of the
MIQ and the formation of the excitation plateaus within the
negative halves of the MIQ, see also Fig. 5(a1). Also, P (0)

N (t ; τ )
decreases with each additional pulse and remains almost steady
after the last pulse. To illustrate the latter behavior, several
profiles of P

(0)
N (t ; τ ) are shown in Fig. 5(b). In contrast to

the approximately linear δg-dependence of P
(0)
N (t > 9τ ; τ ),

we observe here that the fraction 1 − P
(0)
N (t ; τ ) of excitations

depends on the pulse width in a non-linear manner, i.e.
increasing τ does not necessarily lead to a smaller P

(0)
N (t >

9τ ; τ ). For instance, P
(0)
N (t > 9τ,τ = 2.0) ≈ 0.89, P

(0)
N (t >

9τ,τ = 8.5) ≈ 0.68 whereas P
(0)
N (t > 9τ ; τ = 10.0) ≈ 0.73

[see Fig. 5(b)]. It is also important to note that while δg is the
same for all pulses, the corresponding oscillation amplitude
of P

(0)
N (t ; τ ) during a certain positive half of the MIQ is not

fixed, indicating that it is not only affected by the quench
amplitude but also depends on the pulse width. To further
elaborate on the effects of the combination of δg and τ ,
Fig. 5(c) shows P

(0)
N (t ; τ ) for gf = 2.9 and varying τ . As

the quench amplitude is increased the system produces more
excitations and after the pulses P̄

(0)
N (τ ) is much lower than in

the case of gf = 1.0 [compare Figs. 5(a1) and 5(c1)]. Overall,
P

(0)
N (t ; τ ) behaves similar as in the case of gf = 1.0, see also

the corresponding profiles in Fig. 5(d), and the non-linear
dependence on the pulse width is again present. The oscillation
amplitudes of P

(0)
N (t ; τ ) within the positive halves of the MIQ

protocol are larger as compared to the case of gf = 1.0.
This δg-dependence of the oscillation amplitude has been
observed also for other quench amplitudes (results not shown
here). Finally, P

(0)
N (t > 9τ ; τ ) remains almost steady, while a

larger δg leads in general to a lower P
(0)
N (t > 9τ ; τ ). However,

exceptions do in principle exist indicating the significance of
the optimal combination of δg and τ .

To gain a deeper understanding of the underlying excitation
processes during the evolution we explore the probability of
finding N0 < N bosons within the λ-th band, see Eq. (4).
For instance, P (λ)

N0
(t ; τ ) = ∑

�n∈N (λ)
N0

| 〈�n|�(t ; τ )〉 |2, for λ = 1,2

represent the probability to find N0 bosons within the first or
second excited band respectively. More precisely, below, we
investigate the probability to have one or two bosons in the
first, second or third excited band as higher-lying states are not
significantly occupied in our system. First we shall study the
effect of δg on the different excitation processes by considering
a five pulse MIQ protocol with fixed pulse width τ = 25 and
varying δg. Figs. 6(a)–6(c) show the probability to find one
or two bosons in the first, second or third excited band. For
all shown cases, the same overall excitation pattern [e.g. see
P

(0)
N (t ; τ ) in Fig. 4(c)] is observed. Within a positive half of the

MIQ P
(λ)
N0

(t) oscillates, while in the negative halves of the MIQ
it remains almost steady (excitation plateaus) possessing only
tiny amplitude oscillations. Each pulse increases the value
of P

(λ)
N0

(t) and larger values of δg lead to larger excitation
probabilities as more energy is added to the system. Overall,
we observe that a single-particle excitation to the second
excited band P

(2)
1 (t ; τ ), which refers to the breathing mode,

possesses the main contribution. However, for increasing δg

also other and mainly higher excitation processes start to play
a role and contribute significantly to the dynamics as shown in
Figs. 6(b) and 6(c). These higher order excitations correspond
to single and two-particle excitations in the first, second and
third excited band possessing comparable amplitudes. Note
that excitations higher than a two-particle excitation to the
third excited band are negligible.

Next, let us inspect the role of τ on P
(λ)
N0

(t ; τ ) em-
ploying the five pulse MIQ protocol with gf = 4.0. For
τ = 2.0, see Fig. 6(d), we observe a competition be-
tween P

(2)
1 (t ; τ ), P (1)

2 (t ; τ ) and P
(3)
1 (t ; τ ) possessing also

the highest contributions after the pulses, namely P
(2)
1 (t >

9τ ) ≈ 0.28, P
(1)
2 (t > 9τ ) ≈ 0.23 and P

(3)
1 (t > 9τ ) ≈ 0.18
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FIG. 6. Time evolution of the probability to find one or two bosons in higher bands (see legend) following a five pulse MIQ protocol
with fixed pulse width τ = 25.0 and varying amplitude (a) δg = 1.0, (b) δg = 2.5, and (c) δg = 4.0. (d),(e),(f) The same as above but for
fixed quench amplitude δg = 4.0 and varying pulse width (d) τ = 2, (e) τ = 8.5, and (f) τ = 10. The system consists of four bosons initially
prepared in the ground state with gin = 0.1 of a triple well.

respectively. P
(2)
2 (t ; τ ) is to a lesser extent contributing with

an amplitude P
(2)
2 (t > 9τ ) � 0.1. All the other excitations are

significantly below P
(2)
2 (t ; τ ). The final state after the last

pulse, t > 9τ , exhibits many different excited modes. For
τ = 8.5, see Fig. 6(e), P (2)

1 (t ; τ ) clearly possesses the dominant
contribution after the last pulse with P

(2)
1 (t > 9τ ) ≈ 0.42. In

addition, P (2)
2 (t ; τ ) and P

(3)
1 (t ; τ ) are significantly smaller with

comparable contributions around 0.1. All the remaining states
are negligible and their contributions are below 0.1. Therefore,
the parameter values τ = 8.5 and gf = 4.0 appear to be a good
combination in order to achieve a single-particle excitation to
the second excited band. For τ = 10.0, see Fig. 6(f), P (1)

1 (t ; τ )
that mainly refers to the cradle mode and P

(2)
1 (t ; τ ) are the

dominant contributions with P
(1)
1 (t > 9τ ) ≈ 0.22 and P

(2)
1 (t >

9τ ) ≈ 0.25, respectively. A less dominant interplay is observed
for the states P

(2)
2 (t ; τ ) and P

(3)
1 (t ; τ ) which fluctuate around

0.15. The remaining excitation processes, e.g., P
(1)
2 (t ; τ ),

contribute below 0.05. In this case we observe that the final
state includes single-particle excitations to the first, second,
and third excited bands as well as a two-particle excitation
to the second band. Other excitation processes are distributed
below 0.05 and do not contribute essentially to the final state.
The above discussion suggests that for a fixed δg (pulse
width τ ) different excited states can be targeted by employing
different pulse widths τ (quench amplitudes δg). Therefore,

one can achieve a particular band occupation by choosing a
specific combination of τ and δg. We remark that this picture is
confirmed by employing different combinations of the number
of pulses, pulse widths, and final interaction strengths.

To demonstrate the applicability of our results for larger
systems, in the following section we proceed to the investiga-
tion of a system with filling factor ν < 1. In particular, we shall
show that the character of the excitation dynamics induced by
a MIQ exhibits similar characteristics to the triple well case.

IV. DYNAMICS FOR FILLINGS ν < 1

Let us now focus on a setup of three bosons confined in a
lattice potential consisting of eight wells. For the ground state
with filling factor ν < 1 a spatial redistribution of the atoms
occurs with increasing interaction strength, i.e., the atoms are
pushed from the central to the outer wells [49]. Here, the initial
state is the ground state for g = 0.1, where the particles are pre-
dominantly localized in the center of the multiwell trap. Then,
the ground state is dominated by Wannier number states of the
form |0,0,0,1,2,0,0,0〉, |0,0,0,1,1,1,0,0〉, |0,0,0,0,3,0,0,0〉
and their corresponding parity symmetric states, e.g.,
|0,0,0,2,1,0,0,0〉, due to the underlying spatial symmetry of
the system.

To induce the dynamics a five pulse MIQ protocol with
τ = 50 is applied for t > 0. Figure 7(a) presents the fidelity
evolution F (t ; τ ) for varying quench amplitude δg. The overall
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FIG. 7. (a) Fidelity evolution with varying δg, employing a five
pulse np = 5 MIQ protocol with τ = 50. The inset (a1) depicts
F (t ; τ = 50) of (a) only within the duration of the second pulse.
(b) The same as in (a) but with varying pulse width τ and δg = 2.9.
The inset (b1) shows F (80 < t < 250; τ ) of (b). The system consists
of three bosons confined in an eight well potential.

dynamical behavior is similar to the triple well case (see
Sec. III). Indeed, during the positive halves of the MIQ
the system is driven far from its initial ground state, while
when it is quenched back it tends to a steady state. Each
additional pulse drives the system further away from its initial
state. To visualize better the response of the system during a
certain pulse Fig. 7(a1) illustrates F (2τ < t < 4τ ; τ = 50),
i.e., during the second pulse as a function of δg. The fidelity
shows an oscillatory pattern during the positive half and
an almost fixed value in the corresponding negative half.
Note here that the oscillatory pattern of F (t ; τ ) possesses
multiple frequencies which mainly correspond to the different
tunneling modes triggered by the MIQ. These frequencies
become larger for increasing δg. Let us next examine the
impact of the pulse width τ on the response of the system,
namely we consider a five pulse MIQ with fixed gf = 2.9 and
vary the pulse width; see Fig. 7(b). The dynamical response
of the system resembles that for the triple well case (see
Sec. III). It exhibits an oscillatory pattern within the positive
halves of the MIQ protocol, tends to a steady state when
g(t) = gin, and increases with each additional pulse. The above
description is illustrated in a transparent way in Fig. 7(b1)
where F (80 < t < 250; τ ) is shown. Note here that F (t ; τ )
exhibits multiple frequencies during the evolution that refer to
the induced tunneling dynamics. Finally, F (t > 9τ ; τ ) shows
a nonlinear dependence on τ .

To understand whether signatures of parametric amplifica-
tion of matter waves can be observed during the evolution we
inspect the momentum distribution

n(k,t) = 1

2π

∫∫
dx dx ′ρ1(x,x ′,t)e−ik(x−x ′)t , (5)

where ρ1(x,x ′,t) denotes the one-body reduced density matrix,
which is obtained by tracing out all the bosons but one in
the N -body wave function. We remark that the momentum
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FIG. 8. Momentum distribution as a function of time for (a)
δg = 1.0 and (b) δg = 2.9. (c) The same as (a) but within the MF
approximation. The horizontal axis represents the lattice momenta
in units of the inverse lattice vector k0 = π/l. The system consists
of an eight well lattice potential with five bosons being subjected to
a five pulse (np = 5) MIQ characterized by τ = 25. (d) Dominant
oscillation frequency ω1 that appears in the momentum distribution
for varying quench amplitude δg. Different curves correspond to
different initial conditions, approximations, and system size (see
legend).

distribution can be observed experimentally as it is acces-
sible via time-of-flight measurements [3,50,51]. Figure 8(a)
presents the time evolution of the momentum distribution
for an eight well lattice potential with five bosons that are
subjected to a MIQ of small quench amplitude and pulse
width, namely δg = 1.0 and τ = 25. As shown, employing
a MIQ protocol the momentum distribution exhibits in time a
periodically modulated pattern when g = gf ; e.g., see Fig. 8(a)
for 0 < t < 25. Indeed, within the positive half of the MIQ
n(k,t) oscillates with frequency ω1 between the momenta
k0 = 0, ± k0/2 ≈ ±1.57, i.e., it is gradually transformed
from a side peak structure (peaks at k0 = 0, ± k0/2) to a broad
maximum around k0 = 0. On the contrary, in the negative
halves of the MIQ [�τ < t < (� + 1)τ, � = 1,3,5,7,9] as well
as after the last pulse t > 10τ this side peak structure is
preserved. Note here that the frequency ω1 does not depend
on the considered pulse width. However, one can tune the
time intervals of the periodic modulation by considering
pulses with different τ ’s. The observed periodic population
transfer between the k0 = 0, ± k0/2 momenta is reminiscent
of the parametric amplification of matter waves. Similar
observations have been made experimentally in different
setups in Refs. [26,50,52]. This might pave the way for a more
elaborate study of this process in the future, also for higher
particle numbers and lattice potentials, but it is clearly beyond
the scope of this work. We remark here that in the case of a
single interaction quench only the above-mentioned periodic
modulation within the positive half of the MIQ protocol can
be achieved. Furthermore, the momentum distribution for
a stronger interparticle repulsion, i.e., gf = 2.9, shown in
Fig. 8(b), exhibits a similar structure as above but with an
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increasing frequency within the positive halves of the MIQ.
However, for large evolution times this behavior is blurred
as an effect of the strong interaction which decreases the
degree of coherence. Comparing with the MF calculation,
shown in Fig. 8(c), we observe that the periodic modulation
of the populated lattice momenta within the positive halves
of the MIQ is essentially lost and no clear signature of
the effect of a pulse can be seen in n(k,t). However, the
activation of the additional lattice momenta is present but
not in a systematic manner. This indicates the inescapable
necessity of taking into account correlations for the description
of the out-of-equilibrium dynamics. We remark here that
in the case of larger filling factors where the presence of
interparticle correlations is more dominant the failure of the
MF approximation to capture certain features of the dynamics
is even more prominent (results not shown here for brevity).
Summarizing, the coherent MIQ dynamics leads to a periodic
population transfer between different lattice momenta within
a positive half of the MIQ and a side peak structure when the
system is quenched back.

To shed further light on the possible control of the dynamics
we finally examine the dependence of the frequency ω1 of
the periodic modulation during a positive half of the MIQ
on several system parameters. Figure 8(d) presents ω1 with
varying quench amplitude δg. As shown, ω1 depends strongly
on the interparticle repulsion and in particular for increasing
δg it possesses a power-law behavior, namely

ω1(gf ; N,gin) = αgb
f + c, (6)

where α, b, c are positive constants. This is also in line with
our previous observations on the evolution of the momentum
distribution; see Figs. 8(a) and 8(b). Although the periodic
modulation of lattice momenta within the positive halves of
the MIQ protocol is essentially lost within the corresponding
MF approximation we also present the dominant frequency of
n(k,t) as a function of δg in Fig. 8(d). The obtained frequency
dependence retains the above-mentioned power-law behavior
but the corresponding frequencies for fixed δg are smaller even
for low quench amplitudes. The latter is another manifestation
of the failure of the single orbital approximation to accurately
describe the induced dynamics. An additional intriguing
question is whether ω1 depends on the initial interparticle
repulsion and therefore possesses a many-body nature. Starting
from a broader initial wave packet, i.e., gin = 0 shown in the
same figure, ω1 is lower especially for 1.5 < gf < 5, where
the system is significantly perturbed from its initial state [see
also F̄ (τ ) = 1/T

∫ T

0 dt F (t ; τ ) < 0.8 in Fig. 7(a)]. To show
that the general trend of ω1 is valid also for other system sizes,
Fig. 8(d) illustrates the obtained δg dependence for four bosons
confined in a triple well considering the same values for the
initial system parameters [see also Fig. 4(a)]. Indeed, a similar
functional form is observed, while the frequencies ω1 for the
same δg are reduced when compared to the eight well case.

V. CONCLUSIONS AND OUTLOOK

We have explored the nonequilibrium quantum dynamics of
multiply interaction quenched few boson ensembles confined
in a finite optical lattice. Initially the system is within the weak
interaction regime and sequences of interaction quenches to

strong interactions and back are performed. To characterize
the impact of the multiple pulses we study the interplay
between the quench amplitude and the pulse width during
the evolution. A variety of lowest-band interwell tunneling
modes, a cradle mode, and different breathing modes are
excited. Focusing on the different time intervals of the MIQ
protocol we identify the frequency branch of each process and
the time intervals for which they exist. To further illustrate
the peculiarity of a MIQ protocol we compare with the single
quench scenario. We have analyzed the dynamical behavior by
applying multiband Wannier number states and identified for
each of the above-mentioned processes the transitions between
the dominant number states.

The lowest-band interwell tunneling dynamics consists of
three different energy channels which exist in the positive
halves of the MIQ. When the system is quenched back only
one tunneling mode survives. This raises the possibility to
manipulate the tunneling dynamics within the different time
intervals of the MIQ protocol. For instance, using different
pulse widths we can switch on and off for chosen time intervals
certain tunneling modes of the system.

We then turned to the excited modes, i.e., the cradle and the
breathing modes. The cradle mode “ignores” the multipulse
nature of the quench protocol and persists during the time
evolution. However, the breathing mode shows a strong de-
pendence on the instantaneous interatomic repulsion. Indeed,
within the positive halves of the MIQ it possesses an interaction
dependent frequency branch. However, in the negative halves
of the MIQ the latter branch disappears and two new frequency
branches appear which are interaction independent. As a result
the system turns from the δg-dependent to the δg-independent
branch providing further controllability. Furthermore, the
excitation dynamics is investigated in detail. To analyze the
dependence on the quench amplitude we focus on a fixed
pulse width and vary the final interaction strength. It is shown
that the excitation dynamics possesses a linear dependence
on the quench amplitude, i.e., for increasing amplitude of
the quench the amount of excitations as seen in the fidelity
increase. For the dependence of the excitation dynamics on
the pulse width we observe a nonlinear dependence, i.e.,
there is no monotonic behavior of the produced excitations
with varying pulse width. The latter implies that in order to
control the excitation dynamics one has to use an optimal
combination of the quench amplitude and the pulse width.
Another prominent signature of the impact of the quenches is
revealed by inspecting the momentum distribution. A periodic
population transfer of lattice momenta within the positive
halves of the MIQ protocol and a transition to a side peak
structure in the negative halves of the MIQ are observed. This
periodic population transfer of lattice momenta constitutes an
independent signature of the excited energy channels within
the positive halves of the MIQ protocol, allowing one to study
it from another perspective and to potentially measure it in
corresponding experiments.

Let us comment on a possible experimental realization
of our setup. In a corresponding experiment weakly in-
teracting bosons should be trapped in a one-dimensional
optical superlattice being formed by two retroreflected laser
beams. To form each supercell of the superlattice the first
beam possesses a large wave number and intensity when
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compared to the second beam which forms each cell of the
supercell. The above-mentioned wave numbers should be
commensurate. Then, the potential landscape of each supercell
is similar to the one considered in the present study. Such
an experimental implementation may be achieved either by
the use of holographic masks [53] or by the modulation
of the wave number [54]. The interatomic repulsion can be
tuned with the aid of a magnetic Feshbach resonance. The
corresponding dynamical properties can then be probed with
the recently developed single-site resolved imaging techniques
(quantum microscope) [55–57]. We also remark that double
occupancies can also be identified via Feshbach molecule
formation [58–60], while triple occupancies can be measured
by inducing three-body recombination [61–63].

Finally, we provide an outlook onto possible future investi-
gations. The achieved understanding of the nonequilibrium
dynamics induced by multiple pulses of the interatomic
repulsion may inspire similar investigations in other more
complicated systems. A possible direction would be to apply
our protocol to repulsively interacting dipolar systems and/or
to include modulations of the lattice geometry. Certainly
for larger particle numbers and sizes the question whether
thermalization [64,65] occurs for long evolution times after
the system has been quenched to its initial Hamiltonian is an
intriguing one.
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APPENDIX: COMPUTATIONAL METHOD MCTDHB

To solve the time-dependent many-body Schrödinger equa-
tion (ih̄∂t − H )�(x,t) = 0 we apply the multiconfiguration
time-dependent Hartree method for bosons [34,35,66] (MCT-
DHB). This method has been used extensively in the literature
to explore the bosonic quantum dynamics; see for instance
[66–71]. The key idea of MCTDHB is to exploit time-
dependently variationally optimized single-particle functions
(SPFs) to form many-body states and thus to achieve an
optimal truncation of the Hilbert space. The ansatz for the
many-body wave function is taken as a linear combination
of time-dependent permanents |�n(t)〉 with time-dependent
weights A�n(t). Each time-dependent permanent |�n(t)〉 cor-
responds to a certain configuration of bosons that occupy
M variationally optimized SPFs |φj (t)〉. In turn, the SPFs
are expanded using a primitive time-independent basis {|χ〉}
of dimension Mpr. The time evolution of the N -body wave
function for the Hamiltonian under consideration reduces to
the determination of the A-vector coefficients and the SPFs
which obey the variationally obtained MCTDHB equations of
motion [34,35,66]. We also remark that in the limiting case
of M = 1, MCTDHB reduces to the time-dependent Gross
Pitaevski equation.

For our implementation we have used a sine discrete
variable representation as a primitive basis for the SPFs. To
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FIG. 9. F (t ; τ = 25) for a varying number of SPFs (see legend)
following a five pulse (np = 5) MIQ with (a) δg = 1 and (b) δg = 3.0.
For better visibility of the evolution within the positive halves of the
MIQ protocol, we show in the insets F (t ; τ = 25) only during the
third pulse.

prepare the system in the ground state of the Hamiltonian
H , we rely on the relaxation method. The key idea is
to iteratively propagate some initial ansatz wave function
|�(0)〉 in imaginary time. This exponentially damps out all
contributions but the one stemming from the ground state like
∼e−(Em−E0)τ and therefore the system relaxes to the ground
state (within the prescribed accuracy) after a finite time.
To study the dynamics, we propagate the wave function by
utilizing the appropriate Hamiltonian within the MCTDHB
equations of motion. Finally, let us remark that for our im-
plementation we employed the multilayer multiconfiguration
Hartree method for bosons [72,73] (ML-MCTDHB), which
reduces to MCTDHB for the case of a single bosonic species
as considered here.

To maintain the accurate performance of the numerical inte-
gration of the MCTDHB equations of motion we ensured that
|〈�(t)|�(t)〉 − 1| < 10−8 and |〈ϕi(t)|ϕj (t)〉 − δij | < 10−9 for
the total wave function and the SPFs, respectively. To conclude
about the convergence of our simulations, we increase the
number of SPFs and primitive basis states, thus observing a
systematic convergence of our results. In particular, we have
used Mpr = 300, M = 9 (Mpr = 600, M = 8) for the triple
well (eight wells). To be more concrete, in the following
we shall briefly demonstrate the convergence procedure for
the triple well simulations with increasing number of SPFs.
Figures 9(a) and 9(b) present F (t ; τ = 25) for different number
of SPFs following a five pulse MIQ with small (δg = 1)
and large (δg = 3) quench amplitudes, respectively. In both
cases a systematic convergence of the fidelity evolution (for
M > 8) is observed for an increasing number of SPFs. Indeed
for small quench amplitudes, see Fig. 9(a), the maximum
deviation observed in the fidelity evolution between the 9 and
12 orbital cases is of the order of 3% for large evolution times
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t > 225, that is, after the fifth pulse. As expected, the case of a
larger quench amplitude, presented in Fig. 9(b), shows a more
demanding convergence behavior. However, also in this case
a decreasing relative error between different approximations
for increasing M is illustrated. For instance, the maximum
deviation observed in the fidelity evolution calculated using
9 and 12 SPFs, respectively, is of the order of 8% for large
evolution times (t > 200). Summarizing, it is important to
comment that in both of the above-mentioned cases even
the calculation with 6 SPFs is not able to quantitatively

predict the dynamics. For better visibility of the relative
error between different approximations within a positive
half of the MIQ protocol, we show in the corresponding
insets of Fig. 9 the dynamics during the positive half of the
third pulse. Note here that the same analysis has also been
performed for the dynamics in the eight well potential (omitted
here for brevity) showing a very similar behavior. Another
indicator of convergence is the population of the lowest
occupied natural orbital, which is kept below 0.01% for all of
our simulations.
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