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Appropriate conditions to realize a p-wave superfluid state starting from a spin-orbit-coupled
s-wave superfluid Fermi gas
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We theoretically investigate a spin-orbit-coupled s-wave superfluid Fermi gas, to examine the time evolution
of the system, after an s-wave pairing interaction is replaced by a p-wave one at t = 0. In our recent paper
[T. Yamaguchi, D. Inotani, and Y. Ohashi, J. Phys. Soc. Jpn. 86, 013001 (2017)], we proposed that this
manipulation may realize a p-wave superfluid Fermi gas because the p-wave pair amplitude that is induced
in the s-wave superfluid state by a parity-broken antisymmetric spin-orbit interaction gives a nonvanishing
p-wave superfluid order parameter, immediately after the p-wave interaction is turned on. In this paper, using a
time-dependent Bogoliubov-de Gennes theory, we assess this idea under various conditions with respect to the
s-wave and p-wave interaction strengths, as well as the spin-orbit coupling strength. From these, we clarify that
the momentum distribution of Fermi atoms in the initial s-wave state (t < 0) is a key to produce a large p-wave
superfluid order parameter. Since the realization of a p-wave superfluid state is one of the most exciting and
difficult challenges in cold Fermi gas physics, our results may provide a possible way to accomplish this.

DOI: 10.1103/PhysRevA.95.053609

I. INTRODUCTION

In a recent letter [1], we proposed an idea to achieve
a p-wave superfluid state in an ultracold Fermi gas. This
proposal was strongly motivated by the current experimental
difficulty that a p-wave pairing interaction, which is necessary
to form p-wave Cooper pairs, also destroys the system before
the p-wave condensate grows [2–6]. Because of this dilemma,
the ordinary approach (that one cools a p-wave interacting
Fermi gas down to the superfluid phase transition temperature)
does not work at all. As a result, although p-wave Feshbach
resonances have already been discovered in 40K and 6Li Fermi
gases [7–15], the experimentally accessible superfluid state is
still only the simplest s-wave type [16–19]. To demonstrate the
usefulness of the cold Fermi gas system as a quantum simulator
for various quantum many-body phenomena, the realization
of a p-wave superfluid Fermi gas would be important. Since
there are various p-wave Fermi superfluids, such as superfluid
liquid 3He [20,21], heavy-fermion superconductors [22–24],
as well as a neutron condensate in a neutron star [25], a p-wave
superfluid Fermi gas with a tunable pairing interaction would
help further understandings of these unconventional Fermi
superfluids. In cold Fermi gas physics, it is also interesting
to see how the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-
Einstein condensation) crossover phenomenon discussed in an
s-wave interacting Fermi gas [26–34] is extended to a p-wave
one [35–40].

The key of our idea [1] is to separately prepare a
p-wave Cooper-pair amplitude �σσ ′

p ( p) = 〈c p,σ c− p,σ ′ 〉 and
p-wave interaction gp( p, p′), both of which are involved in
the p-wave superfluid order parameter,

�σσ ′
p ( p) =

∑
p′

gp( p, p′)�σσ ′
p ( p′), (1)

where c p,σ is the annihilation operator of a Fermi atom with
pseudospins σ , describing atomic hyperfine states contributing
to the pair formation. That is, the p-wave pair amplitude
�σσ ′

p ( p) is first prepared by using an s-wave superfluid Fermi
gas with an antisymmetric spin-orbit interaction. A recent

synthetic gauge field technique has realized such a spin-orbit
coupling in ultracold atomic gases [41–45]. At this stage, the
system does not suffer from the above-mentioned damage
caused by a p-wave interaction because the system only has
an s-wave interaction. The p-wave superfluid Fermi gas is
then immediately obtained by replacing the s-wave interaction
with an appropriate p-wave one, where the p-wave superfluid
order parameter �σσ ′

p ( p) in Eq. (1) is given by the product
of the introduced p-wave interaction and the p-wave pair
amplitude �σσ ′

p ( p) that has already been produced in the
s-wave superfluid state. Of course, once the p-wave interaction
is turned on, as usual, the system would start to be damaged by
the p-wave interaction. However, the advantage of this idea is
that the p-wave pair amplitude has been prepared in advance,
so that the p-wave superfluid order parameter discontinuously
becomes finite immediately after the replacement of the s-wave
interaction by the p-wave one. Then, by definition, the system
is in the p-wave superfluid state, being characterized by this
p-wave superfluid order parameter, at least just after the
p-wave interaction is turned on (as long as the system damage
by the same p-wave interaction is not serious). We briefly note
that the s-wave superfluid order parameter vanishes after the
s-wave interaction is turned off.

The purpose of this paper is to clarify when our recent
proposal [1] really gives a p-wave superfluid state with a
large p-wave superfluid order parameter. This work is very
important to experimentally use this idea because Ref. [1]
also shows that it does not always work. That is, under
a certain condition, the produced p-wave superfluid soon
vanishes within the time scale being shorter than the typical
lifetime (τl = 5–20 ms) [2–4] of the system by the three-body
loss caused by a p-wave interaction. For our purpose, in this
paper, we employ a time-dependent Bogoliubov–de Gennes
(TD-BdG) theory at T = 0 to systematically examine the
time evolution of the p-wave superfluid order parameter
�σσ ′

p ( p) under various conditions with respect to the spin-
orbit-coupling strength, as well as the s-wave and p-wave
interaction strengths. We then clarify a key to obtain a
large p-wave superfluid order parameter. We also explain
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detailed numerical TD-BdG calculations, which was omitted
in Ref. [1].

TD-BdG theory cannot deal with the three-body particle
loss or the relaxation of the system to the ground state because
it conserves the particle number, as well as the total energy.
However, this simple approach is still useful for the study of
the early stage (t � τl) of the time evolution of the system,
after the replacement of an s-wave pairing interaction by a
p-wave one. In this paper, we implicitly focus on such a shorter
time domain before the three-body particle loss becomes
crucial.

This paper is organized as follows. In Sec. II, we present
our formulation. We also explain how to numerically deal with
TD-BdG. In Sec. III, we show the time evolution of the p-wave
superfluid order parameter, after the s-wave pairing interaction
is replaced by a p-wave one, under various conditions. Based
on these results, we discuss the condition to obtain a large
p-wave superfluid order parameter. Throughout this paper,
we take h̄ = kB = 1, and the system volume is taken to be
unity, for simplicity. In addition, the Fermi energy εF, Fermi
momentum kF, and Fermi velocity vF mean the quantities in a
free Fermi gas with no spin-orbit interaction.

II. FORMULATION

We consider the protocol in Fig. 1: When t < 0, we first
prepare an equilibrium ultracold Fermi gas at T = 0. This
system has an s-wave pairing interaction (to produce the
s-wave superfluid state) as well as a parity-broken antisymmet-
ric spin-orbit interaction [to induce a p-wave pair amplitude
�σσ ′

p ( p)] that are both turned off at t = 0. At the same time,
a p-wave pairing interaction is switched on. Immediately
after this manipulation, the product of this p-wave interaction
and the p-wave pair amplitude (which has been induced in
the s-wave superfluid state) gives a nonvanishing p-wave
superfluid order parameter in Eq. (1).

To theoretically deal with this protocol, we con-
sider an s-wave superfluid Fermi gas described by the
Hamiltonian,

Hs =
∑
p,σ,σ ′

[
ξ pδσ,σ ′ + hσ,σ ′

so

]
c†p,σ c p,σ ′

− gs

∑
p, p′,q

c
†
p+ q

2 ,↑c
†
− p+ q

2 ,↓c− p′+ q
2 ,↓c p′+ q

2 ,↑. (2)

Here, c
†
p,σ is the creation operator of a Fermi atom with

an atomic mass m and pseudospins σ = ↑,↓, describing
two atomic hyperfine states forming s-wave Cooper pairs.
ξ p = ε p − μ = p2/(2m) − μ is the kinetic energy of a
Fermi atom, measured from the Fermi chemical potential μ.
−gs(< 0) is a contact-type s-wave attractive interaction, which
is assumed to be tunable by adjusting a Feshbach resonance.
In Eq. (2),

hσ,σ ′
so = λpzσ

σ,σ ′
x (3)

is a single-component spin-orbit interaction (λ � 0), where
σx is the Pauli matrix. This type of spin-orbit interaction has
recently been realized in 40K and 6Li Fermi gases by using a
synthetic gauge field technique [41–45]. In this experimental
situation, we briefly note that the Fermi operator c p,σ in

t0

gp≠0gs≠0, λ≠0

gp= 0 gs= 0, λ= 0

s-wave superfluid state p-wave superfluid state

(a) pairing interaction strength

(b) superfluid order parameter

t0

∆p≠0∆s≠0

∆p= 0 ∆s= 0σσ’

σσ’

Φp≠ 0σσ’

FIG. 1. (a) Proposed protocol to realize a p-wave superfluid
Fermi gas. When t < 0, a p-wave pair amplitude �σσ ′

p ( p) is induced
in an equilibrium s-wave superfluid Fermi gas with a parity-broken
spin-orbit interaction (λ �= 0). At this stage, while the system is still in
the s-wave superfluid state with the s-wave superfluid order parameter
�s �= 0, the p-wave order parameter �σσ ′

p ( p) vanishes because of the
vanishing p-wave interaction gp = 0. At t = 0, we replace the s-wave
interaction gs with a p-wave one by adjusting an external magnetic
field from an s-wave Feshbach-resonance field to a p-wave one
(gs = 0, gp �= 0). At the same time, we turn off the spin-orbit coupling
λ = 0. The product of the p-wave pair amplitude �σσ ′

p ( p) which has
been prepared in the parity-broken s-wave superfluid state and the
introduced p-wave interaction gp immediately gives a nonvanishing
p-wave superfluid order parameter �σσ ′

p ( p) �= 0. Then, by definition,
the system is in the p-wave superfluid state. The s-wave superfluid
order parameter vanishes (�s = 0) when t � 0 because the s-wave
interaction is turned off (although the s-wave pair amplitude may
remain). This p-wave superfluid state at t � 0 is generally not in
the equilibrium state, so that �σσ ′

p ( p) may have time dependence, as
schematically shown in (b).

Eq. (2) describes a dressed state by an atom-light coupling.
Since Eq. (3) breaks the spatial inversion symmetry, the
resulting parity-mixing effect induces the spin-triplet pair
amplitude �σσ ′

t ( p) in the (spin-singlet) s-wave superfluid
state [46–49].

Treating the model Hamiltonian in Eq. (2) within the BCS-
Leggett theory at T = 0 [50,51], we consider the mean-field
version of Eq. (2) having the form

H MF
s =

∑
p,σ,σ ′

[
ξ pδσ,σ ′ + hσ,σ ′

so

]
c†p,σ c p,σ ′

+�s

∑
p

[c†p,↑c
†
− p,↓ + H.c.], (4)

where we have dropped an unimportant constant term. In
Eq. (4), the s-wave superfluid order parameter,

�s = gs

∑
p

〈c p,↑c− p,↓〉, (5)

obeys the ordinary BCS gap equation,

1 = −4πas

m

∑
p

[
1

2

∑
α=±

1

2Eα
p

− 1

2ε p

]
. (6)
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FIG. 2. (a1),(a2) BCS-Leggett solutions for a spin-orbit-coupled
s-wave superfluid Fermi gas at T = 0. (a1) Fermi chemical potential
μ. μ + mλ2/2 means the Fermi energy measured from the bottom
of the energy band when gs = 0. (a2) Calculated s-wave superfluid
order parameter �s . We take λ/vF = 0.5. The lower three panels show
the intensity of the spin-triplet Cooper-pair amplitude �

↑↑
t (px,py =

0,pz) at A–C. (b1),(b2) BCS-Leggett solutions for an equilibrium pz-
wave superfluid Fermi gas when the basis function in Eq. (21) is given
by F p = (0,0,F z

p). (b1) Fermi chemical potential μ. (b2) Calculated
pz-wave superfluid order parameter �↑↑

pz :eq. The interaction strengths
at A–C and D–F will be used as the initial s-wave interaction strengths
(t < 0) and the p-wave interaction strengths (t � 0), respectively.

Here, E±
p =

√
(ξ±

p )2 + �2
s describe Bogoliubov single-particle

excitations in the presence of the spin-orbit coupling, where
ξ±

p = ξ p ± λ|pz|. The ultraviolet divergence involved in the
gap equation (6) has been absorbed into the s-wave scattering
length as , which is related to the bare interaction −gs as
[50–53]

4πas

m
= − gs

1 − gs

∑pc
p 1/(2ε p)

, (7)

with pc being a momentum cutoff. In the BCS-Leggett theory,
one solves the gap equation (6), together with the equation
for the number N of Fermi atoms,

N = 1

2

∑
p,α=±

[
1 − ξα

p

Eα
p

]
, (8)

to self-consistently determine �s and μ. The calculated
μ and �s in the BCS-BEC crossover region are shown in

Figs. 2(a1) and 2(a2), respectively. These results will be used
in constructing the initial condition for the TD-BdG equation.

In our proposal [1], the role of the spin-orbit interaction
hσ,σ ′

so in Eq. (3) is to induce the spin-triplet Cooper-pair
amplitudes,

�
↑↑
t ( p) = 〈c p,↑c− p,↑〉 = − pz

|pz|
∑
α=±

α
�s

4Eα
p
,

�
↑↓
t ( p) = 1

2
[〈c p,↑c− p,↓〉 + 〈c p,↓c− p,↑〉] = 0,

�
↓↓
t ( p) = 〈c p,↓c− p,↓〉 = pz

|pz|
∑
α=±

α
�s

4Eα
p
, (9)

without a p-wave interaction. For clarity, we explicitly show
the momentum dependence of �

↑↑
t ( p) in the lower panels

in Fig. 2. We briefly note that �σσ
t ( p) in Eq. (9) vanishes

when λ = 0 because E+
p (λ = 0) = E−

p (λ = 0). We also note
that in spite of the presence of spin-triplet pair amplitudes
�σσ

t ( p) �= 0, the p-wave superfluid order parameter is still
absent because of the vanishing p-wave interaction. The spin-
singlet pair amplitude,

�↑↓
s ( p) = 1

2
[〈c p,↑c− p,↓〉 − 〈c p,↓c− p,↑〉] =

∑
α=±

�s

4Eα
p
, (10)

only gives the nonvanishing s-wave superfluid order parame-
ter, �s = gs

∑
p �

↑↓
s ( p), which, of course, equals Eq. (5).

We use this equilibrium s-wave superfluid state as the
initial state for the time evolution of the system after
the s-wave interaction gs is replaced by an appropriate p-wave
one. For this purpose, it is convenient to reformulate the above
equilibrium BCS-Leggett theory by using the time-dependent
Bogoliubov–de Gennes (TD-BdG) equation [54–85],

i
∂

∂t
�̃( p,t) = Ĥ TD-BdG

s (t)�̃( p,t). (11)

[The outline of the derivation of Eq. (11) is explained in
Appendix A.] Here, the 4 × 4-matrix Hamiltonian Ĥ TD-BdG

s

corresponding to Eq. (4) is given by

Ĥ TD-BdG
s (t) =

⎛
⎜⎜⎜⎝

ε p λpz 0 �̃s(t)
λpz ε p −�̃s(t) 0

0 −�̃∗
s (t) −ε p λpz

�̃∗
s (t) 0 λpz −ε p

⎞
⎟⎟⎟⎠.

(12)

In the TD-BdG equation (11), the four-component wave
function,

�̃( p,t) =

⎛
⎜⎜⎜⎝

ũα
p,↑(t)

ũα
p,↓(t)

ṽα
p,↑(t)

ṽα
p,↓(t)

⎞
⎟⎟⎟⎠, (13)

consists of the coefficients in the Bogoliubov transformation,

c p,σ (t) =
∑
α=±

[
ũα

p,σ (t)γ p,α + ṽα∗
− p,σ (t)γ †

− pα

]
. (14)

Here, α = ± represent two positive-energy eigenstates of
the Hamiltonian Ĥ TD-BdG

s (t) in Eq. (12) [86]. Imposing the
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normalization condition, |ũα
p,σ (t)|2 + |ṽα

p,σ (t)|2 = 1, one finds
that the Bogoliubov operator γ p,α obeys the Fermi statistics.
The time-dependent superfluid order parameter �̃s(t) in TD-
BdG theory is given by

�̃s(t) = gs

2

∑
p,α=±

ũα
p,↑(t)ṽα∗

p,↓(t). (15)

In this scheme, the equilibrium mean-field BCS solutions
(�s,μ) at T = 0 [that are determined from the coupled gap
equation (6) with the number equation (8)] are obtained as the
steady-state solutions for Eq. (11), given by �̃s(t) = e−2iμt�s ,
and

�̃( p,t) = e−iEα
p t

⎛
⎜⎜⎜⎜⎝

e−iμtuα
p,↑

e−iμtuα
p,↓

eiμtvα
p,↑

eiμtvα
p,↓

⎞
⎟⎟⎟⎟⎠. (16)

Substituting these into Eq. (11), the ordinary (time-
independent) Bogoliubov–de Gennes (BdG) equation [87] is
reproduced as⎛

⎜⎝
ξ p λpz 0 �s

λpz ξ p −�s 0
0 −�s −ξ p λpz

�s 0 λpz −ξ p

⎞
⎟⎠�α

s ( p) = Eα
p�

α
s ( p).

(17)

For the eigenenergy Eα
p given below Eq. (6), the eigenfunction

has the form

�α
s ( p) =

⎛
⎜⎜⎜⎝

uα
p,↑

uα
p,↓

vα
p,↑

vα
p,↓

⎞
⎟⎟⎟⎠ = 1√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1 + ξα

p

Eα
p

α
pz

|pz|

√
1 + ξα

p

Eα
p

−α
pz

|pz|

√
1 − ξα

p

Eα
p√

1 − ξα
p

Eα
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

This BdG solution reproduces the gap equation (6), as well as
the number equation (8), from the ordinary expressions in the
BCS theory,

�s = gs

2

∑
p,α=±

uα
p,↑vα

p,↓,

N = 1

2

∑
p,σ,α=±

∣∣vα
p,σ

∣∣2
. (19)

We will use �̃( p,t = 0) = �α
s ( p) in Eqs. (16) and (18) as the

initial state in considering the time evolution of the system
when t � 0.

At t = 0, we replace the s-wave interaction in Eq. (2) by
an appropriate p-wave one. For simplicity, we also switch
off the spin-orbit interaction (λ = 0) at the same time. For
example, an ultracold 40K Fermi gas consisting of two atomic
hyperfine states, |F,Fz〉 = |9/2, − 7/2〉(≡ |↑〉) and |9/2, −
9/2〉(≡ |↓〉), has a p-wave Feshbach resonance between atoms
in |↑〉 at Bp = 199 G, in addition to an s-wave Feshbach
resonance at Bs = 202 G [8,16] between |↑〉 and |↓〉 (where

F = I + S, with I and S being a nuclear spin and electron spin,
respectively). In this case, our attempt is achieved by adjusting
an external magnetic field from Bs to Bp [3,4,6,10–15]. Strictly
speaking, although a weak s-wave interaction may still remain
finite even near the p-wave Feshbach resonance, we ignore
this effect, for simplicity.

We consider the case when the s-wave pairing interaction
in the last term in Eq. (2) is suddenly replaced by the p-wave
one between ↑-spin atoms [35–38], given by

Vp = −gp

2

∑
p, p′,q

F p · F p′c
†
p+ q

2 ,↑c
†
− p+ q

2 ,↑c− p′+ q
2 ,↑c p′+ q

2 ,↑.

(20)

Here,

F p = pp0

p2 + p2
0

(21)

is a p-wave basis function [35], where p0 is a cutoff
momentum, which we take as p0 = 10kF � kF in this paper
[88,89]. In Eq. (20), we simply assume an isotropic p-wave
interaction, although a realistic p-wave interaction associated
with a Feshbach resonance may be anisotropic [8]. In this
regard, as will be shown in Eq. (24), the pz-wave component
in Eq. (20) only contributes to the p-wave superfluid order
parameter in the present case. Thus, this simplification is
actually not so crucial in the following discussions.

The p-wave coupling constant gp is related to the observ-
able p-wave scattering volume vp as [35]

4πvpp2
0

m
= − gp/3

1 − (gp/3)
∑

p F2
p/(2ε p)

. (22)

As usual, we measure the p-wave interaction strength in terms
of (k3

Fvp)−1 [35–38]. In this scale, the weak-coupling side and
the strong-coupling side are characterized as (k3

Fvp)−1 <∼ 0 and
(k3

Fvp)−1 >∼ 0, respectively.
We briefly note that in the present case, the ↓-spin

component becomes a noninteracting Fermi gas when t � 0.
We also note that although the s-wave superfluid order

parameter �s = gs

∑
p〈c p,↑c− p,↓〉 vanishes when the s-wave

interaction gs is turned off at t = 0, the spin-triplet pair
amplitude �σσ

t ( p) in Eq. (9) remains finite, although Eq. (9)
looks vanishing when �s(t � 0) = 0. To see this in a simple
manner, it is convenient to assume that all the interactions are
turned off when t � 0. In this extreme case, TD-BdG equation
(11) [with λ = 0 and �̃s(t) = 0] gives the analytic solution
(t � 0),

�α
free( p,t) =

⎛
⎜⎜⎜⎜⎝

e−iε pt uα
p,↑

e−iε pt uα
p,↓

eiε pt vα
p,↑

eiε pt vα
p,↓

⎞
⎟⎟⎟⎟⎠, (23)

where we have set the initial condition as �̃( p,t = 0) =
�α

s ( p) given in Eq. (18). Equation (23) gives the nonvanishing
spin-triplet pair amplitude �σσ

t ( p,t) in Eq. (9) at arbitrary
t � 0.

Thus, when the s-wave pairing interaction is replaced by
the p-wave one Vp in Eq. (20), the product of this introduced
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p-wave interaction and the spin-triplet pair amplitude �
↑↑
t ( p)

immediately gives the nonvanishing pz-wave superfluid order
parameter at t = 0, given by

�↑↑
pz

( p,t = 0) = gpF z
p

∑
p′

Fz
p′�

↑↑
t ( p′,t = 0)

= −gpF z
p

∑
p′,α=±

|p′
z|p0

p′2 + p2
0

α
�s

4Eα
p′

. (24)

The px-wave and py-wave components �
↑↑
pj

( p) =
gpF

j
p
∑

p′ F
j

p′ 〈c p′,↑c− p′,↑〉 (j = x,y) are not produced at t = 0
because of the absence of the corresponding spin-triplet pair
amplitudes. Thus, as usual, these two components start to grow
from zero when t � 0. However, the current experimental
difficulty indicates that the time scale of such condensation
growth [6,90] is considered to be much longer than the typical
lifetime (τl = 5–20 ms) of a p-wave interacting Fermi gas
[2–4]. Thus, the px-wave and py-wave superfluid state would
actually be difficult in the present case. Since we consider the
early stage (t � τl) of the time evolution of the system, we
only retain the pz-wave superfluid component in what follows.

Starting from the initial condition �̃( p,t = 0) = �α
s ( p) in

Eq. (18), we evaluate the time evolution of the wave function
�̃( p,t � 0), using TD-BdG equation (11) where Ĥ TD-BdG

s is
replaced by

Ĥ TD-BdG
p =

⎛
⎜⎜⎜⎜⎝

ε p 0 �
↑↑
pz

( p,t) 0

0 ε p 0 0

�
↑↑∗
pz

( p,t) 0 −ε p 0

0 0 0 −ε p

⎞
⎟⎟⎟⎟⎠. (25)

Here, the time-dependent pz-wave superfluid order parameter
�

↑↑
pz

( p,t) at t � 0 is evaluated as

�↑↑
pz

( p,t) = gp

2
Fz

p

∑
p′,α=±

Fz
p′ ũ

α
p′,↑(t)ṽα∗

p′,↑(t)

≡ Fz
p�

↑↑
pz

(t). (26)

Since the Hamiltonian Ĥ TD-BdG
p in Eq. (25) does not involve

the Fermi chemical potential μ, we do not need to calculate
the number equation N (t)= (1/2)

∑
p,σ,α=± |ṽα

p,σ (t)|2 at t �
0. The conservation of the particle number is guaranteed in
TD-BdG theory.

Noting that the p-wave interacting ↑-spin component is
decoupled from the ↓-spin component when t � 0, one may
simplify the TD-BdG equation as

i
∂

∂t
�( p,t) =

(
ε p �

↑↑
pz

( p,t)

�
↑↑∗
pz

( p,t) −ε p

)
�( p,t)

≡ Ĥ TD-BdG
p:2×2 �( p,t), (27)

where �( p,t) = (ũα
p,↑(t),ṽα

p,↑(t))T .
Before ending this section, we give two notes on numerical

calculations. The first one is how to numerically deal with TD-
BdG equation (27). In computations, one needs to discretize
the time variable with a finite interval �t , which we take as
�t = 10−5ε−1

F in this paper. In this case, the time evolution

of the wave function �( p,t), to the accuracy of O((�t)2), is
written as

�( p,t + �t) � �( p,t) + ∂�( p,t)

∂t
�t + ∂2�( p,t)

∂t2

(�t)2

2

= �( p,t) − iĤ TD-BdG
p:2×2 (t)�( p,t)�t

−
{
i
∂Ĥ TD-BdG

p:2×2 (t)

∂t
+ [

Ĥ TD-BdG
p:2×2 (t)

]2
}

×�( p,t)
(�t)2

2
. (28)

However, when we naively use Eq. (28), the normalization
of the wave function, �( p,t)†�( p,t) = 1, is gradually broken
with the passage of time. Thus, to cure this, we rewrite Eq. (28)
into the product of the unitary operator,

U(t,�t) = e−iĤ TD-BdG
p:2×2 (t)�t , (29)

as

�( p,t + �t) = U(t + b�t,a2�t)U(t,a1�t)�(t). (30)

Here, a1, a2, and b are determined so that Eq. (30) can coincide
with Eq. (28) within the accuracy of O((�t)2). Expanding
Eq. (30) in terms of �t to the second order, one has

�( p,t + �t) � �( p,t) − i[a1 + a2]Ĥ TD-BdG
p:2×2 (t)�( p,t)�t

−
{
i(2a2b)

∂Ĥ TD-BdG
p:2×2 (t)

∂t
+ [a1 + a2]2

× [
Ĥ TD-BdG

p:2×2 (t)
]2

}
�( p,t)

(�t)2

2
. (31)

Comparing Eq. (28) with Eq. (31), one finds

a1 + a2 = [a1 + a2]2 = 2a2b = 1. (32)

As a solution of Eq. (32), we choose a1 = a2 = 1/2 and b = 1.
The time evolution operatorU(t,�t) in Eq. (30) is conveniently
written as

U(t,�t) = cos[W p(t)�t] − i sin[W p(t)�t]
Ĥ TD-BdG

p:2×2 (t)

W p(t)
,

[
W p(t) =

√
ε2

p + |�↑↑
pz

( p,t)|2]. (33)

The second note is about s-wave and p-wave interac-
tion strengths. In the equilibrium s-wave state (t < 0), we
consider the three cases shown in Figs. 2(a1) and 2(a2):
(A) (kFas)−1 = −1 (weak-coupling case where μ ∼ εF),
(B) (kFas)−1 = 0 (intermediate-coupling case where 0 < μ <

εF), and (C) (kFas)−1 = 1 (strong-coupling case where μ < 0).
For the p-wave interaction, we deal with the three cases
denoted as D, E, and F in Figs. 2(b1) and 2(b2). In these figures,
μ and �

↑↑
pz:eq( p) = Fz

p�
↑↑
pz:eq are, respectively, the chemical

potential and the pz-wave superfluid order parameter in the
equilibrium pz-wave superfluid phase. These quantities are
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FIG. 3. Calculated time evolution of the magnitude of the
pz-wave superfluid order parameter |�↑↑

pz
(t � 0)|. The s-wave in-

teraction strength (t < 0) and the p-wave interaction strength (t � 0)
are shown as, for example, A → D. Here, A–C and D–F, respectively,
represent the s-wave and p-wave interaction strengths shown in Fig. 2.
The solid circles show |�↑↑

pz
(t = 0)|. The insets in (b1) and (c1) show

the long-time and short-time behaviors of |�↑↑
pz

(t)|, respectively.

determined from the pz-wave BCS-Leggett coupled equations,

1 = gp

∑
p

(
Fz

p

)2

2
√

ξ 2
p + [�↑↑

pz:eq( p)]2
,

N =
∑

p

{
1 − ξ p√

ξ 2
p + [�↑↑

pz:eq( p)]2

}
. (34)

As seen in Figs. 2(b1) and 2(b2), the case D [(k3
Fvp)−1 = −6]

is in the weak-coupling regime (where μ ∼ εF), the case E
[(k3

Fvp)−1 = 0] is in the intermediate-coupling regime (where
μ ∼ 0), and the case F [(k3

Fvp)−1 = 6] is in the strong-
coupling regime where μ < 0. Although the system is in the
nonequilibrium state when t � 0, these equilibrium results are
helpful to grasp their physical situations. In Sec. III, we will
consider all the possible combinations between (A,B,C) and
(D,E,F) to examine the time evolution of the system.

III. TIME EVOLUTION OF pz-WAVE SUPERFLUID
ORDER PARAMETER

Figure 3 shows the time evolution of the magnitude of the
pz-wave superfluid order parameter |�↑↑

pz
(t � 0)| in Eq. (26)

[91]. As expected, the nonvanishing �
↑↑
pz

(t) discontinuously
appears at t = 0 (solid circles in Fig. 3). In addition, except
for the case of a weak p-wave interaction (case D) in
Figs. 3(a1)–3(a3), the pz-wave superfluid order parameter
�

↑↑
pz

(t) continues to exist even at tεF = 100. For the typical
value εF ∼ 1 μK in an ultracold Fermi gas [16], the time
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FIG. 4. (a1)–(a3) Time-averaged pz-wave superfluid order pa-
rameter 〈�↑↑

pz
〉 in Eq. (35). The initial s-wave interaction strength is

(a1) (kFas)−1 = −1, (a2) (kFas)−1 = 0, and (a3) (kFas)−1 = 1. At the
vertical dotted line [(k3

Fvp)−1 = 0.447], the Fermi chemical potential
μ changes its sign in the equilibrium pz-wave superfluid state.
(b1)–(b3) The same plots as (a1)–(a3), where 〈�↑↑

pz
〉 is normalized by

the equilibrium value �↑↑
pz :eq.

scale tεF = 1 corresponds to t = O(10−2 ms). We then find
from the inset in Fig. 3(c1) that �

↑↑
pz

(t) increases with the
short-time scale t = O(10−2 ms), which means that the pz-
wave superfluid order parameter can grow enough before
the three-body particle loss seriously damages the system
(�5–20 ms) [2–6].

However, Figs. 3(a1)–3(a3) show that our idea does not
always work, at least in the p-wave weak-coupling case
(case D). In Fig. 3(a1), although �

↑↑
pz

(t) first rapidly increases
just after the pz-wave interaction is tuned on (0 � tεF <∼ 5),
it soon becomes small and vanishes (within the numerical
accuracy). Such vanishing behavior of the pz-wave super-
fluid order parameter tends to occur for smaller spin-orbit
coupling λ, as well as stronger s-wave interaction gs , as seen
in Figs. 3(a1)–3(a3).

To quantify this vanishing behavior of �
↑↑
pz

(t) in a simple
manner, we introduce the time-averaged superfluid order
parameter, defined by [92]

〈�↑↑
pz

〉 = 1

50ε−1
F

∫ 100ε−1
F

50ε−1
F

dt |�↑↑
pz

(t)|. (35)

As shown in Figs. 4(a1)–4(a3), this averaged quantity al-
ways almost vanishes deep inside the weak-coupling regime
(k3

Fvp)−1 � −1 (within the numerical accuracy). Even when
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FIG. 5. Calculated momentum distribution function n↑
p(t) in the

pz-wave superfluid phase, given in Eq. (36). ñ↑
p is the equilibrium

result, given in Eq. (37). We set (kFas)−1 = −1, λ/vF = 0.1, and p =
(0,0,pz). (a) (k3

Fvp)−1 = −6. (b) (k3
Fvp)−1 = −3. (c) (k3

Fvp)−1 = 0.
(d) The magnitude of the averaged pz-wave superfluid order param-
eter 〈�↑↑

pz
〉 in each case.

〈�↑↑
pz

〉 remains finite, it is found to be always smaller
than �

↑↑
pz:eq in the equilibrium case [see Figs. 4(b1)–4(b3)],

indicating that the superfluid order parameter is suppressed in
the present nonequilibrium state.

To understand this nonequilibrium effect, it is useful to
compare the momentum distribution function of the ↑-spin
component,

n↑
p(t) = 〈c†p,↑(t)c p,↑(t)〉 = 1

2

∑
α=±

∣∣ṽα
p,↑(t)

∣∣2
, (36)

with that in the equilibrium pz-wave state,

ñ↑
p = 1

2

{
1 − ξ p√

ξ 2
p + [�↑↑

pz:eq( p)]2

}
. (37)

In Fig. 5, we find that, apart from details, the overall
structure of n

↑
p(t) at tεF = 100 is almost the same as that

at t = 0 [1]. This is because the present TD-BdG cannot
describe the energy relaxation of the system to the ground
state, so that the momentum distribution of Fermi atoms
in the equilibrium s-wave superfluid state (t < 0) is almost
passed down to the nonequilibrium pz-wave state (t � 0).
Indeed, this phenomenon is also seen in other cases, as
shown in Fig. 6. In particular, as shown in Appendix B, the
momentum distribution function n

↑
p(t) in the nodal direction,

p = (px,py,0), is time independent. Judging from the current
experiments for the realization of a p-wave superfluid Fermi
gas [2–6], the time scale of the relaxation to the p-wave
superfluid ground state seems much longer than the lifetime
(τl = 5–20 ms) of the system by the three-body particle loss.
Thus, as far as we consider the early stage of the time

 0
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FIG. 6. Calculated atomic momentum distribution function n↑
p(t)

with p = (0,0,pz). We take λ/vF = 0.5. ñ↑
p is the momentum

distribution in the equilibrium case. The steplike structures seen
around pz/kF = 1 in (a1)–(c1), reflect the momentum distribution
in a spin-orbit-coupled Fermi gas.

evolution, 0 � t � τl [tεF � O(103)], the atomic momentum
distribution in the pz-wave state would be similar to that in the
initial s-wave state.

In Fig. 5(a), where 〈�↑↑
pz

〉 � 0 [see Fig. 5(d)], the Fermi
edge in n

↑
p(t) around pz/kF = 1 is more smeared than the

equilibrium result, ñ
↑
p. When we replot the latter as a function

of the kinetic energy ε p = p2/(2m), the energy width δω of
the smearing of the Fermi edge is estimated as δω ∼ �

↑↑
pz:eq.

On the other hand, the pz-wave superfluid order parameter
almost vanishes at tεF = 100 in the nonequilibrium case
shown in Fig. 5(a), so that δω in this case is dominated by
a nonequilibrium effect. Noting that this structure is similar
to the Fermi distribution function at finite temperatures, we
expect that this nonequilibrium effect is similar to the thermal
effect on a Fermi superfluid. Indeed, keeping this similar-
ity in mind, when we introduce the effective temperature
Teff ≡ δω in the nonequilibrium case, one finds that Teff >

�
↑↑
pz:eq. This naturally explains why the pz-wave superfluid

state is destroyed in this case, that is, Cooper pairs are depaired
by this “thermal” effect, as in the weak-coupling BCS state
above the superfluid phase transition temperature.

As one increases the pz-wave interaction strength, the
smearing width δω in the nonequilibrium case gradually
becomes close to that in the equilibrium state, as shown
in Fig. 5(b), around which the ratio 〈�↑↑

pz
〉/�↑↑

pz:eq takes a
maximum value [see Fig. 5(d)]. With further increasing the
pz-wave interaction strength, we see in Fig. 5(c) that n

↑
p(t)

again becomes different from the equilibrium result ñ
↑
p. As a

result, the ratio 〈�↑↑
pz

〉/�↑↑
pz:eq again becomes small, as shown

in Fig. 5(d).
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(case F). Since the time dependence of n↑
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The above discussion is also applicable to the strong-
coupling regime where the Fermi chemical potential μ in
the equilibrium pz-wave superfluid state is negative (the right
side of the vertical dotted line in Fig. 4). When (k3

Fvp)−1 = 6
(case F), the equilibrium momentum distribution function ñ

↑
p

no longer has the Fermi-edge-like structure because of the
negative chemical potential μ/εF � −1.5 [see Fig. 2(b1)].
In this case, Fig. 7 shows that the momentum distribution
function n

↑
p(t) relatively becomes similar to ñ

↑
p with increasing

the spin-orbit-coupling strength λ. Because of this, the ratio
〈�↑↑

pz
〉/�↑↑

pz:eq is larger for a larger λ in the right side of the
vertical dotted line in Figs. 4(b1)–4(b3).

In addition, when one increases (k3
F vp)−1 in the strong-

coupling regime, the equilibrium momentum distribution
function ñ

↑
p spreads out more in momentum space, reflecting

that the chemical potential approaches μ = −∞ in the strong-
coupling limit. As a result, n

↑
p(t) in this regime becomes

increasingly different from ñ
↑
p with increasing the pz-wave

interaction strength. This naturally explains why the ratio
〈�↑↑

pz
〉/�↑↑

pz:eq decreases with increasing the pz-wave interac-
tion strength in the right side of the vertical dotted line in
Figs. 4(b1)–4(b3).

These analyses indicate that in order to produce a large
pz-wave superfluid order parameter at t � 0, one should
choose the equilibrium s-wave superfluid state (t < 0) so that
the atomic momentum distribution function can be as similar
as possible to that in the equilibrium pz-wave superfluid state.
Besides this, the fact that n

↑
p(t) �= ñ

↑
p seen in Figs. 5 and 6

means that the produced pz-wave superfluid state is not in
the ground state. In the current experimental stage [2–6],
one cannot expect the relaxation of the produced pz-wave
superfluid state to the ground state within the short lifetime
of a p-wave interacting Fermi gas. Thus, to study equilibrium
thermodynamic properties of a pz-wave superfluid Fermi gas
in our approach, it would also be favorable to prepare the
atomic momentum distribution in the initial s-wave superfluid
state so as to be very similar to ñ

↑
p in the equilibrium

pz-wave superfluid ground state. Actually, we need to find a
way to prepare the pz-wave-state-like anisotropic momentum
distribution in the isotropic s-wave superfluid state for these
purposes, which remains as our future problem.

Here, we discuss an alternative idea to obtain a nonvanish-
ing pz-wave superfluid order parameter deep inside the weak-
coupling regime. The recent work [73] on the quench dynamics
of a p-wave superfluid Fermi gas has shown that when a strong
p-wave interaction is replaced by a weak p-wave one, the
nonvanishing superfluid order parameter, whose value can be
larger than that in the equilibrium case, is obtained. Indeed,
when we solve TD-BdG equation (27) under the assumption
that the system at t < 0 is in the equilibrium strong-coupling
pz-wave superfluid state [(k3

Fvp)−1 = 8], giving the initial state

�( p,t = 0) =

⎛
⎜⎝

E p+ξ p√
2E p(E p+ξ p)

�
↑↑
pz :eq( p)√

2E p(E p+ξ p)

⎞
⎟⎠ (38)

(where E p =
√
ξ 2

p + [�↑↑
pz:eq( p)]2), we obtain the nonvanishing

pz-wave superfluid order parameter �
↑↑
pz

(t) �= 0, being larger
than that in the equilibrium weak-coupling case, as shown
in Fig. 8(a) [see also Fig. 2(b2)]. Then, one expects that our
approach might also give a nonvanishing pz-wave superfluid
order parameter in the weak-coupling regime, when we replace
the s-wave interaction by a strong pz-wave one at t = 0,
which is followed by the replacement of the strong pz-wave
interaction with a weak pz-wave one at t = t0 > 0, e.g.,
A → F → D. However, Fig. 8(b) shows that this idea actually
does not work because the pz-wave superfluid order parameter
vanishes soon after the second manipulation. This is because,
although a large pz-wave superfluid order parameter appears
when 0 � t � t0, the momentum distribution function n

↑
p(t) is

still similar to that in the initial s-wave state. As a result, the
same mechanism as that discussed in Figs. 3(a1)–3(a3) works
at t = t0, leading to the vanishing of the pz-wave superfluid
order parameter seen in Fig. 8(b).

When we take into account the relaxation of the system to
the equilibrium pz-wave superfluid ground state beyond the
present TD-BdG scheme, the momentum distribution function
n

↑
p(t) would become similar to ñ

↑
p to some extent, during the

period 0 � t � t0. Then, the situation becomes close to the
case discussed in Ref. [73], which might give a nonvanishing
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tuned. (b) Time evolution of |�↑↑
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(t)|, when the s-wave interaction
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in (b), where the equilibrium result ñ↑

p is in the case (k3
Fvp)−1 = 8.

pz-wave superfluid order parameter even deep inside the weak-
coupling regime. However, to confirm this expectation, we
need to extend the present TD-BdG approach to include not
only the relaxation effect, but also the three-body particle loss,
which remains as our future problem.

Before ending this section, we comment on how to detect
the p-wave superfluid state when t � 0. When the p-wave
Cooper pairs with nonvanishing binding energy E

p-wave
bind ( �= 0)

are really formed after the s-wave interaction is replaced by
the p-wave one, this p-wave binding energy is expected to
affect excitation properties of the system when t � 0. Thus, to
detect Ep-wave

bind , spectroscopic measurements, such as the radio-
frequency spectroscopy [93] as well as Bragg spectroscopy
[94], might be useful. For the superfluidity of the system, one
idea is to observe the propagation of collective sound mode,
which is characteristic of the superfluid phase, as has been
done in an s-wave superfluid Fermi gas [95]. However, since
the p-wave superfluid state discussed in this paper is in the
nonequilibrium state, we need further analyses to assess to
what extent these ideas work in the present case.

IV. SUMMARY

To summarize, we have discussed the time evolution
of the pz-wave superfluid order parameter, after an s-
wave pairing interaction in an equilibrium spin-orbit-coupled
s-wave superfluid Fermi gas is replaced by a p-wave inter-
action working between Fermi atoms in the same atomic
hyperfine state (pseudospin-↑) at t = 0. Employing a time-
dependent Bogoliubov–de Gennes (TD-BdG) equation at
T = 0, we have examined how the pz-wave superfluid order
parameter �

↑↑
pz

( p,t � 0) is affected by the initial s-wave
interaction strength (t < 0), the introduced p-wave interaction
strength (t � 0), as well as the spin-orbit-coupling strength.

We showed that to obtain a large pz-wave superfluid order
parameter in this method, one should prepare the initial spin-
orbit-coupled s-wave superfluid Fermi gas so that the atomic
momentum distribution n

↑
p(t = 0) ≡ ns

p can be similar to that
in the equilibrium pz-wave superfluid state ñ

↑
p. In the pz-wave

weak-coupling regime where the Fermi chemical potential μ

in the equilibrium pz-wave superfluid state is positive, the pz-
wave superfluid order parameter was found to become large in
the case when ns

p around the Fermi level (pz = √
2mμ) is sim-

ilar to that of ñ
↑
p. Although the Fermi edge does not exist in the

pz-wave strong-coupling regime where μ < 0, we found that
a larger pz-wave superfluid order parameter is also obtained
in the case when the overall structure of ns

p is relatively close
to ñ

↑
p. The reason for the importance of the atomic momentum

distribution in the initial spin-orbit-coupled s-wave superfluid
state is that the overall structure of n

↑
p(t) is passed down to

that of nonequilibrium pz-wave superfluid state ñ
↑
p in the early

stage of the time evolution (t � 0), where the relaxation effect
as well as the three-body particle loss are not crucial.

At this stage, s-wave superfluid Fermi gases have only been
realized in the absence of spin-orbit interaction. This implies
that a spin-orbit interaction is not favorable to achieve the
s-wave superfluid state. Thus, when we use our proposal,
we should take a weak spin-orbit interaction, so as not to
completely destroy the initial s-wave superfluid state. In
this regard, slightly inside the p-wave weak-coupling regime
may be suitable for this purpose because a relatively large
pz-wave superfluid order parameter can be obtained for a
weak spin-orbit interaction [see Fig. 4(a1)]. Then, since the
pz-wave superfluid order parameter �

↑↑
pz

( p,t) grows much
faster than the typical time scale of the three-body particle
loss [τl = O(10 ms)], a pz-wave superfluid state would be
obtained, at least in the early stage of the time evolution after
the p-wave interaction is turned on.

However, we should note that the TD-BdG formalism
used in this paper ignores fluctuations in the p-wave Cooper
channel, which becomes crucial when the p-wave interaction
strength becomes strong. Since pairing fluctuations are con-
sidered to suppress the p-wave superfluid order parameter,
it is an important issue to clarify this strong-coupling effect
in order to evaluate the magnitude of the p-wave superfluid
order parameter more quantitatively. Extension of the present
TD-BdG approach to include p-wave pairing fluctuations is
an important theoretical challenge.

In this paper, we have only considered the simplest
single-component spin-orbit interaction, λpzσx . Since more
complicated spin-orbit interactions, such as a two-component
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one, also induce different types of p-wave pair amplitudes [47],
it is an interesting future problem to see what happens in these
cases after an appropriate p-wave interaction is switched on.
In addition, it is known that a synthetic gauge field technique
to produce a spin-orbit coupling also gives a Zeeman field term
[41–45], which we have ignored in this paper, for simplicity.
Inclusion of this realistic situation also remains as our future
problem. Besides these, although we have simply assumed that
the s-wave interaction is absent when t � 0, it may actually
remain to some extent even after an external magnetic field
is adjusted to a p-wave Feshbach resonance. In this case, the
system may possess both the s-wave and p-wave superfluid
order parameters, at least at t = 0. Furthermore, inclusions of
relaxation effects as well as effects of three-body particle loss
also remain to be solved. Since all of the current experiments
toward the realization of a p-wave superfluid Fermi gas are
facing the difficulty associated with the short lifetime of the
system caused by a p-wave interaction, our results would
provide an alternative route to reach this unconventional Fermi
superfluid, avoiding this serious problem to some extent.
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APPENDIX A: DERIVATION OF TD-BdG EQUATION (11)

We explain the outline of the derivation of TD-BdG
equation (11) for an s-wave superfluid Fermi gas [54]. When

the s-wave superfluid order parameter depends on t , the
mean-field BCS Hamiltonian in Eq. (4) is also t dependent
[≡ H MF

s (t)]. In this case, the time evolution operator Û (t) has
the form

Û (t) = Tt e
−i

∫ t

0 dt ′H MF
s (t ′), (A1)

where Tt is the time-ordered product. Considering c p,σ (t) =
Û †(t)c p,σ Û (t) in the Heisenberg representation, we obtain the
ordinary Heisenberg equation,

i
∂

∂t
c p,σ (t) = [

c p,σ (t),H MF
s (t)

]
. (A2)

TD-BdG assumes that c p,σ (t) has the same structure as the
ordinary Bogoliubov transformation in the equilibrium case,
except that the Bogoliubov amplitudes ũα

p,σ (t) and ṽα
p,σ (t) in

Eq. (14) depend on t . Then, substituting Eq. (14) into Eq. (A2),
one reaches Eq. (11).

APPENDIX B: MOMENTUM DISTRIBUTION FUNCTION
n↑

p(t � 0) IN THE PERPENDICULAR DIRECTION TO pz

Because �
↑↑
pz

(t)(∝ pz) vanishes when pz = 0, TD-BdG
equation (27) in this case is reduced to

i
∂

∂t

(
ũα

p,↑(t)

ṽα
p,↑(t)

)
=

(
ε p 0

0 −ε p

)(
ũα

p,↑(t)

ṽα
p,↑(t)

)
, (B1)

which has the solution(
ũα

p,↑(t)

ṽα
p,↑(t)

)
=

(
ũα

p,↑(0)e−iε pt

ṽα
p,↑(0)eiε pt

)
. (B2)

Equation (B2) gives the time-independent momentum distri-
bution,

n↑
p(t) = 1

2

∑
α=±

|ṽα
p,↑(t)|2 = 1

2

∑
α=±

|ṽα
p,↑(0)|2 = n↑

p(0). (B3)
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