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Universal scaling of unequal-time correlation functions in ultracold Bose gases far from equilibrium
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We explore the far-from-equilibrium dynamics of Bose gases in a universal regime associated to nonthermal
fixed points. While previous investigations concentrated on scaling functions and exponents describing equal-
time correlations, we compute the additional scaling functions and dynamic exponent z characterizing the
frequency dependence or dispersion from unequal-time correlations. This allows us to compare the characteristic
condensation and correlation times from a finite-size scaling analysis depending on the system’s volume.
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I. INTRODUCTION

Nonequilibrium scaling phenomena are ubiquitous in
nature. A particularly well-understood example concerns
dynamic scaling behavior near second-order thermal phase
transitions, where a wide variety of physical systems can
be grouped into universality classes associated to thermal
renormalization-group fixed points. Each universality class
is characterized by a set of values of critical exponents and
scaling functions describing the long-distance properties of
systems [1].

While quenches to second-order thermal phase transitions
can be still characterized by the universal critical behav-
ior, quenches across transitions are typically well described
in terms of the phenomenon of coarsening: on the low-
temperature side the systems form domains which grow with
time such that correlation functions can be expressed in
terms of scaling functions and power laws. Their forms and
values depend on the condensate structure and topological
obstructions. Therefore, the study of topological defects
provides a case-by-case framework for discussing coarsening
in these different systems [2].

More recently, new universality classes associated to
nonthermal fixed points have been discovered in the context
of thermalization dynamics in the early universe after inflation
[3–5], heavy-ion collisions described by quantum chromo-
dynamics [6–8], and setups with ultracold quantum gases
[9–13]. The scaling behavior of these initially overoccupied
systems is described in terms of universal exponents and
scaling functions. The latter are self-similar attractor solutions
to which the system evolves without fine-tuning of any relevant
operator. Nonthermal fixed points can characterize remarkably
large universality classes, encompassing relativistic and non-
relativistic quantum and classical theories even with different
symmetries and field content [12,14].

So far, the most detailed understanding of nonthermal
fixed points has been obtained for the dynamics of scalar
fields with N components. While dynamic properties at
shorter distances can be related to the phenomenon of weak
wave turbulence [5], the long-distance scaling behavior is
reminiscent of ordering dynamics with the phenomenon of
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condensate formation [12,15–18]. In contrast to expectations
from coarsening, the infrared scaling behavior is described in
terms of universal exponents and scaling functions that are
remarkably insensitive to the condensate structure and topo-
logical considerations [12,19]. As a consequence, important
aspects of these phenomena can be described using large-N
expansions beyond leading order [12,20,21], which do not
capture topological defects [22–24]. The universality across
the wide set of condensate structures for different values of
N has been scrutinized in Ref. [25] using classical-statistical
simulations for the relativistic N -component field theory. The
latter has been demonstrated in Ref. [12] to be also in the same
universality class as its nonrelativistic counterpart.

Here we extend previous work on nonthermal fixed points
by providing results on the universal scaling of unequal-time
correlation functions. The latter give direct access to the
important “dynamic” scaling exponent z, which describes
the characteristic frequency dependence or dispersion in
the scaling regime. While close to thermal equilibrium, the
dynamic exponent z may also be inferred from equal-time
correlations using scaling relations [1], this is less clear
far from equilibrium. For instance, in scaling regimes for
energy transport towards short distance scales z represents an
independent exponent [5]. To establish the universality classes
of nonthermal fixed points, it is therefore crucial to determine
the role and value of z.

More precisely, we extract all scaling properties of two-
times correlation functions for a Bose gas described by non-
relativistic complex scalar fields in three spatial dimensions.
The Bose gas corresponds to an O(N ) symmetric system for
N = 2 real scalar field components. The universal exponents
and scaling functions are obtained from a finite-size scaling
analysis depending on the system’s volume. In particular,
this allows us to compare the effective condensation and
correlation times for finite systems by establishing their
power-law scaling with volume.

For the numerical simulations we exploit the fact that
the quantum- and classical-statistical systems belong to the
same universality class because of the large characteristic
occupancies involved [12,20]. The comparisons to analytic
estimates are based on extrapolations of large-N results at
next-to-leading order [12] to the case N = 2 considered.

In Sec. II we describe the finite-size scaling ansatz for
two-times correlation functions. Section III presents a class
of initial conditions characterizing overoccupied systems and
their time evolution. Universal exponents and scaling functions
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are determined in Sec. IV, where we also comment on the
value of the anomalous dimension. The conclusions are given
in Sec, V. We explain our fit routines with error estimates in
the Appendix A.

II. SCALING OF NONEQUILIBRIUM
CORRELATION FUNCTIONS

We consider nonrelativistic Bose gases out of equilibrium,
whose quantum many-body dynamics may be described in
terms of a complex bosonic Heisenberg field operator ψ(t,x).
The nonequilibrium evolution is encoded in correlation func-
tions of fields at different space-time points. We investigate
spatially homogeneous systems such that, for instance, the
two-point correlation function of the anticommutator

F (t,t ′,x − x′) ≡ 1
2 〈ψ(t,x)ψ†(t ′,x′) + ψ†(t ′,x′)ψ(t,x)〉 (1)

depends only on the spatial difference x − x′, while the
nonequilibrium evolution entails a breaking of time-translation
invariance and a dependence on both t and t ′ separately.

For quantum systems, the brackets 〈. . .〉 in (1) denote
the quantum-statistical expectation value involving the trace
over the density operator specifying the initial state. We
will concentrate on a range of far-from-equilibrium initial
conditions involving large occupancies of typical modes,
such that the quantum-statistical evolution can be accurately
mapped onto a classical-statistical field theory problem to
be simulated on a computer [26].1 In classical-statistical
simulations, one samples over initial conditions and evolves
each realization according to the classical field equation of
motion. In this case, the brackets 〈. . .〉 denote the ensemble
average over classical trajectories.

For both quantum and classical representations, at equal
space-time points (t = t ′, x = x′) the quantity (1) corresponds
to the density n, i.e., the conserved total particle number Ntotal

divided by the system’s volume V :

n ≡ Ntotal

V
= F (t,t,x − x). (2)

For our purposes, it is instructive to consider the absolute value
of the spatial integral of (1) over the volume V = Ld in a box
of length L in d spatial dimensions:

F (τ,�t,V ) ≡
∣∣∣∣
∫

V

F (t,t ′,x) ddx

∣∣∣∣. (3)

Here we introduced the central-time coordinate τ and the
relative-time coordinate �t as

τ ≡ t + t ′

2
, �t ≡ t − t ′. (4)

Taking the absolute value in (3) amounts to disregarding a
rotating global phase ∼eiμ�t , which could also be absorbed
in a redefinition of the fields by ψ → e−iμ�tψ . Furthermore,

1The approximate mapping is usually based on a sufficiently large
occupancy of typical modes for equal-time correlation functions.
While the validity of this argument is less clear for the computation
of general unequal-time correlation functions, it should be valid for
power-law behavior in scaling regimes as considered in this work.

since the correlation function (3) is symmetric under exchange
of t and t ′, F (τ,�t,V ) = F (τ, − �t,V ), we restrict our
presentation to �t > 0. Though we keep the dimension d

general in our notation, all our numerical results presented in
subsequent sections will concern d = 3.

Our aim is to investigate scaling solutions of nonequi-
librium correlation functions near nonthermal fixed points.
The scaling behavior of the correlation function (3) may be
expressed in terms of real scaling exponents α, β, and z as

F (τ,�t,V ) = sα/βF (s−1/βτ,s−z�t,s−dV ) (5)

under rescaling with the real scaling parameter s > 0. The
“occupation number” exponent α and the “central-time”
exponent β have been discussed in detail for �t ≡ 0 in Ref.
[12] for the far-from-equilibrium case we are interested in.
To determine the “dynamic” scaling exponent z, which is
associated to changes in relative times �t , and the respective
unequal-time scaling functions is the main focus of our
investigation.2

Far from equilibrium, i.e., well beyond the linear response
regime, both the central-time exponent β and relative-time
exponent z can generally be linearly independent as, for
instance, realized in perturbative scaling regimes for energy
transport towards short distance scales in related models [5].
In this work, we consider the nonperturbative scaling regime
associated to particle transport towards long-distance scales
[12] and determine the role and value of z.

The importance of z stems from the fact that the dynamic
scaling exponent for relative times is directly related to
the characteristic frequency dependence or dispersion of the
model. The dependence on the frequency ω is obtained from
Fourier transforming (5) with respect to relative times, which
gives

F (τ,ω,V ) = 2
∫ ∞

0
eiω�t F (τ,�t,V ) d(�t)

= sz+α/βF (s−1/βτ,szω,s−dV ) . (6)

Because the system is considered to have a finite size Ld ,
when the characteristic correlation length is ≈L, the system
can already become effectively ordered. Only for shorter
times the universal scaling behavior with a full dependence
on τ , �t , and V as in (5) is expected to hold. Below
we determine the corresponding time scale for condensation
from equal-time correlation functions and compare this to
the characteristic correlation time obtained from unequal-time
functions.

III. INITIAL CONDITIONS
AND NONEQUILIBRIUM EVOLUTION

We envisage an interacting Bose gas in three spatial
dimensions with s-wave scattering length a and average
density n. We focus on the dilute regime, such that the di-
mensionless parameter ζ =

√
na3 � 1. We think of preparing

the system in an extreme nonequilibrium situation, where

2The nonthermal scaling exponents α and β are not associated to a
specific heat or order parameter exponent but defined by (5).
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the typical occupation numbers are very much larger than in
thermal equilibrium. As a consequence, the dynamics will be
nonperturbative despite being in a dilute regime.

To describe this extreme condition, we exploit the fact
that the density and scattering length can also be used to
define a characteristic “coherence length”, whose inverse is
described by the momentum scale Q = √

16πan.3 To observe
the dynamics near nonthermal fixed points for the interacting
Bose gas, an unusually large occupancy of modes at the
inverse coherence length scale Q has to be prepared [12].
Decomposing

n = |ψ0|2 + V −1
∑

p

f0(p) (7)

into a condensate fraction |ψ0|2 and noncondensate fraction
with momentum distribution function f0(p), we initially set
|ψ0|2 = 0 and

f0(Q) ∼ 1

ζ
� 1 (8)

to describe highly occupied modes with typical momentum Q.
In this case the large occupation number ∼1/ζ compensates
for the smallness of the diluteness parameter ζ : the system
becomes strongly correlated and independent of the value of
ζ [12].

In particular, Bogoliubov or mean-field-type approxi-
mations are not applicable in this regime and we em-
ploy classical-statistical lattice simulations. More specifically,
we compute correlation functions from an ensemble aver-
age of inhomogeneous solutions of a complex Bose field
ψ(t,x), whose dynamics is described by the Gross-Pitaevskii
equation [27]

i ∂tψ(t,x) =
(

− ∇2

2m
+ g |ψ(t,x)|2

)
ψ(t,x), (9)

with mass m and interaction parameter g = 4πa/m. With Q =
2
√

nmg and ζ = mgQ/(16π3/2), we sample the fields at initial
time such that

f0(p) :=
∫

V

d3x e−ipx 1

2
〈ψ(0,x)ψ†(0,0) + ψ†(0,0)ψ(0,x)〉

(10)
is given by f0(p) = 25/(mgQ) for momenta |p| < Q and zero
otherwise.

To reflect the classical-statistical nature of the dynamics
in the highly occupied regime, we measure time in units of
2m/Q2 and volume in units of Q3. As a consequence, the
combination F (τ,�t,V )2mgQ for (3) does not depend on the
values of m, g, and Q. Though we will write t , V , and F , we
always imply the rescalings t → tQ2/2m, p → p/Q, V →
V Q3, and F (τ,�t,V ) → F (τ,�t,V ) 2mgQ in the following.

To give an overview, Fig. 1 shows the evolution of the
correlation function F (τ,�t,V ) as a function of the central-
time coordinate τ and the relative time �t for a volume

3We always employ natural units where the reduced Planck constant
and Boltzmann’s constant are set to unity: h̄ = kB = 1. The scale Q

is proportional to the inverse healing length
√

8πan.
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FIG. 1. Upper graph shows the two-times correlation function (3)
as a function of the central-time coordinate τ and the relative-time
coordinate �t for a volume V with 1283 lattice points. The colored
lines correspond to slices of constant τ (squares) and constant �t

(triangles), which are separately displayed in the lower graphs.

V = 1283.4 For better visualization, the lower graphs of Fig.
1 give slices of constant τ (�t) as a function of �t (τ ) in the
left (right) plot.

The decay of F as a function of �t establishes a charac-
teristic correlation time �t∗(V ), whose scaling with volume
is investigated in detail in Sec. IV. Likewise, the growth of F

as a function of τ is seen to terminate around a time τ∗(V ),
which is discussed in the next section. In Ref. [12], τ∗(V ) has
been associated to the characteristic time scale for condensate
formation.

IV. EXTRACTING UNIVERSAL EXPONENTS
AND SCALING FUNCTIONS

In a scaling regime described by (5), we may choose s =
V 1/d eliminating the scaling parameter to obtain

F (τ,�t,V ) = V α/(βd) FV (V −1/(βd)τ,V −z/d�t) , (11)

where the scaling function FV is defined in terms
of FV (V −1/(βd)τ,V −z/d�t) ≡ F (V −1/(βd)τ,V −z/d�t,1). This
form makes it explicit that in the scaling regime FV depends
only on two arguments instead of separately on τ , �t , and V .
Similarly, it is instructive to consider the choices s = τβ in (5)
leading to

F (τ,�t,V ) = τα Fτ (τ−βz�t,τ−βdV ), (12)

4For all numerical estimates we employ an ultraviolet cutoff at√
12 Q and verify that our results are insensitive to the value of the

cutoff.
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FIG. 2. Rescaled correlation function FV = V −α/(βd)F as a
function of the rescaled central time V −1/(βd)τ for �t = 0 and a
range of volumes V in d = 3 spatial dimensions. For the rescalings
we employ α/(βd) = 1 and 1/(βd) = 0.57. The inset shows the
function F without rescaling for comparison. The dashed line
represents the power-law behavior ∼τα with α = 1.74. The time
where the power-law behavior stops and the curve flattens indicates
the characteristic condensation time τ∗(V ).

or s = �t1/z in (5) to get the scaling form

F (τ,�t,V ) = �tα/βz F�t (�t−1/βz τ,�t−d/zV ). (13)

One may use any of the scaling forms (11)–(13) to
efficiently extract the universal scaling exponents α, β, and
z from the numerical data. The different shapes of the scaling
functions FV , Fτ , and F�t are also universal after fixing their
overall amplitudes and of their arguments.

Because the system has a finite size Ld , it can already
become effectively ordered at a finite time, which has been
studied from equal-time correlations in Ref. [12]. Using the
scaling form (11), we denote the condensation time

τ∗ ∼ V 1/(βd) (14)

with τ∗ = τ∗(V,�t = 0) as the time where FV at equal times
becomes approximately independent of τ for given volume
V , i.e., FV (V −1/(βd)τ,0) � const for τ � τ∗. That FV changes
its behavior qualitatively from a power-law ∼τα to become
an approximate constant around the time τ∗ is indeed seen in
numerical solutions as demonstrated in Fig. 2. The figure is
discussed in more detail below when we extract the values of
the scaling exponents. The interpretation of τ∗ as the time for
the formation of a Bose condensate is explained in Ref. [12].

In addition, we define the correlation time �t∗ from the
decay of FV as a function of relative time, which is exemplified
in Fig. 3. More precisely, we determine the decay time from the
“width” given by the difference between the inflection points
of the curve FV (V −1/(βd)τ = const,V −z/d�t) as a function of
V −z/d�t . This difference is found to grow monotonically with
τ until it reaches a maximum at a time τ�(V ), i.e., the width
of the scaling function FV becomes independent of the central
time for τ � τ�.

Though τ� and τ∗ turn out to scale in the same way with
volume as (14), they can be numerically different and we find

FIG. 3. Rescaled correlation function FV = V −α/(βd)F as a func-
tion of the rescaled relative-time coordinate V −z/d�t for fixed
values of the rescaled central-time coordinate V −1/(βd)τ . We employ
α/(βd) = 1.0, 1/(βd) = 0.57, and z/d = 0.61 for two different
volumes with {2563,5123} lattice points. The inset shows the original
function F without rescaling. The “width” of FV as it decays with
growing |V −z/d�t | gives rise to the characteristic correlation time
�t∗(V ).

τ� < τ∗. In particular, in this regime (11) implies

�t∗ ∼ V z/d, (15)

with �t∗ = �t∗[V,τ = τ�(V )].
Since V = Ld , the condensation time (14) and the correla-

tion time (15) are related to respective lengths, which scale as

L ∼ τβ
∗ ∼ �t1/z

∗ . (16)

A special case occurs if β = 1/z for which the scalings
with central and relative times are the same. We analyze this
possibility below.

In the following we extract the values of the universal
exponents and determine the universal shape of the scaling
functions. Starting from the initial conditions of Sec. III,
we follow numerically the relatively short evolution until the
system is attracted to the nonthermal fixed point characterized
by scaling. We analyze the scaling behavior for times τ <

τ�(V ) and �t < �t∗(V,τ�) for different volumes V . The
evolution in this regime is verified to exhibit the scaling
behavior (5) with suitably chosen exponents.

We start by considering �t = 0 and plot the rescaled
correlation function FV (V −1/(βd)τ,0) as defined in (11).
In Fig. 2 we show results for a set of volumes with
{323,643,1283,2563,5123} lattice points, respectively. For
comparison, the inset shows the correlation function
F (τ,�t = 0,V ) for the corresponding values of τ without
rescaling. With the appropriate choice of values for the
combinations of exponents α/(βd) and 1/(βd), the rescaled
curves at different V lie remarkably well on top of each other,
in particular, since there is a large factor of more than 103

between the smallest and the largest volume.
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FIG. 4. (a) Fτ = τ−α F as a function of the rescaled relative time τ−βz�t for two sets of values of τ−βdV employing the exponents α = 1.74
and βz = 1.07. (b) Unrescaled function F (τ,�t,V ) for given values of τ as a function of �t . (c) F�t = �t−α/βz F as a function of the rescaled
central-time �t−1/βzτ for given sets of �t−d/zV with the same exponents. (d) Unrescaled function F (τ,�t,V ) as a function of τ for given
values of �t .

To quantify the values of the exponents and their errors we
make use of the fit routine employed in Ref. [12] and refer to
the Appendix A for more details. This yields

α

βd
=1.00 ± 0.02, (17)

1

βd
=0.57 ± 0.03, (18)

where the error bars are due to statistical averaging and fitting
errors. We emphasize again that all our numerical values
are obtained from simulations in d = 3 spatial dimensions.
Nevertheless, we keep here the parameter d in the notation
to reflect the fact that from the scaling ansatz (5) only the
combination βd of the scaling exponent for central time (β)
and for volume (d) enters.

We are now going to extract the value of z/d from (11)
for �t �= 0. For visualization purposes, we plot in Fig. 3 the
rescaled correlation function FV as a function of V −z/d�t

for different values of V −1/(βd)τ . To establish the scaling
behavior requires the comparison of the correlation function
for different volumes Vi at different times τi , when plotted
versus �t . In particular, the times chosen need to fulfill
τi/τj = (Vi/Vj )1/(βd). In doing so, one needs to make sure that
the times τi lie within the regime where scaling is valid, which
lasts longer for larger volumes according to (14) and (15). For
instance, we find that for 2563 lattice sites the scaling regime
is approximately given by the range of times t,t ′ ∈ [200,3000]
and for 5123 it is t,t ′ ∈ [200,7000]. Therefore, we plot in all
figures values of τ and �t which lie approximately within
these intervals.

One observes from Fig. 3 that the rescaled curves lie
pairwise on top of each other to remarkable accuracy. This is a
striking demonstration of scaling dynamics in unequal-time
correlation functions close to the nonthermal fixed point.
Although we show only a couple of different times, we note
that the agreement is valid for the whole scaling regime. In
order to extract the exponents, we use our previous result (18)
and employ the fit routine to obtain

z

d
=0.61 ± 0.05. (19)

As a consistency check, we find that the result for z/d does
not depend much on whether we fix both α/(βd) and 1/(βd)
by (17) and (18) or only one of them when applying the fit
routine to extract exponents.

We can do the same type of analysis using the scaling
forms (12) or (13), which leads to a determination of the same
exponents, however, in different combinations. Figure 4(a)
shows the correlation function Fτ = τ−α F as a function of
τ−β z�t for two sets of values of τ−βdV with the volumes
2563 and 5123. The original function F without rescalings is
given in Fig. 4(b) for comparison. The rescaled curves lie again
well on top of each other. With the value of βd given by (18)
one obtains from the fit routine

α =1.74 ± 0.03, (20)

βz =1.07 ± 0.06, (21)

which are consistent with the previous results within errors.
Figure 4(c) shows F�t = �t−α/βz F as a function of the

rescaled central-time �t−1/βzτ for given sets of �t−d/zV with
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the exponents found above. For comparison, Fig. 4(d) displays
the correlation function F (τ,�t,V ) for given values of �t

versus the central-time coordinate τ without rescalings. The
curves corresponding to different volumes Vi and fulfilling
(�ti/�tj )d/z = Vi/Vj lie pairwise well on top of each other.
We checked that the results one obtains for exponents are
consistent with the ones presented above within errors. For
the plots one needs to fix the value for the dynamical scaling
exponent z in order to determine the values of fixed �t in
different volumes. Furthermore, in Figs. 3 and 4 we only use
the largest volumes with 2563 and 5123 lattice points since
the smaller available volumes are not in the scaling regime
for relevant times. Nevertheless, we checked that comparing
with data for 1283 and 2563 lattices one gets similar results,
although they are less reliable due to the short duration of the
scaling regime.

The above values for the universal scaling exponents along
with the scaling functions displayed represent our central
results. In order to interpret them, we first note that the
scaling relation α = βd reflects particle transport [12], which
according to (17) is well realized by the scaling solution
observed. Since with (20) we have α > 0 the particle transport
occurs from short to long distance scales, which characterizes
an inverse cascade in agreement with the analysis of equal-time
correlation functions in Ref. [12]. The inverse particle cascade
leads to the formation of a Bose condensate [12].

The result (19) represents a direct determination of the
dynamic scaling exponent z for this nonthermal fixed point.
Setting d = 3 we obtain z = 1.84 ± 0.15. This value clearly
excludes a “linear dispersion” (z → 1) in this scaling regime,
but appears marginally consistent with a quadratic one
(z → 2). As a consistency check, we note that practically the
same value for z is also obtained from (21) using (18) for
d = 3 giving β = 0.58 ± 0.03. In addition, Eq. (21) conveys
the important information that z is rather accurately determined
by 1/β, even though the result for the errors stated indicates a
small deviation. The agreement of z and 1/β is, e.g., assumed
in related studies of equal-time correlators in Refs. [13,18].

Since the errors reflect only statistical uncertainties and
the accuracy of the fit procedure, systematic errors could
increase the error bars somewhat. To get an idea about possible
systematic errors, we note that in Ref. [12] the values for α

and β were obtained from the scaling behavior of a momentum
distribution function. In this work we extract exponents from
the (un)equal-time scaling of a volume-averaged quantity
(3), which reflects properties of the correlator at zero spatial
momentum only.

If we repeat, for comparison, the momentum scaling
analysis of Ref. [12] for the distribution function with our
current numerical setup, we obtain α → 1.64 ± 0.16 and
β → 0.55 ± 0.02 consistent with Ref. [12]. The relatively
large error for α with this fit procedure is a result of the rather
weak dependence of the distribution function at low momenta,
and thus less accurate than our result (20), which is explained
in more detail in the Appendix A. In comparison, the value
for β obtained in this way has relatively small statistical errors
and comes out directly from the fit procedure, i.e., without
involving products as βz or βd. Plugging this value naively
into (21), or even into (18) with (19) treating the d from the

scaling ansatz (5) as an independent parameter,5 would lead to
z → 1.94 ± 0.11. While this is still fully consistent with our
above result for z, its somewhat higher central value might be
viewed as an indication for a possible quadratic dispersion.

The discussion about the deviation from a quadratic
dispersion relation is also closely related to the question
of a nonvanishing anomalous dimension η describing the
deviation from canonical scaling [12], as recently addressed
also in two spatial dimensions using equal-time correlations
[13]. Following Ref. [12] employing large-N expansions, the
anomalous dimension may be determined by the relation

β = 1

2 − η
. (23)

Taking the (somewhat more accurate) value of β obtained from
a fit to momentum scaling distributions as explained above, we
get

η = 0.19 ± 0.08. (24)

The smallness of the anomalous dimension makes it difficult
to draw definite conclusions in view of the relatively large
error bars. However, the central value obtained for η at the
nonthermal fixed point is rather large if compared to typical
values of the corresponding thermal critical exponent, which
is on the order of a few percent in scalar theories in three
dimensions.

V. CONCLUSION

In this work we have presented results on universal scaling
exponents and scaling functions for unequal-time correlation
functions describing nonthermal fixed points. In particular,
this allows us to directly establish the value of the dynamic
scaling exponent z, characterizing the frequency dependence
of unequal-time correlations or the dispersion, and its close
relation to 1/β describing the scaling of equal-time quantities
such as the distribution function.

The method we have employed is based on a systematic
finite-size scaling analysis of classical-statistical simulations
for an interacting complex scalar field theory in three spatial
dimensions. Since the system has a finite size, we are able to
quantify the scaling of the characteristic time scales τ∗ for con-
densation and of the correlation time �t∗ with volume. Since
the former scales ∼V 1/(βd) and the latter ∼V z/d , the estab-
lished similarity between the exponents 1/β and z entails a cor-
responding scaling of both condensation and correlation times.

To put these results into context, we note that also the cor-
responding relativistic model belongs to the same universality
class [12]. In all these theories, the infrared scaling behavior is
part of a dual cascade, with a turbulent energy cascade towards
shorter distances [5]. In particular, for the scaling properties of

5Such a procedure would lead, for instance, from (18) and (A15) to
the value

d → 3.18 ± 0.13, (22)

for the scaling parameter d in (5). The deviation from the spatial
dimension three, for the statistical and fit error given, may point to a
moderate additional systematic error.
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the direct energy cascade there is no such similarity between
the corresponding values of z and 1/β, which even turn out
to have opposite signs in that case [12]. In this respect, the
nonperturbative inverse particle cascade and the perturbative
direct energy cascade are found to behave very differently.

Since the observed value of z close to two makes it
rather difficult to distinguish it from several other known
universality classes, we emphasize that the universal shape
of the scaling forms we have computed provides important
additional information. For instance, it has been analyzed
in great detail already in Refs. [12,19,25] that the shape of
the momentum scaling functions obtained from equal-time
correlation functions exhibits a remarkable universality across
N -component scalar field theories with different N . Since the
complex scalar theory we are considering corresponds to N =
2 real scalar field components, we expect for the unequal-time
scaling functions a similar universality for different values of
N to hold as for the equal-time functions. This is supported also
by the close relation between equal- and unequal-time scaling
exponents that we established in this work. This can be used, in
addition to the values of the remaining universal exponents, to
distinguish the scaling behavior from other scaling phenomena
such as coarsening, which strongly reflects the topological
obstructions that depend on N , or quenches to the critical point
of a phase transition in isolated quantum systems [28–30].

The remarkably large universality class associated to the
nonthermal fixed point is rooted in the extreme far-from-
equilibrium situation of very high typical excitations or
occupation numbers. Since the characteristic occupancies are
nonperturbatively large, ∼1/ζ � 1 in the dilute regime, they
can become insensitive to the details of the underlying thermal
or vacuum structure for which typical occupancies are of order
unity.

While these extreme conditions may appear unnatural at
first sight, we emphasize that these are attractor solutions: there
is no relevant parameter to tune, as for instance the tuning of a
critical temperature to be at a thermal transition. Moreover,
the extreme conditions appear in situations associated to
nonequilibrium instabilities in a wide range of applications
from particle-physics cosmology to condensed-matter physics.
The universality opens, therefore, the exciting possibility to
learn something about the early stages of our universe from
table-top experiments with, e.g., ultracold atoms.
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APPENDIX A: NUMERICAL FIT PROCEDURE

In this section we describe the fit routine used to quantify
the central values and statistical errors of the scaling exponents
given in the main text. We use for this the self-similar scaling
behavior of the two-point unequal-time correlation function
according to the scaling forms (11)–(13), which depend on

different combinations of the exponents (α,β,z) and on d.
Although d is associated to the fixed dimension of the system,
here we keep the discussion more general by treating it as an
independent parameter. At the end of the section, we also give
some details about the scaling of the equal-time correlator,
which were not given in the main text.

The fit procedure is based on the study of equal-time
correlators in Ref. [12] and we extend it here to unequal-time
correlation functions. Due to the number of exponents and
different ways to write the scaling forms, we divide our
analysis into four steps where different combinations of
exponents are computed. We start by considering the scaling
ansatz (11), which will serve to exemplify the general strategy
of our fit routine. To numerically quantify the deviation from
the self-similar evolution, we need to compare the correlation
function F (τ,�t,V ) at different volumes by appropriately
rescaling τ and �t . Having this in mind, we define the rescaled
correlation function

Fresc(τ,�t,V ) ≡ (V/Vref)
−α/(βd)

× F ((V/Vref)
1/(βd) τ,(V/Vref)

z/d �t,V ),

(A1)

where Vref is some reference volume to which we compare.
Using this definition, the self-similar scaling (11) can be
rewritten as Fresc(τ,�t,V ) = F (τ,�t,Vref). Hence deviations
from scaling at a given point are given by

�F (τ,�t,V ) ≡ Fresc(τ,�t,V ) − F (τ,�t,Vref) . (A2)

Using (A2) we will define a χ2 function which adds up, with
the appropriate weight, all the deviations �F over a given
range of τ or �t . This χ2 function quantifies, thus, the total
deviation from self-similarity which we will try to minimize
by a suitable choice of exponents.

To be more specific, we consider our first fit scheme at equal
times, i.e., �t = 0 (τ = t). This allows us to consider just the
pair of exponents α/(βd) and 1/(βd). Using (A2) we define
for given V and Vref

χ2

(
α

βd
,

1

βd

)
≡

∫ (
�F (τ,0,V )

F (τ,0,Vref)

)2
d[ln(τ )]

T
, (A3)

where the integration limits are chosen to be within the self-
similar regime and

T ≡
∫

d[ln(τ )] (A4)

is the normalization of the integral. Due to the power-law
nature of the correlation function in the scaling regime, we
integrate over ln(τ ) with τ > 0. This enhances the sensitivity
of the integral to small times τ , where the density of points
is smaller. For this first fit scheme we have considered the set
of volumes {323,643,1283,2563,5123} and have chosen Vref

to be 1283. We checked that choosing a different Vref within
the scaling regime does not change the outcome significantly.
Each volume V of this set is compared to Vref individually and
then the χ2 of the different volumes are added up. Varying
the values of the exponents α/(βd) and 1/(βd), we obtain the
distribution of χ2 values shown in Fig. 5. The set of exponents
{[α/(βd)]∗,[1/(βd)]∗} that minimizes the χ2 function (see
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FIG. 5. Parameter χ 2(α/(βd),1/(βd),Vref) as a function of the
exponents α/(βd) and 1/(βd) with the reference volume Vref = 2563

and the fit interval τ ∈ [50,8000].

dark shaded area) is the one that makes the rescaled curves lie
most accurately on top of each other (see Fig. 2) and hence
constitutes our final result.

From the width of the distribution we extract the statistical
errors. For this we first define a likelihood function

W

[
α

βd
,

1

βd

]
= W−1

0 exp

(
−χ2(α/(βd),1/(βd))

χ2
min

)
, (A5)

where χ2
min ≡ χ2([α/(βd)]∗,[1/(βd)]∗) is the minimal value

of χ2 and the normalization constant W0 is chosen such that∫
W

[
α

βd
,

1

βd

]
d

(
α

βd

)
d

(
1

βd

)
= 1. (A6)

By integrating over only one of the exponents, we obtain
marginal likelihood functions W [α/(βd)] and W [1/(βd)]
defined via

W

[
α

βd

]
≡

∫
W

[
α

βd
,

1

βd

]
d

(
1

βd

)
(A7)

and

W

[
1

βd

]
≡

∫
W

[
α

βd
,

1

βd

]
d

(
α

βd

)
. (A8)

Approximating these two functions with Gaussian distribu-
tions, we obtain the errors of [α/(βd)]∗ and [1/(βd)]∗ from
the standard deviation [12]. In this way, we get the central
value and statistical errors of the exponents given in (17) and
(18).

In our second fit scheme we consider the same scaling form
(11) but for unequal times �t �= 0. To apply the above fit
routine, we consider slices of constant volume V and central-
time τ as a function of the remaining variable �t . We consider
in this case the set of volumes {1283,2563,5123} and set Vref

to be 2563. Due to the rescaling of (A1), the central times τ of
the different volumes V have to fulfill

τ

τref
=

(
V

Vref

)1/(βd)

, (A9)

where τref corresponds to Vref . It is important to note that both τ

and τref have to lie within the scaling regime. For Vref we choose
τref ∈ [600,2000]. To solve for τ in (A9) we use the exponent

1/(βd) that was determined by the first fit (18). Hence only
α/(βd) and z/d remain as fitting parameters. Using this we
define again a χ2 function to be minimized for fixed V , Vref ,
τ , and τref by

χ2

(
α

βd
,
z

d

)
≡

∫ (
�F (τ,�t,V )

F (τref,�t,Vref)

)2
d[ln(�t)]

D
(A10)

with the normalization factor

D ≡
∫

d[ln(�t)]. (A11)

The central values and statistical errors of the exponents
α/(βd) and z/d are obtained from χ2 in the same way as
presented above. To obtain more accurate results, we have
considered around 30 different τref within the scaling regime
and averaged the final result over all fits. As explained in the
main text, we can only compare two different volumes with
each other because of the condition (A9) and the requirement
that all times lie inside the scaling regime. Therefore, the
results given in (19) and used in Fig. 3 correspond to the
largest volumes 2563 and 5123.

An important point concerns the error of the exponent
1/(βd) which propagates into the chosen values of τ by means
of (A9). To quantify this additional source of error, we first
use (A9) to define the times τ± lying at the edges of the error
interval by

τ±

τref
=

(
V

Vref

) 1
βd

±�( 1
βd

)

, (A12)

where �(1/βd) denotes the error of the exponent 1/(βd).
Repeating the fit routine with the values τ± yields slightly
different central values for the exponents α/(βd) and z/d. We
interpret the deviation from our main result, calculated with τ

from (A9), as the error propagated from �(1/βd). Adding this
extra error quadratically to the statistical error obtained before
from the width of the χ2 distribution, we obtain the final result
given by (19) and α/(βd) = 1.0 ± 0.07, which is consistent
with (17).
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FIG. 7. Fit result for the exponent β with different values of
the reference time tref from the equal-time distribution function. It
demonstrates that the value is very stable within the considered range
of tref .

Our third step consists in considering the scaling form (12).
The fit routine follows along the same lines as before except
for a different rescaled correlation function given by

Fresc(τ,�t,V ) ≡ (τ/τref)
−α F (τ,(τ/τref)

βz �t, (τ/τref)
βd V ).

(A13)

The χ2 function can be defined similarly to (A10). The main
difference is that we rescale with the central-time coordinate
instead of the volume. Volumes and central times have to be
chosen again such that (A9) is fulfilled. We choose Vref = 2563

with τref ∈ [600,2000] and compare to V = 5123 with τ from
(A9), as a function of �t . Proceeding as before yields the fit
results (20) and (21) where the error in τ coming from (A12)
was taken into account as above. In an analogous way, one can
check the consistency of our results in a fourth step by making
use of the scaling relation (13).

While the application of the fit procedure to unequal-time
correlation functions at zero momentum has been discussed
in the main text, here we give some more details about the
application to momentum-dependent equal-time correlators.
The fit routine can be adapted straightforwardly [12] to
study the self-similar behavior of the distribution function
f (t,p), defined for homogeneous and isotropic systems as
the spatial Fourier transform of F (t,t,x − x′) given by [12].
The distribution function f (t,p) evolves in the universal
regime as

f (t,p) = tαfS(tβp), (A14)
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FIG. 8. Anomalous dimension η as obtained from the relation
β = 1/(2 − η) using large-N techniques [12]. The exponent β is
obtained from the scaling of f (t,p). The time interval chosen for the
scaling analysis starts with tref.

where fS(p) = f (1,p). This scaling form gives us access to
α and β separately. In general, the scaling ansatz for f (t,p)
should also include the dependence on the volume. However,
our numerics reveal that this quantity is rather insensitive to
changes of the volume during the universal regime (see also
the inset of Fig. 2). To extract the central values and errors
of the exponents α and β, one compares curves at different
times t with a reference time tref and computes a χ2 function
in analogy to the procedure outlined above. In this way, we get

β = 0.55 ± 0.02, (A15)

and α = 1.64 ± 0.16, which is consistent with the results
of Ref. [12]. Figure 6 shows how curves corresponding to
different times lie on top of each other after rescaling with
these exponents, reflecting the self-similar evolution of f (t,p).
We note that the value of α obtained in this way is consistent
within error bars with (20). The relatively large error for α

obtained from the momentum-dependent analysis is related to
the form of the distribution function, whose plateau at small
momenta vanishes for long times (see Fig. 6).

As discussed in the main text, we can use the large-N result
(23) to relate the anomalous dimension η to the value of β. For
this we vary the value of the reference time tref for 5123 within
[200,7000] and plot the obtained exponent in Fig. 7. As one
can see, the value of β obtained is rather stable over the whole
universal regime. Using (23), we plot the corresponding values
of the anomalous dimension η in Fig. 8. While the error bars
are rather large, the central value is approximately constant
over the whole range and indicates a deviation from zero.
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Strobel, J. Tomkovič, T. Gasenzer, and M. K. Oberthaler, Phys.
Rev. Lett. 115, 245301 (2015).

053605-10

https://doi.org/10.1103/PhysRevA.81.033611
https://doi.org/10.1103/PhysRevA.81.033611
https://doi.org/10.1103/PhysRevA.81.033611
https://doi.org/10.1103/PhysRevA.81.033611
https://doi.org/10.1103/PhysRevA.85.043627
https://doi.org/10.1103/PhysRevA.85.043627
https://doi.org/10.1103/PhysRevA.85.043627
https://doi.org/10.1103/PhysRevA.85.043627
https://doi.org/10.1103/PhysRevB.84.020506
https://doi.org/10.1103/PhysRevB.84.020506
https://doi.org/10.1103/PhysRevB.84.020506
https://doi.org/10.1103/PhysRevB.84.020506
https://doi.org/10.1103/PhysRevD.92.025041
https://doi.org/10.1103/PhysRevD.92.025041
https://doi.org/10.1103/PhysRevD.92.025041
https://doi.org/10.1103/PhysRevD.92.025041
http://arxiv.org/abs/arXiv:1611.01163
https://doi.org/10.1103/PhysRevLett.114.061601
https://doi.org/10.1103/PhysRevLett.114.061601
https://doi.org/10.1103/PhysRevLett.114.061601
https://doi.org/10.1103/PhysRevLett.114.061601
https://doi.org/10.1103/PhysRevLett.108.161601
https://doi.org/10.1103/PhysRevLett.108.161601
https://doi.org/10.1103/PhysRevLett.108.161601
https://doi.org/10.1103/PhysRevLett.108.161601
http://arxiv.org/abs/arXiv:1601.06197
https://doi.org/10.1103/PhysRevA.66.013603
https://doi.org/10.1103/PhysRevA.66.013603
https://doi.org/10.1103/PhysRevA.66.013603
https://doi.org/10.1103/PhysRevA.66.013603
https://doi.org/10.1103/PhysRevA.54.5037
https://doi.org/10.1103/PhysRevA.54.5037
https://doi.org/10.1103/PhysRevA.54.5037
https://doi.org/10.1103/PhysRevA.54.5037
https://doi.org/10.1103/PhysRevD.83.085004
https://doi.org/10.1103/PhysRevD.83.085004
https://doi.org/10.1103/PhysRevD.83.085004
https://doi.org/10.1103/PhysRevD.83.085004
https://doi.org/10.1103/PhysRevD.95.036016
https://doi.org/10.1103/PhysRevD.95.036016
https://doi.org/10.1103/PhysRevD.95.036016
https://doi.org/10.1103/PhysRevD.95.036016
https://doi.org/10.1016/S0375-9474(01)01295-7
https://doi.org/10.1016/S0375-9474(01)01295-7
https://doi.org/10.1016/S0375-9474(01)01295-7
https://doi.org/10.1016/S0375-9474(01)01295-7
https://doi.org/10.1088/1126-6708/2006/11/020
https://doi.org/10.1088/1126-6708/2006/11/020
https://doi.org/10.1088/1126-6708/2006/11/020
https://doi.org/10.1088/1126-6708/2006/11/020
https://doi.org/10.1007/JHEP08(2010)086
https://doi.org/10.1007/JHEP08(2010)086
https://doi.org/10.1007/JHEP08(2010)086
https://doi.org/10.1007/JHEP08(2010)086
https://doi.org/10.1016/j.nuclphysb.2011.01.024
https://doi.org/10.1016/j.nuclphysb.2011.01.024
https://doi.org/10.1016/j.nuclphysb.2011.01.024
https://doi.org/10.1016/j.nuclphysb.2011.01.024
https://doi.org/10.1103/PhysRevD.93.065043
https://doi.org/10.1103/PhysRevD.93.065043
https://doi.org/10.1103/PhysRevD.93.065043
https://doi.org/10.1103/PhysRevD.93.065043
https://doi.org/10.1103/PhysRevA.76.033604
https://doi.org/10.1103/PhysRevA.76.033604
https://doi.org/10.1103/PhysRevA.76.033604
https://doi.org/10.1103/PhysRevA.76.033604
https://doi.org/10.1007/BF02731494
https://doi.org/10.1007/BF02731494
https://doi.org/10.1007/BF02731494
https://doi.org/10.1007/BF02731494
https://doi.org/10.1103/PhysRevE.92.042151
https://doi.org/10.1103/PhysRevE.92.042151
https://doi.org/10.1103/PhysRevE.92.042151
https://doi.org/10.1103/PhysRevE.92.042151
https://doi.org/10.1103/PhysRevLett.118.135701
https://doi.org/10.1103/PhysRevLett.118.135701
https://doi.org/10.1103/PhysRevLett.118.135701
https://doi.org/10.1103/PhysRevLett.118.135701
https://doi.org/10.1103/PhysRevLett.115.245301
https://doi.org/10.1103/PhysRevLett.115.245301
https://doi.org/10.1103/PhysRevLett.115.245301
https://doi.org/10.1103/PhysRevLett.115.245301



