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Core structure of two-dimensional Fermi gas vortices in the BEC-BCS crossover region
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We report T = 0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized
spin-1/2 fermions in a two-dimensional disk. We investigate how vortex core structure properties behave over
the BEC-BCS crossover. We calculate the vortex excitation energy, density profiles, and vortex core properties
related to the current. We find a density suppression at the vortex core on the BCS side of the crossover and a
depleted core on the BEC limit. Size-effect dependencies in the disk geometry were carefully studied.
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I. INTRODUCTION

The study of cold Fermi gases has proven to be a very
rich research field, and the investigation of low-dimensional
systems has become an active area in this context [1,2].
Particularly, the two-dimensional (2D) Fermi gas has attracted
much interest recently. It was the object of several theoretical
investigations [3–8], but its experimental realization, using a
highly anisotropic potential, was a milestone in the study of
these systems [9]. Many other studies have been carried out
since [10,11]. Quantum Monte Carlo (QMC) methods were
successfully employed to compute several properties of the
BEC-BCS crossover. These methods include diffusion Monte
Carlo (DMC) [12,13], auxiliary-field quantum Monte Carlo
[14], and lattice Monte Carlo [15–17]. The fact that a fully
attractive potential in 2D always supports a bound state, and the
ability to vary the interaction strength over the entire BEC-BCS
crossover regime offers rich possibilities for the study of these
systems.

The presence of quantized vortices is an indication of a
superfluid state in both Bose and Fermi systems. In three-
dimensional (3D) systems, much progress has been made
[18–21], including the observation of vortex lattices in a
strongly interacting rotating Fermi gas of 6Li [22]. With the
recent progress on the 2D Fermi gases, it seems natural to
also extend the theoretical study of vortices to these systems.
Interest is further augmented in 2D, where a Berezinskii-
Kosterlitz-Thouless transition [23,24] could take place at finite
temperatures, and pairs of vortices and antivortices would
eventually condense to form a square lattice [25].

We are interested in how the properties of a vortex change
over the BEC-BCS crossover. In this work we focus on
ultracold atomic Fermi gases, but it is noteworthy that a
duality is expected between neutron-matter and superfluid
atomic Fermi gases. In 3D, both ultracold atomic gases and
low-density neutron matter exhibit pairing gaps of the order of
the Fermi energy [26]. Neutron-matter properties depend on
the interaction strength and, unlike the Fermi atom gases, the
possibility of microscopically tuning interactions of neutron
matter is not available. However, we can study neutron pairing
by looking at the BCS side of the crossover [27,28]. Vortex
properties are also of significant interest in neutron matter
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[29,30] because a significant part of the matter in rotating
neutron stars is superfluid, and vortices are expected to appear.
Moreover, phases called nuclear pasta, where neutrons are
restricted to 1D or 2D configurations, are predicted in neutron
stars [30,31].

We report properties of a single vortex in a 2D Fermi gas.
We considered the ground state to be a disk with hard walls
and total angular momentum zero, and the vortex excitation
corresponds to each fermion pair having angular momentum
h̄. Hopefully, our results will motivate experiments to increase
our understanding of vortices in 2D Fermi gases.

This work is structured as it follows. In Sec. II we introduce
the methodology employed. In Sec. II A we discuss aspects
of finite-size fermionic systems, we briefly introduce 2D
scattering in Sec. II B, Sec. II C is devoted to the wave functions
employed for the bulk, disk, and vortex systems, and we
summarize the employed QMC methods in Sec. II D. The
results are presented in Sec. III. Section III A contains the
ground-state energies in the disk geometry and discussions
on size effects. In Sec. III B we present the vortex excitation
energy. The determination of the crossover region is done
in Sec. III C. Density profiles of the vortex and ground-state
systems are shown in Sec. III D. Properties of the vortex core
are discussed in Sec. III E. Finally, a summary of the work is
presented in Sec. IV.

II. METHODS

Previous simulations of vortices in 3D bosonic systems,
such as 4He, have often employed a periodic array of counter-
rotating vortices, which enables the usage of periodic boundary
conditions. In the 4He calculations of Ref. [32], the simulation
cell consisted of 300 particles in four counter-rotating vortices.
If we had employed a similar methodology, we would need
the same number of fermion pairs, i.e., a system with 600
fermions. There are simulations of fermionic systems that have
been performed with this number of particles, but the variance
required for a detailed optimization is beyond the scope of this
work. Instead, we considered a disk geometry similar to the
one used in Ref. [33] for DMC simulations of the vortex core
structure properties in 4He.

A. Finite-size systems

We are interested in the interacting many-body problem,
but it is useful to first consider the noninteracting case. In this
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section we compare the energy of finite-size 2D systems to the
results in the thermodynamic limit.

First let us consider the case of N fermions in a square of
side L with periodic boundary conditions. The single-particle
states are plane waves ψkn (r) = eikn·r/L, with wave vector

kn = 2π

L
(nx x̂ + ny ŷ). (1)

The eigenenergies are En = h̄2k2
n/2m, where m is the mass

of the fermion. At T = 0, all states with energy up to the
Fermi energy εF = h̄2k2

F /2m, where kF is the Fermi wave
number, are occupied. A shell structure arises from the fact
that different combinations of nx and ny in Eq. (1) yield the
same |kn|. The closed shells occur at total particle number N =
(2,10,18,26,42,50,58, . . .). The free gas energy of a finite
system with N fermions, Ebulk

FG (N ), is readily calculated by
filling the lowest energy states described by Eq. (1). In the
thermodynamic limit, which corresponds to N,L → ∞ and
n = N/L2 held constant, the energy per particle of the free
gas is EFG = εF /2 and kF = √

2πn.
Now let us consider the case of N fermions in a disk of

radius R with a hard wall boundary condition, i.e., the wave
function must vanish at R. The single-particle states are

ψνp(ρ,ϕ) = NνpJν

(
jνp

R ρ

)
eiνϕ, (2)

where (ρ,ϕ) are the usual polar coordinates, Nνp is a
normalization constant, Jν are Bessel functions of the first
kind, and jνp is the pth zero of Jν . The quantum number
ν can take the values 0,±1,±2, . . . and p = 1,2, . . .. The
corresponding eigenenergies are

Eνp = h̄2

2m

(
jνp

R

)2

. (3)

This system also presents a shell structure, due to the
energy degeneracy of single-particle states with the same
|ν|, with shell closures at total particle number N =
(2,6,10,12,16,20,24,28,30,34, . . .). Notice that the energy
levels of the bulk system are much more degenerate than the
ones of the disk. In practice this means that more shells are
needed to describe a disk with a given N . The free gas energy
for the disk, Edisk

FG (N ), can be calculated analogously to the bulk
case using the energy levels of Eq. (3). The thermodynamic
limit for this case corresponds to R → ∞ with n = N/(πR2)
held constant, and EFG and kF go to the same expressions as
the bulk ones.

The comparison between the free gas energy of finite
systems in the bulk case and in the disk geometry is not
immediate due to the presence of hard walls in the latter. In
order to compare the free gas energy in both geometries, we
define

Edisk
0 (N ) = Edisk

FG (N ) − λs

2

√
n

πN
, (4)

in which we separated the total energy Edisk
FG (N ) into a bulk

component Edisk
0 (N ), and a surface term, the second term on

the right-hand side. For further discussions on the functional
form of the surface term, see Sec. III A. Figure 1 shows
Ebulk

FG (N ) and Edisk
0 (N ), with λs = 17.5 EFGk−1

F , at the same
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FIG. 1. Free gas energy for finite-size systems as a function of
the number of particles N , where the dotted lines are drawn to
guide the eye. The (red) closed circles denote the energy of the bulk
system Ebulk

FG (N ), and the (green) open circles indicate the bulk energy
component in the disk geometry Edisk

0 (N ), as defined in Eq. (4). Local
minima in Ebulk

FG (N ) correspond to shell closures.

density. The value of λs , within a 0.2% error, was determined
by fitting the data for 10 � N � 226 to the functional form of
Eq. (4).

The disk presents a considerably higher free gas energy,
if compared to the bulk system, due to the presence of hard
walls, but the difference between them is rapidly suppressed
as we increase the particle number.

B. Scattering in 2D

Two-body scattering by a finite-range potential V (r) in 2D
is described by the Schrödinger equation. We separate the
solutions into radial R(r) and angular P (φ) parts, the latter
being a constant for s-wave scattering. The two-body equation
for an azimuthally symmetric (s-wave) solution is[

− h̄2∇2

2mr

+ V (r)

]
u(r) = h̄2k2

2mr

u(r), (5)

where mr is the reduced mass of the system, and h̄2k2/2mr

is the scattering energy. The scattering length a and effective
range reff can be easily determined from the k → 0 solution
of Eq. (5), u0(r), and its asymptotic form y0. We choose the
solution

y0(r) = − ln

(
r

a

)
, (6)

and we match u0 and y0, and their derivatives, outside the
range of the potential.

In 2D, the low-energy phase shifts δ(k), a, and effective
range reff are related by [34]

cot δ(k) ≈ 2

π

[
ln

(
ka

2

)
+ γ

]
+ k2r2

eff

4
, (7)

where γ = 0.577 . . . is the Euler-Mascheroni constant, and
the effective range is defined as [35]

r2
eff = 4

∫ ∞

0

[
y2

0 (r) − u2
0(r)

]
r dr. (8)
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Equation (7) is often called the shape-independent approx-
imation because it guarantees that a broad range of well-
chosen potentials can be constructed to describe low-energy
scattering. We consider the modified Poschl-Teller potential

V (r) = −v0
h̄2

mr

μ2

cosh2(μr)
, (9)

where v0 and μ can be tuned to reproduce the desired a and reff .
Bound states occur for purely attractive potentials for any

strength in 2D. If we continually increase the depth of V (r), a
will eventually reach zero, and then it diverges to +∞ when a
new bound state is created. The binding energy of the pair is
given by

εb = − 4h̄2

ma2e2γ
. (10)

We chose values of v0 and μ such that only one bound state is
present, and kF reff is held constant at 0.006 [13]. This choice
guarantees that the systems studied in this work are in the
dilute regime, since r0 � reff , where r0 = 1/

√
πn is of order

of the interparticle spacing.

C. Wave functions

The BCS wave function, which describes pairing explicitly,
has been successfully used in a variety of strongly interacting
Fermi gases systems, such as 3D [36] and 2D [13] bulk
systems, vortices in the unitary regime [21], two-component
mixtures [37,38], and many other systems. This wave function,
projected to a fixed number of particles N (half with spin-up
and half with spin-down), can be written as the antisym-
metrized product [39]

ψBCS(R,S) =A[φ(r1,s1,r2,s2)φ(r3,s3,r4,s4) . . .

φ(rN−1,sN−1,rN,sN )], (11)

where R is a vector containing the particle positions ri , S

stands for the spins si , and φ is the pairing function, which is
given by

φ(r,s,r′,s ′) = φ̃(r,r′)[〈s s ′|↑↓〉 − 〈s s ′|↓↑〉], (12)

where we have explicitly included the spin part to impose
singlet pairing. The assumed expressions for φ̃ depend on the
system being studied (see Secs. II C 1, II C 2, and II C 3). Since
neither the Hamiltonian or any operators in the quantities we
calculate flip the spins, we adopt hereafter the convention of
primed indexes to denote spin-down particles and unprimed
ones to refer to spin-up particles. Equation (11) reduces to

ψBCS(R,S) =A[φ(r1,s1,r1′ ,s1′)φ(r2,s2,r2′ ,s2′ ) . . .

φ(rN/2,sN/2,rN/2′ ,sN/2′ )], (13)

where the antisymmetrization is over spin-up and/or spin-
down particles only. This wave function can be calculated
efficiently as a determinant [40].

In addition to fully paired systems, it is also possible to
simulate systems with unpaired particles [36], described by
single-particle states �(r). For q pairs, u spin-up, and d spin-
down unpaired single-particles states, N = 2q + u + d, we

can rewrite Eq. (13) as

ψBCS(R,S) =A[φ(r1,s1,r1′ ,s1′) · · ·
φ(rq,sq,rq ′ ,sq ′ )�1↑(rq+1) · · ·
�u↑(rq+u)�1↓(r(q+1)′ ) · · ·
�d↓(r(q+d)′ )]. (14)

We also included a two-body Jastrow factor f (rij ′), rij ′ =
|ri − rj ′ |, which accounts for correlations between antipar-
allel spins. It is obtained from solutions of the two-body
Schrödinger’s equation[

− h̄2∇2

2mr

+ V (r)

]
f (r < d) = λf (r < d), (15)

with the boundary conditions f (r > d) = 1 and f ′(r = d) = 0,
where d is a variational parameter, and λ is adjusted so that
f (r) is nodeless. The total trial wave function is written as

ψT(R,S) =
∏
i,j ′

f (rij ′)ψBCS(R,S). (16)

1. Bulk system

The assumed form of the pairing function for the bulk case
is the same as Ref. [36],

φ̃bulk(r,r′) =
nc∑

n=1

αne
ikn·(r−r′) + β̃(|r − r′|), (17)

where αn are variational parameters, and contributions from
momentum states up to a level nc are included. Contributions
with n > nc are included through the β̃ function given by

β̃(r) =
{
β(r) + β(L − r) − 2β(L/2) for r � L/2

0 for r > L/2
(18)

with

β(r) = [1 + cbr][1 − e−dbr ]
e−br

dbr
, (19)

where r = |r − r′| and b, c, and d are variational parameters.
This functional form of β(r) describes the short-distance
correlation of particles with antiparallel spins. We consider
b = 0.5 kF , d = 5, and c is adjusted so that ∂β̃/∂r = 0
at r = 0.

2. Disk

The pairing function for the disk geometry is constructed
using the single-particle orbitals of Eq. (2). Each pair consists
of one single-particle orbital coupled with its time-reversed
state. This ansatz has been used before in the 3D system [21],
a cylinder with hard walls, and the form presented here is
analogous to that one if we disregard the z components. We
supposed the pairing function to be

φ̃disk(r,r′) =
nc∑

n=1

α̃nN 2
νpJν

(
jνp

R ρ

)
Jν

(
jνp

R ρ ′
)

eiν(ϕ−ϕ′)

+ β̄(r,r′), (20)

where the α̃n are variational parameters, and n is a label for the
disk shells, such that different states with the same energy are
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associated with the same variational parameter. The β̄ function is similar to β̃ employed in the bulk system, but we modify it to
ensure the hard wall boundary condition is met,

β̄(r,r′) =
{
N 2

01J0
(

j01ρ

R
)
J0

(
j01ρ

′
R

)
[β(r) + β(2R − r) − 2β(R)] for r � R

0 for r > R ,
(21)

and β has the same expression as the bulk case [Eq. (19)].

3. Vortex

The vortex excitation is accomplished by considering
pairing orbitals which are eigenstates of Lz with eigenvalues
±h̄. This is achieved by coupling single-particle states with
angular quantum numbers differing by 1. In this case we used
pairing orbitals of the form

φ̃vortex(r,r′) =
nc∑

n=1

ᾱnNνpNν−1;p

×
{
Jν

(
jνp

R ρ

)
Jν−1

(
jν−1;p

R ρ ′
)

ei[νϕ−(ν−1)ϕ′]

+ Jν

(
jνp

R ρ ′
)

Jν−1

(
jν−1;p

R ρ

)
ei[νϕ′−(ν−1)ϕ]

}
,

(22)

where n is a label for the vortex shells, and ᾱ are variational
parameters. The largest contribution is assumed to be from
states with the same quantum number p for the radial part [21].
Equation (22) is symmetric under interchange of the prime and
unprimed coordinates, as required for singlet pairing.

The β̄ function of Eq. (21) is not suited to describe the
vortex state because it is an eigenstate of Lz with angular
momentum zero. We tried different functional forms that had
the desired angular momentum eigenvalue, but none of them
resulted in a significant lower total energy. Thus we chose to
employ only the terms in Eq. (22).

D. Quantum Monte Carlo

The Hamiltonian of the two-component Fermi gas is
given by

H = − h̄2

2m

⎡
⎣ N↑∑

i=1

∇2
i +

N↓∑
i=j ′

∇2
j ′

⎤
⎦ +

∑
i,j ′

V (rij ′), (23)

with N = N↑ + N↓, and V (rij ′) given by Eq. (9). The
DMC method projects the lowest energy state of H from
an initial state ψT , obtained from variational Monte Carlo
(VMC) simulations. The propagation, which is carried out in
imaginary time τ , can be written as

ψ(τ ) = e−(H−ET )τψT , (24)

where ET is an energy offset. In the τ → ∞ limit, only the
lowest energy component �0 survives,

lim
τ→∞ ψ(τ ) = �0. (25)

The imaginary time evolution is given by

ψ(R,τ ) =
∫

dR′G(R,R′,τ )ψT (R′), (26)

where G(R,R′,τ ) is the Green’s function associated with H .
The Green’s function contains two pieces: a diffusion term
related to the kinetic operator, and a branching term related
to the potential. We solve an importance-sampled version of
Eq. (26) iteratively, using the Trotter-Suzuki approximation to
evaluate G(R,R′,τ ), which requires the time steps �τ to be
small. We circumvent the fermion-sign problem by using the
fixed-node approximation, which restricts transitions across
a chosen nodal surface [41]. Hence our estimates of energy
expectation values are upper bounds.

We carefully optimized the trial wave function ψT , since
it is used in three ways: an approximation of the ground state
in the VMC calculations, as an importance function, and to
give the nodal surface for the fixed-node approximation. The
variational parameters [42] in Eqs. (17), (20), and (22) were
determined using the stochastic reconfiguration method [43].

Expectation values of operators that do not commute with
the Hamiltonian, for example, the current and density, were
calculated using extrapolated estimators [44]

〈�|Ŝ|�〉 ≈ 2〈�|Ŝ|ψT 〉 − 〈ψT |Ŝ|ψT 〉 + O((� − ψT )2), (27)

where we combine the results of VMC and DMC runs.

III. RESULTS

We define the interaction strength η ≡ ln(kF a). Large
values of η correspond to the BCS side of the crossover,
while small η are on the BEC side. We probed 0.0 � η � 1.5,
which encompasses the crossover region (see Sec. III C).
For all systems the number density is n = N/(πR2), and
kF = √

2N/R.

A. Ground-state energy and size effects

We used the pairing function of Eq. (17), and N = 26,
to calculate the ground-state energy per particle of the bulk
systems. Our results (see Table I) are in agreement with
previous DMC calculations [13].

TABLE I. Comparison between the ground-state energy per
particle of the bulk (Ebulk) and disk systems as a function of the
interaction strength η. The parameters E0 and λs [see Eq. (28)] are
related to our assumption of the functional form of the ground-state
energy per particle in the disk geometry.

η Ebulk E[FG] E0 E[FG] λs E
[
FG

k−1
F

]
0.00 –2.3740(3) –2.32(3) 6(2)
0.25 –1.3316(3) –1.31(3) 8(2)
0.50 –0.6766(2) –0.65(2) 8(1)
0.75 –0.2562(2) –0.25(2) 11(1)
1.00 0.0233(2) 0.03(1) 11(1)
1.25 0.2149(2) 0.22(2) 12(1)
1.50 0.3523(2) 0.34(1) 13(1)
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Previous DMC simulations of 2D Fermi gases found that
N = 26 is well suited to simulate bulk properties of systems
in the region studied here [13]. However, the disk geometry
presents more intricate size-dependent effects. We investigated
how the ground-state energy depends on the disk radius R. In
the thermodynamic limit, R → ∞, the energy per particle
should go to the bulk value. Since our system has hard
walls, the energy has a dependence on the “surface” of the
disk. Including this surface term, the energy per particle can
be fit to

Edisk(R) = E0 + λs

2πR , (28)

where E0 and λs are constants related to the bulk and surface
terms, and λs/(2πR) can be viewed as a surface tension.

A few words about Eq. (28) are in order. The relation
between the thermodynamic properties of a confined fluid and
the shape of the container where it is confined has been an
active field of study. Our choice was inspired by functional
forms (see, for example, Ref. [45]) where, aside from the
constant term, thermodynamical properties are expressed as
functions of the various curvatures of the container. The next
correction to this functional form of the energy per particle
would include a term proportional to R−2. We found that the
inclusion of such a term does not significantly improve our
description of the ground- state energy.

In order to determine the number of particles necessary to
simulate systems in the disk geometry, with controllable size
effects, we performed simulations with 26 � N � 70 and all
particles paired, i.e., only even values of N . The dependence
of E0 with the system size was investigated by fitting our data
using Eq. (28) for different intervals of R or, equivalently,
different intervals of N .

We found that fitting the data for 58 � N � 70 resulted in
a good agreement between Ebulk and E0, that is, we were able
to separate the bulk portion of the energy from the hard wall
contribution in the disk geometry. The resulting parameters of
the fitting procedure are summarized in Table I, and Fig. 2
shows the energy per particle as a function of R for all
interaction strengths studied in this work.

The E0 values agree with the bulk energies within the error
bars, except for η = 0 and η = 0.5 (however, the differences
between the values are less than 2% and 4%, respectively).
As it can be seen in Table I, the typical uncertainty in E0

is of order 0.01 EF , independent of the interaction strength.
Thus the relative error can be quite large for systems where
the absolute value of the bulk energy is small, as it is observed
for η = 1.0. This is an improvement if compared to a similar
DMC calculation in 3D [21], which used the same procedure
to calculate the ground-state energy per particle of a unitary
Fermi gas, where the discrepancy between the result and the
known bulk value was ∼30%.

We point out that this method is not intended to be a
precise calculation of the bulk energy of these systems. Instead,
it is a way for us to determine the minimum number of
particles needed to simulate systems in the disk geometry
with controllable size effects. If we had naively assumed that
the same number of particles used in bulk calculations would
suffice, N = 26, then we simply could not rely on the results. In
our simulations with 26 � N � 38 the discrepancies between
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FIG. 2. Ground-state energy per particle Edisk as a function of the
disk radiusR for several interaction strengths. The curves correspond
to the assumed functional form of Eq. (28), with the parameters given
in Table I. Error bars are smaller than the symbols.

E0 and Ebulk were as large as 50%, and in some cases the
uncertainty in λs was bigger than the value itself. Results
with 58 � N � 70 are much more well-behaved, and they are
within computational capabilities.

It is also noteworthy to mention that the energy contribution
of the surface term, due to the presence of hard walls, is more
significant for the BCS side than in the BEC limit (see the λs

values in Table I). This is expected, since the largest energy
contribution in the BEC side should be from the binding energy
of the pairs [Eq. (10)], and they are smaller than the BCS pairs
so that surface effects are smaller. One of our goals is to obtain
the vortex excitation energy, which is the difference between
the vortex and the ground-state energies. Since both systems
have hard walls, we expect that the surface effects will tend to
cancel.

B. Vortex excitation energy

The energy per particle of the vortex system is obtained
using the pairing functions of Eq. (22). The vortex excitation
energy is given by the difference between the energy of the
vortex and ground-state systems, for the same number of
particles. We performed simulations with 58 � N � 70 and
averaged the results.

In Fig. 3 we show the vortex excitation energy per particle
as a function of the interaction strength. The energy necessary
to excite the system to a vortex state increases as we move
from the BCS to the BEC limit. The inset shows the vortex
and ground-state energies per particle for η = 1.5, although
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FIG. 3. Vortex excitation energy per particle Eexc as a function of
the interaction strength η. The inset shows the ground-state (squares)
and vortex (triangles) energies per particle as a function of the number
of particles N for η = 1.5.

the other interaction strengths display the same qualitative
behavior.

C. Crossover region

In 2D, the BCS limit corresponds to kF a � 1 and the BEC
limit to kF a � 1; however, unlike 3D where the unitarity is
signaled by the addition of a two-body bound state, there is no
equivalent effect with the two-body sector in 2D. Nevertheless,
we can determine the interaction strength for which we can
add a pair to the system with zero energy cost. The chemical
potential μ can be estimated as

μ = ∂E

∂N

∣∣∣∣
Even N

, (29)

for each interaction strength, where the even number condition
implies that all particles are paired. For each value of η

we used a finite difference formula to evaluate Eq. (29), for
58 � N � 70 (see Fig. 4).
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FIG. 4. Chemical potential of the ground state (triangles) and
vortex (circles) as a function of the interaction strength. The
chemical potential changes sign at η ≈ 0.90 for the ground state and
η ≈ 0.85 for the vortex state. In the inset we show the total energy as
a function of the number of particles for the ground state of η = 1.5.
Other interaction strengths with positive (negative) μ have positive
(negative) slopes.

We found that μ = 0 at η ≈ 0.90 for the ground state of
the disk. Previous DMC simulations of 2D bulk systems [13]
found that the chemical potential changes sign at η ≈ 0.65.
Although the results differ, most probably due to the different
geometry employed in this work, it is safe to assume that
the interaction strength interval 0 � η � 1.5 encompasses the
BEC-BCS crossover region. The chemical potential of the
vortex state is higher than the ground state, as expected; thus
μ = 0 is at a smaller interaction strength, η ≈ 0.85.

D. Density profile

We calculated the density profile D(ρ) along the radial
direction ρ for both the vortex and ground-state systems. The
normalization is such that∫

D(ρ)d2r = 1, (30)

where the integral is performed over the area of the disk.
The results are obtained using the extrapolation procedure of
Eq. (27), which combines both VMC and DMC runs. It is
noteworthy to point out that although the densities observed in
VMC and DMC simulations differ, they are much closer than
previous results in 3D [21]. In that calculation it was needed
to explicitly include a one-body term in the wave function to
maximize the density overlap between DMC and VMC runs,
whereas in this work no such term was employed.

Figure 5 shows the density profile of both the vortex and
ground-state systems for N = 70 and η = 1.5. The oscillations
in the density profiles are much more pronounced than in a
similar DMC calculation of a unitary Fermi gas in 3D [21].
In this 3D calculation a cylindrical geometry was employed,
with hard walls and periodic boundary conditions along the
axis of the cylinder. The density profiles were obtained
by averaging the results over the z direction of the axis
of the cylinder; we therefore expect more fluctuations in
2D where the particles are confined to a plane. For the ground
state, the density oscillations are surface effects. They are
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FIG. 5. Density profile along the radial direction ρ of the vortex
(red squares) and ground state (green circles) for N = 70 and η = 1.5.
Although there is a density suppression at the vortex core of ∼30%,
the density is nonzero at the center of the disk. We also plot the
analytical result for the ground-state density of the free gas in a disk
(blue curve), which presents oscillations due to the presence of hard
walls.
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FIG. 6. Density profile along the radial direction ρ of the vortex
(red squares) and ground state (green circles) for N = 70 and 0 �
η � 1.25. It is interesting to observe that the density at the vortex core
diminishes as we go from the BCS to the BEC limit, and at η � 0.25
the core is completely depleted.

present in both the interacting and noninteracting systems,
as it can be seen in Fig. 5.

In Fig. 6 we show the density profiles of the other interaction
strengths studied in this work, 0 � η � 1.25. We found that
the density depletion at the vortex core goes from ∼30% at
η = 1.5 to a completely depleted core at η � 0.25.

The regions close to the walls exhibit a characteristic
behavior due to the hard wall condition we imposed, as it
can be seen in Figs. 5 and 6. In order to estimate the number of
particles outside this region, we can define the particle number
a distance R from the center of the disk as

N (R) = N

∫ 2π

0
dϕ

∫ R

0
dρ ρ D(ρ). (31)

For the case of Figs. 5 and 6 where N = 70, if we set R ≈
8 k−1

F , N is approximately between 40 and 45 for the ground
state and between 35 and 40 for the vortex systems. Hence the
number of particles in this regime is larger than the usual value
of N = 26 employed in bulk systems [13].

Additionally, we performed simulations of the vortex
systems with an odd number of particles, i.e., one unpaired
particle was added to a fully paired system, Eq. (14) with
q = 34, u = 1, and d = 0. We set its angular momentum to
zero, Eq. (2) with ν = 0, and p = 1. In the BEC limit we
observed a nonvanishing density at the center of the disk,
which suggests that the unpaired particle fills the empty
vortex core region. On the other hand, in the BCS limit
the density close to the wall increased while the density at
the origin was unchanged. We chose a qualitative discussion
of this phenomenon because the required variance for a
detailed optimization is beyond the scope of this work.
Future calculations should include quantities such as the
one-body density matrix, which may contribute to an accurate
quantitative approach.

E. Vortex core size

The probability current density operator can be written as

J(r) = 1

2N

N∑
j=1

[vj δ
2(r − rj ) + δ2(r − rj )vj ], (32)
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FIG. 7. Angular component of the probability current Jϕ as a
function of the radial coordinate ρ for several interaction strengths η.
The position of its maximum provides an estimate of the vortex core
size.

where the velocity operator is vj = pj /m → −ih̄∇j /m. We
are interested in the angular component as a function of the
radial coordinate Jϕ(ρ), because the position of its maximum
can be used as an estimate of the vortex core size, Jmax ≡
Jϕ(ρ = ξ ).

We followed the extrapolation procedure of Eq. (27).
Figure 7 shows Jϕ(ρ) for N = 70 and 0 � η � 1.5. The
maximum of the current increases as we go from the BCS
to the BEC limit, its value at the BEC side, η = 0, being more
than twice Jmax at the BCS side, η = 1.5. The position of the
maximum is between ξ = 1.7 and 1.8 k−1

F at the BCS side of
the crossover, i.e., 0.75 � η � 1.5; at the BEC side, η = 0.25
and 0.5, ξ ≈ 1.6 k−1

F . The case η = 0 moves away from the
trend of a smaller core as we go from the BCS to the BEC
limit, with ξ = 2.0 k−1

F . It is unclear if ξ or Jmax depend on
the disk radius R, because the R values are closely spaced for
58 � N � 70, and no significant difference was observed in
the maximum as we varied N . Nevertheless, the relative results
contribute to understanding how the vortex core evolves over
the BEC-BCS crossover.

The wave function that we employed for the vortex state is
an eigenstate of the total angular momentum operator. Since
this operator commutes with the Hamiltonian, the diffusion
procedure does not change the eigenvalue of the state. In
addition, the calculation of the probability current density
operator allowed us to verify that the vortex corresponds to
a Nh̄/2 total angular momentum state in a straightforward
way. The angular momentum can be written as

L = m

∫
(r × J)d2r, (33)

and the component of interest is

Lz = 2πm

∫
ρ2Jϕ(ρ)dρ. (34)

In our definition of the probability current density operator, we
divide by the number of particles N [see Eq. (32)]. Thus the
evaluation of Lz using Eq. (34) should yield h̄/2. We verified
that for all interaction strengths, this is in agreement with our
simulations.
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IV. SUMMARY

We have investigated several properties of vortices in
2D Fermi gases over the BEC-BCS crossover region. We
dedicated a considerable portion of this work to carefully
understand and control size effects in the disk geometry, since
it is very convenient to simulating a single vortex. Given that
we were interested in the evolution of the properties in the
BEC-BCS crossover, determining the crossover region was
important to verify that the interaction strengths studied in this
work span the crossover.

The vortex excitation energies and the density profiles
are quantities that can be compared with experiments, once
they become available. Interestingly, the observed density
depletion of the vortex core goes from ∼30% at the BCS
side, η = 1.5, to an empty core for η � 0.25, at the BEC
limit. In 3D, Bogoliubov–de Gennes theory has been used to
calculate the density suppression at the vortex core throughout
the BEC-BCS crossover [18–20]. Similar calculations in 2D
could be compared to our findings [46]. Also, determining the
probability current was essential to investigate the changes in
the vortex core throughout the crossover region.

In 3D the interplay between experiments, theory, and
simulations led to rapid advances in our comprehension of
cold Fermi gases. Hopefully, our results will motivate exper-
iments to increase our understanding of vortices in 2D Fermi
gases.
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