
PHYSICAL REVIEW A 95, 053602 (2017)

Renormalized contact interaction in degenerate unitary Bose gases
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We renormalize the two-body contact interaction based on the exact solution of two interacting particles in
a harmonic trap. This renormalization extends the validity of the contact interaction to large scattering lengths.
We apply this renormalized interaction to a degenerate unitary Bose gas to study its stationary properties and
elementary excitations using the mean-field theory and the hyperspherical method. Since the scattering length is
no longer a relevant length scale at unitarity, universal properties are obtained that depend only on the average
particle density. Our treatment shows that the universal relations for the total energy and for the two-body contact
are E/N = 12.67h̄2〈n2/3〉/2m and C2/N = 11.8〈n1/3〉, respectively.
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I. INTRODUCTION

Strongly correlated systems near quantum degeneracy
exhibit a wide range of intriguing phenomena. Paradigmatic
examples include helium superfluidity and the fractional
quantum Hall effect. In the atomic physics realm, ultracold
quantum gas, due to its simplicity, purity, and high controlla-
bility, is an excellent candidate to be used to study strongly
correlated systems. The interaction between cold atoms, which
is typically characterized by the s-wave scattering length, can
be readily controlled through Feshbach resonances [1].

The Bose Einstein condensate (BEC) is a highly degenerate
quantum system in which the interparticle interaction can also
be tuned via magnetic or other types of Feshbach resonance
[2]. When the scattering length in a BEC is much larger than
any length scale of the system, the gas has reached the so-called
unitary regime [3]. However, creating a BEC in the strongly
interacting regime or even all the way to unitarity is extremely
difficult. The major reason is that the three-body recombination
rate at zero temperature in dilute gases is proportional to a4

[4–7], which results in a very short lifetime of the strongly
interacting Bose gas. This phenomenon contrasts sharply with
the strongly interacting Fermi gas, for which the three-body
recombination is suppressed by the Pauli exclusion principle
[8]. Because of the prohibitively high atom loss rate, it
has been considered nearly impossible to access the unitary
Bose gas adiabatically. However, a nonadiabatic approach to
unitarity has been developed by the JILA group [9]. In their
experimental work, they studied the nonequilibrium dynamics
of a degenerate unitary Bose gas and observed important
universal properties of the system.

Although a few theories have been proposed to treat the
degenerate unitary Bose gas [10–15], no existing theories so
far are capable of completely describing this system. Some
theories involve complex derivations such as the renormaliza-
tion group theory [14] or extensive computations like Monte
Carlo simulation [13]. Shortly after the JILA experiment on
the unitary Bose gas, various theoretical descriptions were
proposed in an effort to explain the experimental results,
especially the momentum distribution [16–20].

*ding51@purdue.edu
†chgreene@purdue.edu

In this paper, we introduce a renormalized contact potential
similar to that in Ref. [21], to extend the validity of the
zero-range potential to the strongly interacting regime. Then
we employ this renormalized potential in company with
traditional many-body theories to study the degenerate unitary
Bose gas at zero temperature. The structure of this paper
is as follows: In Sec. II, we elaborate the renormalization
procedure and the physical ideas behind it. After that, we
apply this renormalized potential to a few many-body theories
and show how they are modified with the inclusion of
the renormalization. In Sec. III, we discuss the stationary
properties and elementary excitations of a degenerate unitary
Bose gas using our renormalization theory, and compare our
results with other theoretical predictions. We particularly focus
on a few important physical observables of the system. Finally,
in Sec. IV, we summarize our paper and the most significant
findings.

II. THEORY OF RENORMALIZATION

Our renormalization is similar to that in a two-component
Fermi gas [21]. Here we summarize the procedure and the
physical origin of this renormalization. For a uniform gas
system, when the range of the two-body interaction is much
smaller than both the scattering length a and the average
interparticle distance determined by the particle density n, the
behavior of the system is characterized by the dimensionless
parameter na3. This is also equivalent to the dimensionless pa-
rameter kF a, where kF = (6π2n)1/3 is defined for the bosonic
system in a manner akin to the Fermi momentum. Our idea is
to design an effective scattering length aeff that can replace the
bare scattering length a to describe the properties of the system.
In this case, the dimensionless parameter becomes kF aeff.
Therefore, there must be a correspondence between kF aeff

and kF a characterized by a renormalization function kF aeff =
ζ (kF a). The effective scattering length is designed specifically
for a system of two interacting particles in a harmonic trap such
that it can exactly describe the atomic ground-state energy.

For two particles in a harmonic trap with a circular
frequency ωho interacting with a regularized pseudopotential

V (r) = 4πh̄2a

m
δ(r)

∂

∂r
r, (1)
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the Hamiltonian is given by

H2b = − h̄2

2m

(∇2
r1

+ ∇2
r2

) + 1

2
mω2

ho

(
r2

1 + r2
2

) + V (r12),

(2)
where r12 = r1 − r2 is the relative coordinate between
two particles. The wave function is separable in the
center-of-mass motion and the relative motion, that is,
� = ψc.m.(Rc.m.)ψrel(r12), where Rc.m. = (r1 + r2)/2 is the
center-of-mass coordinate. The exact solution to the corre-
sponding Schrödinger equation H2b� = Eexact(a)� has been
discussed in Ref. [22]. The eigenenergy can be written as
Eexact(a) = Ec.m. + Erel(a), where Ec.m. = (nc.m. + 3/2)h̄ωho

corresponds to the center-of-mass motion in the harmonic trap.
The eigenenergy for the relative motion satisfies the following
condition:

√
2
	[−Erel(a)/2h̄ωho + 3/4]

	[−Erel(a)/2h̄ωho + 1/4]
= lho

a
, (3)

where lho = √
h̄/mωho is the harmonic trap length.

On the other hand, when the two particles interact with the
renormalized contact potential given by

Ṽ (r) = 4πh̄2aeff

m
δ(r) = 4πh̄2ζ (kF a)

mkF

δ(r), (4)

we assume the total wave function has a Hartree-Fock
(HF) expression �̃ = ψ(r1)ψ(r2). Consequently, the energy
expectation value of the system is given by

ξ{ψ} =
∫ [

2ψ

(
− h̄2

2m
∇2 + 1

2
mω2

hor
2

)
ψ

+ 4πh̄2aeff

m
ψ4

]
d3r. (5)

Since there is no Fermi momentum in few-body systems,
it is natural to replace kF in Eq. (4) by its average value
〈kF 〉 = ∫

[6π22ψ(r)2]1/3ψ(r)2d3r in this two-body case. Min-
imizing ξ{ψ} with the normalization constraint 〈ψ |ψ〉 = 1
yields the ground-state energy that depends on the effective
scattering length:

EHF(aeff) = ξ{ψ}|δξ/δψ=0. (6)

In order to make the effective scattering length and the
bare scattering length equivalent for this trapped two-particle
system, we match the HF energy to the exact energy:

EHF(aeff) = Eexact(a). (7)

Before matching these two energies, we should note that
the exact energy has many branches including a molecular
branch for a > 0. Because the HF approximation describes the
lowest atomic gas state, which corresponds to the branch with
nc.m. = 0 and (1/2)h̄ωho < Erel < (5/2)h̄ωho, we match the
HF energy to the exact energy in this particular branch. Since
Eq. (7) yields a pointwise correspondence between 〈kF 〉aeff

and 〈kF 〉a, we can numerically interpolate the renormaliza-
tion function 〈kF 〉aeff = ζ (〈kF a〉a). This interpolation can be
excellently fitted by the analytical expression

ζ (x) = 0.395 − 1.138 arctan(0.362 − 0.994x), (8)

which satisfies the asymptotic conditions ζ (+∞) = 2.182,

ζ (−∞) = −1.392, and ζ (kF a) → kF a for |kF a| � 1.
From the renormalization procedure above, we can see

that the renormalized contact potential Eq. (4) reproduces
the exact energy solution for the system of two interacting
particles in a trap. The next step is to apply such a renormalized
contact potential to many-body systems. Since the many-body
Hamiltonian cannot be diagonalized exactly due to the huge
number of degrees of freedom, we must make some aggressive
but reasonable approximations, as we will discuss in the
following subsections.

A. Mean-field approach

One natural and intuitive idea is to generalize the HF
approximation employed above along with the renormalized
interaction to many-body systems. Such an approximation for
bosons is also called the mean-field approximation.

With the inclusion of renormalized interactions, the N -body
Hamiltonian now becomes

H =
N∑

i=1

(
− h̄2

2m
∇2

i + 1

2
mω2

hor
2
i

)
+

N∑
i<j

4πh̄2ζ (kF a)

mkF

δ(rij ).

(9)

The mean-field theory assumes the N -body ground-state
wave function to be � = ∏N

i=1 ψ(ri). By taking the variation
δH/δψ = 0 under the normalization condition 〈ψ |ψ〉 = 1,
we can obtain a renormalized N -body Gross-Pitaevskii (GP)
equation:[

− h̄2

2m
∇2 + 1

2
mω2

hor
2 + 4π (N − 1)h̄2

3m

×
(

ζ ′(kF a)a + 2
ζ (kF a)

kF

)
|ψ |2

]
ψ = εψ, (10)

where ε is the Lagrange multiplier enforcing normalization
in the variation procedure, and is also identified as the orbital
energy. ζ ′(x) means the derivative of ζ with respect to the
variable x. kF is the local Fermi momentum. With such a
mean-field approximation and in the framework of the local-
density approximation (LDA), the local Fermi momentum is
given by kF = (6π2N |ψ |2)1/3. After solving Eq. (10), we can
evaluate the total energy of the system as

E =
∫ [

Nψ

(
− h̄2

2m
∇2 + 1

2
mω2

hor
2

)
ψ

+ N (N − 1)

2

4πh̄2ζ (kF a)

mkF

ψ4

]
d3r. (11)

At very large particle numbers, the kinetic energy composes
a very small portion of the total energy of the system. In
the meanwhile, the particle density varies slowly in the trap
except for the edge of the cloud, which is an evidence of the
validity of the LDA. In this condition, we can solve Eq. (10)
using the Thomas-Fermi approximation, which neglects the
kinetic-energy term and thereby converts Eq. (10) to a regular
algebraic equation. In the unitary regime, if we neglect edge
effects, which means assuming kF a → +∞ at any position of
the cloud, we can obtain an analytical expression for the wave
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function, which is given by

ψTF(r) =
[

3(6π2)1/3
(
R2

TF − r2
)

16πN2/3ζ (+∞)l4
ho

]3/4

, (12)

where RTF is the Thomas-Fermi radius indicating the size of
the cloud. It is given by

RTF = N1/6

(
256

√
2

9

)1/6(
ζ (+∞)

π

)1/4

lho. (13)

Consequently, the orbital energy is given by

ε = 1
2mω2

hoR
2
TF. (14)

The fact that ψTF does not depend on a is another signature
that the scattering length is no longer a relevant length scale
in the unitary regime.

In order to calculate the dynamics of a degenerate Bose
gas, it is natural to convert Eq. (10) to a time-dependent GP
equation:[

− h̄2

2m
∇2 + 1

2
mω2

hor
2 + 4π (N − 1)h̄2

3m

×
(

ζ ′(kF a)a + 2
ζ (kF a)

kF

)
|ψ̃ |2

]
ψ̃ = ih̄

∂

∂t
ψ̃. (15)

We should notice that now the local Fermi momentum kF also
becomes time dependent. Although such a nonlinear and time-
dependent Schrödinger equation can be solved directly using
a brute force time-evolution method, we can obtain a clearer
physical picture if appropriate approximations are made to
Eq. (15). One typical method is the Bogoliubov approximation,
which is commonly used to predict elementary excitations
of a BEC. The Bogoliubov approximation assumes the time-
dependent wave function to be

ψ̃Bog(r,t) = e−iεt/h̄[ψ(r) + u(r)e−iωt − v∗(r)eiωt ]. (16)

Inserting this wave function into Eq. (15) and linearizing the
equation to the first order in u(r) and v(r), we can obtain a pair
of coupled differential equations:(

− h̄2

2m
∇2 + 1

2
mω2

hor
2 + f (N,a,ψ) − ε

)
u

+ g(N,a,ψ)v = h̄ωu, (17)(
− h̄2

2m
∇2 + 1

2
mω2

hor
2 + f (N,a,ψ) − ε

)
v

+ g(N,a,ψ)u = −h̄ωv, (18)

where ω corresponds to the eigenmode frequency. f and g are
in general complicated functions of N, a, and ψ , but they have
simple forms in the asymptotic limits a → 0 and ∞:

f → 8πNh̄2a

m
ψ2, g → −4πNh̄2a

m
ψ2(a → 0), (19)

and

f → 40πN2/3h̄2ζ (+∞)

9(6π2)1/3m
ψ4/3,

g → −16πN2/3h̄2ζ (+∞)

9(6π2)1/3m
ψ4/3(a → ∞). (20)

The lowest and most significant eigenmode is called the
breathing mode, which corresponds to the oscillation of the
overall size of the cloud with a fixed geometry. We will discuss
this mode in later sections.

B. Hyperspherical description

The hyperspherical coordinate system is a powerful toolkit
to treat few-body problems [23–26]. To generalize this toolkit
to many-body systems, aggressive approximations must be
made to significantly reduce the dimension of the problem.
The hyperspherical descriptions of a single component weakly
interacting BEC and a degenerate Fermi gas have been studied
with the bare Fermi pseudopotential, and important physics
has been predicted even with crude approximations [27,28].
Similar to the procedure in Ref. [27], we formulate the
hyperspherical theory in a degenerate unitary Bose gas with
the renormalized interaction.

For N particles in a three-dimensional space, which con-
tains 3N degrees of freedom, the hyperspherical coordinates
are constructed as follows: The hyper-radius R, which is a
collective coordinate and indicates the overall size of the cloud,
is given by

R =
√√√√ 1

N

N∑
i=1

r2
i . (21)

The remaining 3N − 1 coordinates are called hyperangles;
2N of them are defined as the regular spherical angles of the
N particles, that is, {θ1,φ1,θ2,φ2, . . . ,θN ,φN }. The remaining
N − 1 hyperangles can be defined as

tan αi =
√∑i

j=1 r2
j

ri+1
, (i = 1, . . . ,N − 1). (22)

With this set of hyperspherical coordinates, the Hamiltonian
in Eq. (9) can be rewritten as

H = − h̄2

2M

1

R3N−1

∂

∂R
R3N−1 ∂

∂R
+ �2

2MR2

+ 1

2
Mω2

hoR
2 + Vint(R,�), (23)

where M = Nm is the total mass of the N particles. Vint(R,�)
denotes the renormalized interactions written in hyperspheri-
cal coordinates, that is,

Vint(R,�) =
N∑

i<j

4πh̄2ζ (kF a)

mkF

δ(rij ). (24)

� is called the grand angular momentum operator. The
eigenfunctions of the operator �2, denoted by �λ, are called
hyperspherical harmonics [29]. They satisfy the equation

�2�λ(�) = λ(λ + 3N − 2)h̄2�λ(�), (25)

where � represents all hyperangles. For a given λ,�λ usually
has huge degeneracy especially for large λ. The eigenfunctions
�λ form a basis in the hyperangular Hilbert space. An
aggressive approximation we make here is to only retain one
hyperangular momentum eigenstate out of this huge basis
set. This is also known as the K-harmonics approximation in
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FIG. 1. Effective hyper-radial potential curves for N = 5000
particles with different scattering lengths a/lho = 0.01 (solid),
0.1 (dashed), 1 (dot-dashed), and 10 (dotted), respectively.

nuclear theories [30] and it becomes exact in the unitary limit
and in the noninteracting limit [15,31]. The natural choice of
this eigenstate for bosons would be the lowest eigenstate of
�2, denoted by �0, which in fact is a constant. Such a choice
of hyperangular wave function also freezes the geometry of
the atomic cloud into that of the noninteracting case, while the
interparticle interactions modify the overall size of the cloud,
which is reflected in the hyper-radial wave function. With this
K-harmonics approximation, the total N -body wave function
can be separated as �(R,�) = F (R)�0(�). Inserting this
expression into the time-independent Schrödinger equation
and integrating over all hyperangles yields a hyper-radial
Schrödinger equation:(

− h̄2

2M

d2

dR2
+ Veff(R) − E

)
R(3N−1)/2F (R) = 0, (26)

where Veff(R) is an effective hyper-radial potential written as

Veff(R) = (3N − 1)(3N − 3)h̄2

8MR2
+ 1

2
Mω2

hoR
2

+〈�0(�)|Vint(R,�)|�0(�)〉�, (27)

where 〈· · · 〉� denotes integration over all hyperangles. The
evaluation of the last term in Veff has been elaborated in
Ref. [27]. In the large N limit which we are interested in,
〈�0|Vint(R,�)|�0〉� can be readily calculated numerically. We
can even obtain analytical expressions in the unitary limit and
the weakly interacting limit: For a → ∞,

〈�0|Vint(R,�)|�0〉� = N8/3(3/5)3/2ζ (+∞)(4π/3)1/3h̄2

πMR2
,

(28)

and for a → 0,

〈�0|Vint(R,�)|�0〉� = N3(2/π )1/2(3/2)3/2h̄2a

2MR3
. (29)

Figure 1 shows the effective hyper-radial potential curves
at different scattering lengths. At large hyper-radius, Veff(R) is
always dominated by the R2 term representing the confinement
of the harmonic trap. At a small hyper-radius, the system feels
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FIG. 2. The average energy per particle as a function of the
scattering length in the ground state of a degenerate Bose gas for
N = 104 particles. The results are obtained with the renormalized
interaction using mean-field approach (blue solid), the Thomas-Fermi
approximation (red dashed), and hyperspherical method (black dot-
ted), respectively. The dot-dashed curve shows the mean-field result
with the bare unrenormalized contact interaction for comparison.

two repulsive forces originating from the quantum pressure
and the two-body interaction. It is interesting that the two-body
interaction term transitions from R−3 to R−2 as the scattering
length increases to infinity.

Equation (26) is equivalent to the Schrödinger equation of
a particle moving in a one-dimensional potential. Moreover, in
the large N limit, the mass of this “particle” is so huge that it
can be treated classically. Consequently, the minimum of Veff

corresponds to the total energy of the system at equilibrium,
that is,

E = Veff(R0), (30)

where R0 denotes the equilibrium position. Furthermore, as the
hyperangular wave function is kept frozen, the oscillation of
this massive particle in the hyper-radial potential indicates the
oscillation of the overall size of the system, which corresponds
to the breathing mode. The breathing mode frequency is
associated with the coefficient of the second-order expansion
of Veff at R0, that is,

ω =
√

1

M

d2Veff

dR2

∣∣∣∣
R=R0

. (31)

III. RESULTS AND DISCUSSIONS

First, we discuss the total energy of a degenerate Bose gas.
Figure 2 shows the average energy per particle for N = 104

particles as a function of the scattering length. In the weakly
interacting regime where 〈n〉a3 � 1, the mean-field energy
obtained by solving the GP equation with renormalization
agrees excellently with that without renormalization. These
two results start to separate near a/lho = 0.2, which corre-
sponds to 〈n〉a3 = 0.25. The mean-field energy diverges at
unitarity without renormalization. The energy obtained using
the Thomas-Fermi approximation and the mean-field energy
differ in the weakly interacting regime where the kinetic energy
is a significant contribution to the total energy. However, at
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large scattering lengths, the total energy of the system is
dominated by the strong interactions between particles and
thereby the Thomas-Fermi approximation agrees excellently
with the mean-field result. The energy obtained using the
hyperspherical method agrees qualitatively with the mean-field
result, though it is slightly smaller. Overall, the total energy
of the system saturates at large scattering lengths with the
inclusion of the interaction renormalization, which indicates
that the scattering length is no longer a relevant length scale
of the system near unitarity.

We now discuss the energy of a unitary Bose gas using
the Thomas-Fermi approximation since it is very accurate
in the strongly interacting regime. One advantage of the
Thomas-Fermi approximation is that we can obtain analytical
expressions for many physical quantities, which offers us a
clear picture of the unitary Bose gas. With the Thomas-Fermi
approximation, the ground-state energy is given by

E

N
= 27

64

(
256

√
2

9

)1/3(
ζ (+∞)

π

)1/2

N1/3h̄ωho. (32)

For a unitary gas in a uniform space, the only relevant
length scale of the system is the average interparticle distance
determined by n−1/3, where n is the particle density. This also
defines the only energy scale of the system h̄2n2/3/2m. When
the gas is inhomogeneous while the density varies slowly in
space, the local-density approximation can be applied to the
system and thereby n2/3 is replaced by its average value 〈n2/3〉.
For a unitary Bose gas in a harmonic trap, the average value is
given by

〈n2/3〉 = 5 × 32/3N1/3

8(2π )5/6ζ (+∞)1/2l2
ho

. (33)

Therefore, from Eqs. (32) and (33), we can obtain the universal
relation of the energy of a unitary Bose gas, which is given by

E

N
= 65/3π1/3ζ (+∞)

5

h̄2〈n2/3〉
2m

≈ 12.67
h̄2〈n2/3〉

2m
. (34)

This universal relation is close to the value E/N =
13.33h̄2n2/3/2m reported in Ref. [10].

We show in Fig. 3 the average energy per particle, in
units of h̄2〈n2/3〉/2m, as a function of the average density for
different scattering lengths to verify this universal relation. The
results are obtained by solving the renormalized GP equation
Eq. (10). At small scattering length a/lho = 0.1, the value of
2mE/Nh̄2〈n2/3〉 varies significantly with the average density.
As the scattering length increases, 2mE/Nh̄2〈n2/3〉 has weaker
dependence on the average density and the value approaches
the universal constant in Eq. (34). At a/lho = 10, where gas
has reached the unitary regime, the result agrees excellently
with the universal relation Eq. (34) for 〈n〉l3

ho > 5. The small
deviation from the universality at small densities may be due
to the inaccuracy of LDA when the interparticle distance is
comparable to the trapping length.

Besides the total energy, there are many interesting physical
quantities worthy of investigation in unitary Bose gases. An
important quantity that bridges the two-body correlations and
the thermodynamics of a many-body system is called the two-
body contact or Tan’s contact. It was first introduced by Tan to
study the universal properties of a two-component Fermi gas

5 10 15 20 25 304
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14

n lho3

2m
E
N

2
n2
3

FIG. 3. The average energy per particle, in units of h̄2〈n2/3〉/2m,
as a function of the average particle density for a/lho = 0.1 (blue
dotted), 1 (red dot-dashed), and 10 (green dashed), respectively. The
black solid line shows the universal relation of energy from Eq. (34).

with s-wave contact interactions [32,33]. Universal relations
determined by the two-body contact have also been identified
in systems consisting of identical bosons [34]. The two-body
contact in bosons has been measured using rf spectroscopy
[35]. The two-body contact is determined by the derivative of
the total energy of the system with respect to the scattering
length:

C2 = 8πma2

h̄2

dE

da
. (35)

It is an extensive thermodynamic quantity of the system.
Another intensive quantity, which is commonly used in
homogeneous systems, is the contact density C2, which can
be obtained from the limit of the high momentum tail:
C2 = limk→∞ k4nk, where nk is the number of particles in the
k momentum state. Since the interparticle distance is the only
relevant length scale of a homogeneous system at unitarity, the
two-body contact density must scale as

C2 = αn4/3, (36)

where α is a universal dimensionless coefficient. Such a
universal relation can be generalized to a trapped system under
LDA, which is given by

C2 = αN〈n1/3〉. (37)

Figure 4 shows the average two-body contact per particle, in
units of 〈n1/3〉, as a function of the scattering length. The results
are obtained by directly solving the renormalized GP equation
Eq. (10). The value of C2/(N〈n1/3〉) has similar behavior for
different numbers of particles: It increases drastically in the
weakly interacting regime as the scattering length grows; it
then attains a maximum value before saturating in the unitary
regime. For different numbers of particles, C2/(N〈n1/3〉)
saturates at the same value, demonstrating the universality
of α.

From our renormalized mean-field model, we can derive
the universal relation Eq. (37) and determine the universal
coefficient α analytically with appropriate approximations.
To calculate the two-body contact, we take the derivative
of the renormalized mean-field energy Eq. (11) with respect
to the scattering length. We should note that at unitarity the
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FIG. 4. The average two-body contact per particle, in units of
〈n1/3〉, as a function of the scattering length for N = 103 (blue solid),
104 (red dashed), 105 (green dot-dashed), and 106 (black dotted)
particles.

scattering length dependence of the wave function ψ is much
weaker than that of the renormalization function ζ (kF a). Thus,
by approximating ∂ψ/∂a|a→∞ ≈ 0 and neglecting the edge
effect, we can readily obtain Eq. (37) and the coefficient α is
given by

α = 1.138(4π )2

0.994(6π2)2/3
≈ 11.8. (38)

Other theoretical works have reported the universal coefficient
to be α = 10.3 [12], 9.04 [13], and 12 [17], which agree
qualitatively with our prediction from the renormalized mean-
field approach.

To further verify our prediction of the universal relation
Eq. (37) and the value of the coefficient α, we show in
Fig. 5 the average two-body contact per particle, in units
of 〈n1/3〉, as a function of the average particle density for
different scattering lengths. At small scattering length a/lho =
0.1, C2/(N〈n1/3〉) increases significantly with the density. The
value of C2/(N〈n1/3〉) at a/lho = 1 is larger than its values for
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FIG. 5. The average two-body contact per particle, in units of
〈n1/3〉, as a function of the average particle density for a/lho = 0.1
(blue dotted), 1 (red dot-dashed), and 10 (green dashed), respectively.
The black solid line shows the universal relation of two-body contact
from Eqs. (37) and (38).
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FIG. 6. The breathing mode frequency as a function of the
scattering length for N = 104 particles. The results are obtained using
the hyperspherical method (blue solid), Bogoliubov approximation
(red dashed), and direct time evolution (black dots).

both the a/lho = 0.1 and 10 case because it attains a maximum
with the increment of the scattering length, as shown in Fig. 4 .
In the unitary regime, C2/(N〈n1/3〉) converges to the universal
coefficient α, which corresponds to the a/lho = 10 case. The
value of α from exact calculation is slightly smaller than the
analytical approximation α ≈ 11.8, which might be due to
the edge effect and the small scattering length dependence of
the wave function.

Finally, we discuss the elementary excitations of the
degenerate Bose gas in a harmonic trap. Specifically, we
focus on the lowest radial excitation, which corresponds to
the breathing mode. The breathing mode frequency can be
determined from the hyperspherical method, from the Bogoli-
ubov approximation, or by directly solving the time-dependent
GP equation, as discussed in the theory of renormalization
section above. Figure 6 shows the breathing mode frequency
as a function of the scattering length for N = 104 particles.
These three different methods show overall consistency with
each other. The time-evolution results are obtained by solving
Eq. (15) with an interaction quench. At vanishing scattering
length, the breathing mode frequency is apparently ω = 2ωho,
which corresponds to the beating between two adjacent
harmonic levels with zero angular momentum. The breathing
mode frequency increases gradually with the scattering length
before it reaches a maximum value. It is interesting that
the breathing mode frequency regresses to the noninteracting
value ω = 2ωho at unitarity. Similar unitary behavior has also
been predicted in Ref. [15].

It is interesting to compare our results with those for a
unitary Fermi gas. Before the comparison, we should note
that Fermi systems have a few fundamental differences from
Bose systems. First, a unitary Fermi gas is usually created
by ramping the scattering length in the attractive region from
a → 0− to −∞, during which the system is always in the
lowest-energy branch. However, a unitary Bose gas must be
created in the repulsive region from a → 0+ to +∞, because a
BEC with strong attractive interactions is extremely unstable.
This procedure pushes the Bose system to unitarity along the
first excited energy branch. As a consequence, a unitary Fermi
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gas usually has a smaller energy than a unitary Bose gas.
Second, a fermion has two populated spin states and s-wave
scattering only happens between fermions with different spin
substates. Thus, in a unitary Fermi gas, particles with different
spins have the strongest interaction while those with the same
spin interact weakly. We compare our results with those for
an unpolarized unitary Fermi gas that has an equal number of
particles in each spin substate.

In a unitary Fermi gas, the average energy per particle is
characterized by the relation E/N = ξ (3/5)h̄2k2

F /2m, where
ξ is a universal constant called the Bertsch parameter [3].
Reference [21] reported its value to be ξ = 0.51 using
the renormalized interaction, which is qualitatively close
to the experimental result ξ = 0.376 [36], although not in
quantitative agreement. These results verify that with the same
density, the energy of a unitary Fermi gas is lower than that of
a unitary Bose gas. The two-body contact of a unitary Fermi
gas is characterized by a universal constant C2/NkF , which
has been measured experimentally to have a value ranging
from 2.6 to 3.5 [37–39]. Such a universal relation for the
two-body contact is similar to that in a unitary Bose gas. As
to the breathing mode frequency, Ref. [40] predicted a similar
result ω = 2ωho for a unitary Fermi gas using the renormalized
interaction, which was also measured experimentally [41].

IV. CONCLUSION

In summary, we introduced a renormalized contact potential
to study degenerate Bose gases with large scattering lengths.

Such a renormalized interaction is designed by matching the
Hartree-Fock energy to the exact energy of two interacting
particles in a harmonic trap. We employed this renormalized
contact potential in company with the mean-field theory and
the hyperspherical theory to study the stationary properties and
elementary excitations of a degenerate Bose gas, especially
in the unitary regime. In the framework of the local-density
approximation, the only relevant length scale of a degenerate
unitary Bose gas is the interparticle spacing n−1/3, where n

is the particle density. This length scale also determines the
only energy scale h̄2n2/3/2m and the only two-body contact
scale n1/3 of the system. Our renormalization theory offers
us a much more clear and convenient approach to obtain the
universal relations for energy and two-body contact at unitarity,
which are given by E/N = 12.67h̄2〈n2/3〉/2m and C2/N =
11.8〈n1/3〉, respectively. Our results are consistent with other
theoretical predictions. Moreover, we studied the lowest radial
excitation of a degenerate Bose gas, which can be induced by
an interaction quench. This excitation is also known as the
breathing mode. Our theory shows an interesting phenomenon
that the breathing mode frequency at unitarity returns to the
value of a noninteracting gas.
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