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photoionization, and time-delay studies
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We apply a three-dimensional implementation of the time-dependent restricted-active-space self-consistent-
field (TD-RASSCF) method to investigate effects of electron correlation in the ground state of Be as well as
in its photoionization dynamics by short XUV pulses, including time delay in photoionization. First, we obtain
the ground state by propagation in imaginary time. We show that the flexibility of the TD-RASSCF on the
choice of the active orbital space makes it possible to consider only relevant active space orbitals, facilitating
the convergence to the ground state compared to the multiconfigurational time-dependent Hartree-Fock method,
used as a benchmark to show the accuracy and efficiency of TD-RASSCF. Second, we solve the equations of
motion to compute photoelectron spectra of Be after interacting with a short linearly polarized XUV laser pulse.
We compare the spectra for different RAS schemes, and in this way we identify the orbital spaces that are relevant
for an accurate description of the photoelectron spectra. Finally, we investigate the effects of electron correlation
on the magnitude of the relative Eisenbud-Wigner-Smith (EWS) time delay in the photoionization process into
two different ionic channels. One channel, the ground-state channel in the ion, is accessible without electron
correlation. The other channel is only accessible when including electron correlation. For theory beyond the
mean-field time-dependent Hartree-Fock, the EWS time delay for the photon energy analyzed is quite insensitive
to the considered active orbital spaces.
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I. INTRODUCTION

The development of short and intense laser pulses has
opened the possibility to control and observe electronic and
nuclear motion on the attosecond time scale [1–3]. The
new light sources are key to probing and manipulating the
electronic structure and dynamics in many-electron atoms
[4] and molecules [5,6]. For instance, few photon ionization
using short pulses results in ejected electrons whose spatial
distribution depends on the energy spectrum and angular
momentum of the initial state as well as the ionic channels
involved [7,8]. Likewise, it has become clear that accurate
modeling of Eisenbud-Wigner-Smith (EWS) time delays in
photoionization require careful consideration of electron-
correlation effects (see, e.g., Refs. [9–15] and the recent review
Ref. [16]). Accordingly, there is a range of processes that
require explicit time-dependent methods capable of treating
electron correlations beyond mean-field and single-active elec-
tron approximations. In the case of He, it is possible to solve
numerically the time-dependent Schrödinger equation (TDSE)
(see, e.g., Refs. [17–24]). For larger systems, and for photon
energies that only affect the valence shell, one can consider
two electrons immersed in the mean-field potential produced
by the inner electrons [25]. In general, however, in order to
consider more than two electrons in an atom and to make
the TDSE tractable, it is mandatory to use approximations
to the wave function and hence the TDSE. To this end,
the time-dependent configuration-interaction (TD-CI) method
consists of expanding the many-electron wave function as

|�(t)〉 =
∑

I∈VFCI

CI (t)|�I 〉, (1)
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where VFCI denotes the full CI Hilbert space of all accessible
configurations. It is the finite size of VFCI that introduces
approximations. In Eq. (1), CI (t) is the time-dependent
coefficient of the configuration |�I 〉, formed by a set of
spin-orbitals. In this formalism, the TDSE corresponds to a set
of first-order differential equations for CI (t). The description
of the continuum, however, demands a large number of orbitals
and configurations, which makes the CI approach numerically
intractable with increasing number of electrons. To overcome
this limitation, there are several methods such as the time-
dependent configuration-interaction singles (TD-CIS) [26,27],
the time-dependent restricted-active-space configuration-
interaction (TD-RAS-CI) [28], and the time-dependent
generalized-active-space configuration-interaction (TD-GAS-
CI) method [29,30], which impose restrictions on the allowed
excitations and the active orbital spaces. These approximations
still require many configurations in addition to a careful design
of the partitions in the active space. It is also very challenging
to extend those methodologies to situations with more than
a single electron in the continuum, as is also the case with
the R-matrix method [31], although some progress has been
reported in that direction [24]. Despite the difficulties, it is
nevertheless attractive to explore a wave function approach,
because of, e.g., the unambiguous extraction of observables.
The theory should ideally reduce as much as possible the
number of orbitals needed for an accurate description of
the configuration space. A breakthrough along those lines
came with the multiconfiguration time-dependent Hartree
(MCTDH) method [32,33] and the MCTDH-Fock (MCTDHF)
method (see, e.g., Refs. [34–39]), where time-dependent
spin-orbitals are introduced in the ansatz, making |�I (t)〉
time-dependent,

|�(t)〉 =
∑

I∈VFCI

CI (t)|�I (t)〉. (2)
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The main advantage of this method is that the use of
time-dependent spin-orbitals makes it possible to describe the
wave function and, in particular, the continuum with a smaller
number of orbitals and configurations than with the time-
independent orbitals used in the CI approach corresponding
to Eq. (1). The MCTDHF method has, e.g., been applied to
describe high-harmonic generation (HHG) in low dimensions
[40], polarization of the continuum [41], and to calculate
cross sections of atomic [38,42] and molecular systems [37].
Since the spatial orbitals are time-dependent, the one- and
two-body operators must be updated at each time step, leading
to a high numerical cost, especially in the 3D case. Moreover,
as in the CI picture, the use of many orbitals may still imply
an intractable number of accessible configurations. There are
several strategies to diminish the numerical effort without loss
of accuracy, such as the time-dependent occupation-restricted
multiple-active-space (TD-ORMAS) [43], the time-dependent
complete-active-space self-consistent-field (TD-CASSCF)
[44,45], and the time-dependent restricted-active-space
self-consistent-field (TD-RASSCF) [46–49] methods. In
particular, the TD-RASSCF method benefits from the RAS
to diminish the accessible configurations and hence allows
the consideration of only a subset VRAS of the configurations
in VFCI by dividing the active space into two or more parts.
Among these parts electron excitations take place with certain
restrictions [46–49], specified at will, and most often chosen
by physical insight into the problem at hand.

In the present work we apply the TD-RASSCF method
with double excitations (TD-RASSCF-D) to address the role
of electron correlation in Be in the ground state, in photoion-
ization spectra induced by short XUV pulses and in time-delay
studies. The TD-RASSCF-D method was previously shown to
be accurate and computationally efficient in 1D cases [46,48],
and the TD-RASSCF theory was recently extended with a
space partitioning concept [49]. The main advantage of the
approach resides in the possibility of selecting an appropriate
RAS that captures the most important configurations for a
given system and physical process. For a very recent discussion
of these aspects in the case of cold atomic bosons, see Ref. [50].
The flexibility in choosing the RAS is remarkable in the imag-
inary time propagation (ITP), where we show that the active
space concept facilitates the convergence. By identifying the
most important active orbitals, the TD-RASSCF-D method
can be as accurate as the MCTDHF method, but with a smaller
number of configurations highlighting the important role of
double excitations for the ground state. The application of
this method to 3D systems is, however, still computationally
challenging due to the large number of nonzero matrix
elements of the two-body operator. To overcome this issue,
we develop and use the coupled basis method to diminish
the number of operations required to evaluate the two-body
operator. In addition to the ITP studies for the ground state, we
present studies of Be subject to short linearly polarized XUV
laser pulses. In general, the photoelectron energy spectra (PES)
reveal detailed properties of atomic, molecular, or solid targets,
including energies, structural, and symmetrical properties
of the states of the system. For instance, the directional
distribution of the ejected electrons depends on the angular
momentum of the final and initial states and the number of
absorbed photons [28]. As for the ground-state studies, the
present TD-RASSCF-D method allows the identification of the

most important active orbitals for an accurate description of the
photoelectron spectra. Furthermore, the electronic dynamics of
the remaining ion during the photoionization has an impact on
the outgoing electrons, enclosed, in particular, in the apparent
time of ionization [9]. The experimental and theoretical
determination of this quantity constitutes a fundamental probe
of the many-body dynamics [10,11,16,51–53]. In this work we
investigate the relative EWS time delay in ionization between
the channel (i) Be[(1s22s2)1Se] → [Be+(1s2 2s) + εp] 1P o,
and the channel (ii) Be[(1s2 2s2)1Se] → [Be+(1s22p) + ε�]
1P o with � ∈ (s,d). As is evident from dipole selection rules,
process (i) is possible without electron-electron correlation,
while in process (ii) ionization is accompanied by a shakeup
in the ion and requires electron-electron correlation. This
study shows that an accurate description of time delays in Be
requires a treatment beyond the mean-field time-dependent
Hartree-Fock theory.

The paper is organized as follows. In Sec. II, we describe the
Hamiltonian, the TD-RASSCF-D method, and the numerical
techniques used, including the coupled basis method. In
Sec. III, we present the results for Be, both concerning the
ground-state studies (Sec. III A), the PES (Sec. III B), and
the relative time delays in ionization (Sec. III C). Section IV
summarizes the main findings and concludes. Atomic units are
used throughout unless indicated otherwise.

II. HAMILTONIAN AND TD-RASSCF-D

The TD-RASSCF theory for fermions was presented in
Refs. [46–49], and the similarities and differences between
the fermionic and bosonic cases were discussed in Ref. [50],
so the presentation here will be brief. We consider an Ne

electron atom with a nuclear charge Z interacting with a
linearly polarized laser pulse of short duration. We take the
spin-restricted ansatz of the many-electron wave function as

|�(t)〉 =
∑

I∈VRAS

CI (t)|�I (t)〉, (3)

with the configurations |�I (t)〉 constructed from M spatial
orbitals which can each hold a spin-up and a spin-down
electron, i.e., 2M time-dependent spin-orbitals, {|φj (t)〉}2M

j=1,
which form an orthonormal basis in the P space, with the
Q space being the rest of the single-particle Hilbert space
in Fig. 1. The sum in Eq. (3) runs over all accessible
configurations specified by the Hilbert space with restrictions
on the active space, VRAS.

In the MCTDHF method [36–38], the active space, formed
by the M time-dependent spatial orbitals, constitutes the full
P space, i.e., the configurations considered in MCTDHF are
all the combinations of orbitals allowed by the Pauli principle,
as expressed in Eq. (2), by letting the multiindex I run over
the full configurational space VFCI. In contrast, in the present
TD-RASSCF-D approach we divide the active space in P1

and P2 spaces, which contain M1 and M2 spatial orbitals,
respectively (see Fig. 1). The sum of the spatial orbitals in
the two spaces fulfills M = M1 + M2, and the excitation from
P1 to P2 is subject to restrictions as specified by the RAS
scheme. In the case of the doubles scheme, we allow only
double-electron excitations from P1 to P2. These restrictions
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FIG. 1. Restricted-active-space (RAS) associated with the
present considerations for the Be atom. The RAS is divided in two
partitions:P1 which is formed by M1 spatial orbitals (φ1, . . . φM1 ) and
P2 by M2 spatial orbitals (φM1+1, . . . φM2+M1 ). The figure illustrates
(a) all the electrons in the lowest-energy configuration and (b)
an example of a doubly-excited configuration. The indexes to the
left indicate the notation used to label the orbitals in the different
spaces. The formalism also allows for a core with always occupied
time-dependent orbitals corresponding to a P0 space [46,48]. In this
work we do not invoke the P0 space and therefore P0 is not shown in
the figure.

reduce the configurational space and means that the multiindex
I in Eq. (3) runs over the RAS, VRAS. In Fig. 1, we may
understand the reduction in configurations when changing
from the MCTDHF to the TD-RASSCF-D case by noting that
in the latter case the configurations with all four electrons
occupying orbitals in P2 are absent by restriction on the
active orbital space. The RAS concept can be extended by
a P0 space describing a core where the orbitals are always
occupied. In this paper, we consider TD-RASSCF-D without
a core, that is, we allow double-electron excitations from P1

to P2. The TD-RASSCF-D method is numerically efficient
and accurately accounts for the two-body interactions. Also
note that configurations with double excitations with time-
dependent orbitals include nonvanishing projections on the
singles space spanned by time-independent orbitals [46,48].

To apply the TD-RASSCF-D method, it is convenient to
write the Hamiltonian in second quantization,

H (t) =
∑
pq

hp
q (t)c†pcq + 1

2

∑
pqrs

vpr
qs (t)c†pc†r cscq, (4)

where cp and c
†
p are fermionic annihilation and creation

operators of an electron in the time-dependent spin-orbital
|φp(t)〉. We use the notation p,q,r,s . . . for all the orbitals
and i,j,k,l . . . for the orbitals in P space, where we specify
by single (′) or double prime (′′) that they belong to different

partitions if necessary. In Eq. (4), the matrix elements are
given by

hp
q (t) =

∫
φ†

p(z,t)h(�r,t)φq(z,t)dz, (5)

vpr
qs (t) =

∫
φ†

p(z1,t)φq(z1,t)Wrs(z1,t)dz1, (6)

where z = (�r,σ ) denotes space and spin degrees of freedom,
Wrs(z1,t) is the mean-field operator,

Wrs(z1,t) =
∫

φ
†
r (z2,t)φs(z2,t)

|�r1 − �r2| dz2, (7)

and h(�r,t) is the one-body Hamiltonian in the length gauge,

h(�r,t) = −1

2
∇2 − Z

r
+ �E(t) · �r, (8)

with Z the nuclear charge, r = |�r| the magnitude of the
position vector, and �E(t) the electric field of the laser pulse.

We now briefly describe the derivation of the equations
of motion. The TD variational principle [54,55] establishes
that the best approximation to the time-dependent Schrödinger
equation (TDSE) is a stationary point of the functional

S
[{CI },{φi},

{
εi
j

}] =
∫ T

0

⎡⎣〈�(t)|
(

i
∂

∂t
− H

)
|�(t)〉

+
∑
ij

εi
j (t)(〈φi(t)|φj (t)〉 − δij )

⎤⎦dt,

where the Lagrange multipliers εi
j (t) ensure that the orbitals

in the P space are orthonormal during the time interval [0,T ].
To simplify the notation, we do not indicate the time, space,
or spin dependence of the amplitudes and the orbitals. Then,
we seek stationary points, δS = 0, and in the TD-RASSCF-D
case the stationary points fulfill the equations [46,48]

iĊI =
∑
ij

(
hi

j − iηi
j

)〈�I |c†i cj |�〉

+ 1

2

∑
ijkl

vik
j l 〈�I |c†i c†kclcj |�〉, (9)

i
∑

j

Q|φ̇j 〉ρj

i =
∑

j

Qh(t)|φj 〉ρj

i +
∑
jkl

QWk
l |φj 〉ρjl

ik ,

(10)∑
k′′l′

(
hk′′

l′ − iηk′′
l′

)
A

l′j ′′
k′′i ′ +

∑
klm

(
v

j ′′m
kl ρkl

i ′m − vkl
i ′mρ

j ′′m
kl

) = 0,

(11)

with ηi
j = 〈φi |φ̇j 〉, Q = 1 − P = 1 − ∑

j |φj 〉〈φj |,
ρ

j

i = 〈�|c†i cj |�〉, ρ
jl

ik = 〈�|c†i c†kclcj |�〉 and A
lj

ki =
〈�|[c†i cj ,c

†
kcl]|�〉. The amplitude Eq. (9) describes the

time evolution of the expansion coefficients CI (t) of Eq. (3),
and the orbital Eqs. (10) and (11) describe the projection of
the time derivative of the orbitals on the Q and P spaces,
respectively. Equations (9)–(11) constitute a set of coupled
nonlinear differential equations and the strategy to solve

053422-3



JUAN J. OMISTE, WENLIANG LI, AND LARS BOJER MADSEN PHYSICAL REVIEW A 95, 053422 (2017)

them is the following: (i) first, we use Eq. (11) to solve for
ηk′′

l′ , (ii) then, we can solve the amplitudes Eq. (9) and the Q
space Eqs. (10) (see the discussion in Ref. [50]). On the one
hand, let us consider the case of MCTDHF, that is, if we take
into account all the combinations of the orbitals to construct
the Slater determinants, then Eq. (11) becomes an identity
[46,48,56]. Therefore, in this case we only need to solve
Eqs. (9) and (10), and we can set ηi

j to be any anti-Hermitian
matrix [46], and in practice often ηi

j = 0 is used. On the
other hand, for the TD-RASSCF-D method, including only
double excitations [46,48], the constraints on the active space
imply that we only have the freedom to choose a fixed value
for η

j

i if both the orbitals i and j belong to either P1 or P2.

The calculation of η
j ′′
i ′ for i ′ and j ′′ belonging to different

partitions implies solving Eq. (11), together with Eqs. (9)
and (10).

The main advantage of the TD-RASSCF-D method com-
pared with MCTDHF is that it is possible to include only
the relevant configurations for a given physical observable
or process. The numerical effort is therefore smaller for the
same number of orbitals [46,48], a point we will discuss
further below. This method shares with the MCTDHF the
numerical instability in the Q-space equation induced by the
singularity of the inverse of the reduced one-body density
matrix, (ρ)−1. In particular, a system with low entanglement

would require only a small number of orbitals, and the addition
of more leads to small eigenvalues of the one-body density
matrix [57]. To address this problem, the one-body density
matrix is usually regularized ρ̂ = ρ + εe

−ρ/ε
, where ε is a

regularization parameter [56]. In this work, we set ε = 10−10.

A. Single-orbital basis

Here we discuss the single-orbital basis and for complete-
ness we collect the formulas needed for its construction. To
describe the orbitals of the many-electron wave function, we
use a basis set expansion in a finite element discrete variable
representation (FE-DVR) for the radial grid [58] and spherical
harmonics for the angular part, i.e.,

〈�r|φj (t)〉 = φj (�r,t) =
∑
α�m

c
j

α�m(t)
χα(r)

r
Y�m(�), (12)

where c
j

α�m(t) are the coefficients of the expansion, χα(r)
are the FE-DVR functions, and Y�m(�) are the spherical
harmonics. To define the FE-DVR functions, we divide the
radial grid [0,rmax] in Nfe finite elements with Nb nodes
in each element. Then, the collective subscript α = (a,e)
in Eq. (12) denotes the node a = 1, . . . ,Nb in the element
e = 1, . . . ,Nel . The FE-DVR function is defined using Gauss-
Lobatto functions [58],

χa,e(r) =
{

1√
ωa,e

∏
j 
=a

r−rj,e

ra,e−rj,e
, r1,e � r � rNb,e,

0, otherwise,
(13)

where ra,e are the nodes and ωa,e the weights of the associated
Gauss-Lobatto quadrature. The FE-DVR functions have the

following properties [59]:

χa,e(rb,e′ ) = δa,bδe,e′√
ωa,e

, (14)∫
drχa,e(r)χb,e′(r) = δa,bδe,e′ , (15)∫

drχa,e(r)χb,e′(r)f (r) = f (ra)δa,bδe,e′ . (16)

We obtain the radial part of the kinetic energy term by
calculating the matrix element of the second derivative in the
radial coordinate [59],

−1

2

∫
drχa,e(r)

∂2

∂r2
χb,e′ (r)

= 1

2
(δe,e′ + δe,e′±1)

∫
dr

∂

∂r
χa,e(r)

∂

∂r
χb,e′ (r), (17)

where [59]

∂

∂r
χa,e(ra′,e′ )

=
⎧⎨⎩

1√
ωa,e(ra,e−ra′ ,e′ )

∏
k 
=a,a′

ra′,e−rk,e

ra,e−rk,e
, a 
= a′,

1
2ω

3/2
a,e

(δa,Nb
− δa,1), a = a′.

(18)

We introduce the bridge functions [58],

χ̃Nb,e(r) = χ̃1,e+1(r) =
√

ωNb,eχNb,e(r) +√
ω1,e+1χ1,e+1(r)√

ωNb,e + ω1,e+1
,

(19)

which ensure the continuity of the functions between adjacent
elements, and fulfill Eqs. (14)–(16).

B. Evaluation of the mean-field operator

The matrix elements of the two-body operator need to
be updated at each time step, and this update is the main
bottleneck of time-dependent SCF methods. The two-body
electron-electron interaction reads in the multipole expansion

1

|�r − �r ′| =
∞∑

L=0

4π

2L + 1

rL
<

rL+1
>

L∑
M=−L

YLM (�)Y †
LM (�′), (20)

where r> (r<) is the largest (smallest) between |�r| and | �r ′|.
The electron-electron Coulomb repulsion is not diagonal in
the angular coordinates, because, in the evaluation of the
matrix elements, each spherical harmonic in Eq. (20) couples
with two angular functions coming from the product of two
orbitals. This leads to numerous nonvanishing matrix elements,
which require both large memory for storage and long CPU
time for updating the orbitals. There are several proposals
to overcome these issues. On the one hand, we can reduce
the number of applications of the two-body operator using
the constant mean-field approximation [56] or by restricting
the number of operations by allowing only a small number
of m in the single-orbital expansion [45], or both. On the
other hand, we can make the two-body operator sparse by
expanding it in a pseudo-DVR basis [60,61] for the angular
grid. In this work, we apply what we call the coupled
basis method. We use that the electron-electron interaction
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commutes with the total angular momentum and its projection
on the z axis for two electrons, i.e., [(�l1 + �l2)2,1/| �r1 − �r2|] =
[(lz,1 + lz,2),1/| �r1 − �r2|] = 0. This implies that 1/| �r1 − �r2|
conserves the coupled � and m in a basis of two-orbital
functions in the coupled representation. At each time step,
we therefore transform the product of two orbitals into a
two-orbital function in the coupled representation

φi(�r,t)†φj (�r,t)|r=rα

=
∑

α��′mm′
c
i†
α�mc

j

α�′m′
χα(rα)2

r2
α

Y�m(�)†Y�′m′ (�)

=
∑

α

2�max∑
L′=0

L′∑
M ′=−L′

ω−1
α

r2
α

�
ij

αL′M ′YL′M ′ (�′), (21)

where we used the FE-DVR property that χα(rγ )χβ(rδ) =
δα,βδγ,δδα,γ χα(rα)2 = δα,βδγ,δδα,γ ω−1

α , and where we defined

�
ij

αL′M ′ =
∑

�,m,�′,m′
c
i†
α�mc

j

α�′m′(−1)M
′
y�m,�′m′,L′−M ′ , (22)

with y�m,�′m′,L′M ′ , the Gaunt coefficients

y�1m1,�2m2,�3m3 =
∫

d�Y
†
�1m1

(�)Y�2m2 (�)Y�3m3 (�).

From Eq. (20), we now see that the two-body matrix elements
in the coupled basis form a block diagonal matrix in (LM).
Using this property, the mean-field operator in Eq. (7) reads as

Wij (�r) =
∫

dσWij (z) =
∫

d3 �r ′ φi(�r ′)†φj (�r ′)
|r − r ′|

=
∑

α

2�max∑
L=0

L∑
M=−L

�
ij

αL′M ′fα,L(r)YLM (�), (23)

where fα,L(r) = ∫
r ′ χα(r ′)2 4π

2L+1
rL
<

rL+1
>

dr ′. It is useful to rewrite
Eq. (23) in the FE-DVR basis. After some algebra, we find

Wij (�r) ≈
∑

γ,L′′,M ′′

χγ (r)2

r2
YL′′M ′′ (�)ω̄ij

γL′′M ′′ , (24)

with

ω̄
ij

γLM =
∑

α

�
ij

αLMRL(α,γ ), (25)

RL(α,γ ) =
∫

χγ (r)2fα,L(r)dr, (26)

where RL(α,γ ) is approximated by [58]

RL(α,γ ) =
(

(2L + 1)

rαrγ
√

ωαωγ

[
T (L)

α,γ

]−1 + rL
α rL

γ

r2L+1
max

)
, (27)

where T (L)
α,γ is twice the kinetic energy matrix. Now, we can

obtain the terms needed to solve Eqs. (10) and (11), such as
the application of the mean-field operator on a single spatial

orbital

Wij (�r)φs(�r) =
∑

α

∑
�m

χα(r)

r
Y�m(�)

×
∑

LM�′m′
ω̄

ij

LMcs
α�′m′

y�m,�′m′,LM

ωα

. (28)

Similarly we obtain for the two-body operator

vli
kj =

∫
d�rφ†

l (�r)Wij (�r)φk(�r) ≈
∑
αLM

�
αl†
αLMω̄

ij

αLM

ωα

. (29)

To highlight the benefits from using the coupled basis method,
we compute the number of operations performed at each
update. For simplicity, we assume that �max = mmax and take
into account all possible combinations of spherical harmonics,
even if the associated Clebsch-Gordan coefficient is zero. First,
the number of operations required for the transformation to the
coupled basis is O[M2nrn

2
θ (4nθ + 1 − 4

√
nθ )], where nr is

the number of radial functions, and nθ and (4nθ + 1 − 4
√

nθ )
are the numbers of angular functions in the single-orbital
and coupled basis, respectively. Second, the evaluation of
the mean-field operator needs O[M2n2

r (4nθ + 1 − 4
√

nθ )]
operations, and the cost of its application to each orbital
requires O[M3nrn

2
θ (4nθ + 1 − 4

√
nθ )] operations. Finally,

the calculation of the matrix element of the two-body operator
requires O[M4nr (4nθ + 1 − 4

√
nθ )] operations. The most

important achievement of this method is that the number of
operations of the mean-field operator scales linearly with the
number of angular functions, contrary to the numerical effort
required if we use directly the product basis, where the scaling
goes as O(M4n2

r n
4
θ ).

C. Removing the stiffness

To describe the electronic structure accurately we require a
dense grid in the radial coordinate around the nucleus, which
in momentum space implies highly oscillating functions with
large momenta. These functions introduce rapid oscillations
in time, which require a very small time step to be resolved
and this stiffness leads to instabilities in Eqs. (10) and (11)
[61,62]. In many cases, however, these high-energy states
do not contribute to the dynamics of interests and they can
therefore be removed by a suitable projection. The calculation
of the eigenstates of the full Hamiltonian is not possible in
the present framework, and even worse, in the presence of
the laser, the Hamiltonian would have to be diagonalized
at each time step. For these reasons, we consider only the
high-energy states of the one-body Hamiltonian, which is
often a good approximation [63]. Taking this consideration into
account, we apply the energy subspace projection described
in Refs. [61,63]. First, we diagonalize the field-free one-body
Hamiltonian to obtain the high-energy one-body states |ψj 〉.
Second, we define the projector P = 1 − ∑

j |ψj 〉〈ψj | to
remove the contributions with eigenenergies Ej > Ecutoff from
the time-dependent many-body Hamiltonian, H , obtaining the
stiffness-free Hamiltonian H ′ = PHP. The many-body nature
of the problem makes it difficult to applyP on the Hamiltonian;
therefore, we perform the projection on the wave function
〈�|PHP|�〉 = 〈P�|H |P�〉, which consists of projection out
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the high-energy contribution from each orbital. The energy
cutoff is set between 350 and 1500 a.u.

D. Extraction of the photoelectron spectrum

In this section we describe a procedure to obtain the
photoelectron spectrum. Often used methods consists of
projecting on scattering waves, Coulomb waves, or plane
waves [64–66]. While the projection on scattering states can be
applied immediately after the end of the pulse, the projection
on Coulomb or plane waves requires the propagation over
some periods after the laser is switched off to allow the ejected
electron to arrive at the outer region, where the interaction of
the outgoing electron with the atom can either be neglected
or approximated by the Coulombic monopole term. In this
work, we proceed as follows. First, we integrate the one-body
density over Ne − 1 electrons, and second, we project on
Coulomb or plane waves in the outer region, as specified below,
in the remaining coordinate. The photoelectron momentum
distribution (PMD) reads

d3P

d3�k =
∑
ij

ρ
j

i φ̃
†
i (�k,t)φ̃j (�k,t), (30)

where ρ
j

i is defined just after Eq. (11) and φ̃i(�k,t) is defined as

φ̃j (�k,t) =
∫

d3rψ�k(�r)†φj (�r,t)�(r,rout,rmax,�), (31)

where ψ�k(�r) is an outgoing scattering wave function and
�(r,rout,rmax,�) is a window function introduced to remove
boundary effects related to the outer region (r � rout) and the
end of the box (rmax) [18],

�(r,rout,rmax,�)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, r � rout,

1 − cos
(

π
2

r−rout
�

)
, rout � r � rout + �,

1, rout + � � r � rmax − �,

cos
(

π
2

r−(rmax−�)
�

)
, rmax − � � r � rmax.

In the present work we use rout = 20 and � = 20. In the case
of plane waves ψPW

�k (�r) = (2π )−3/2ei�k·�r , we use the expansion
in terms of the spherical Bessel functions, jL(kr),

ei�k·�r = 4π
∑
L,M

iLYLM (�r )Y †
LM (�k)jL(kr). (32)

to perform the integral in Eq. (31). In the case of Coulomb
wave functions ψC

�k (�r) [65], we have

ψC
�k (�r) =

√
2

π

∑
L,M

iLe−iσL(η)YLM (�r )Y †
LM (�k)

FL(kr,η)

kr
,

(33)

where FL is the regular Coulomb function, σL(η) = arg[�(L +
1 + iη)] is the Coulomb phase shift, and η = −1/k. The
photoelectron spectrum is obtained by integration over the
angular coordinates in momentum space, �k ,

dP

dE
=

∫
�k

d�kk
d3P

d3�k , (34)

and the triply differential energy and angular resolved proba-
bility is obtained as

d3P

dEd�k

= k
d3P

d3�k . (35)

The validity of the projection on plane waves to describe the
spectrum relies on assuming that the wave packet is far from
the atom and that it is not affected by the atomic potential
[65,66]. This assumption is valid for the laser parameters and
the range of the photoelectron spectra analyzed in this work,
as we validated by comparison with the results obtained by
projection on Coulomb waves.

III. RESULTS

In this section, we describe the impact of electron cor-
relation on the ground state of Be and the photoionization
process, including time delays, due to the interaction with
a linearly polarized XUV laser pulse of short duration. We
use Be for these illustrative calculations because it allows
for converged MCTDHF reference data. In this way, we can
identify the most important part of the orbital space for a
given physical observable. We describe the radial coordinate
from r = 0 to 8 using 8 FEs of length 1. From r = 8 to the
end of the box we add elements of length 4, with Nb = 8.
To calculate the ground state we perform an imaginary-time
propagation (ITP) of an initial guess function in a box from
r = 0 to 28. The dynamics due to the interaction with the laser
is subsequently described performing a real-time propagation
(RTP), where we set the end of the box to rmax = 200 by adding
43 elements of length 4 with 8 nodes in each. For the ITP, the
angular part of the orbitals is described with a maximum orbital
angular momentum �max = 2 and magnetic quantum numbers
|mmax| = 1 for 7 or less orbitals and �max = 3 and |mmax| = 2,
otherwise. For the RTP, we use �max = 3 and |mmax| = 2 in
all the cases, and this is sufficient to obtain convergence for
the XUV pulses considered in the present work. For the ITP
and RTP we use an adaptative Runge-Kutta propagator. The
typical time step �t ranges from 10−4 to 10−3 atomic units.

A. Ground state

To obtain the ground state we perform an ITP for an
appropriate initial guess function [42,67]. The choice of the
initial guess function is crucial, since there exists an infinite
number of nonphysical standing wave solutions, which are
local minima of the TD variational principle [68]. To ensure
that the ground state obtained in the ITP is not affected by
the selection of the initial guess function, we may choose to
take an initial random wave function [42,61]. The coefficients
c
j

α�m of the orbitals [Eq. (12)] are chosen randomly, and the
amplitudes CI are taken as

√
(1 + δ)/N , where δ is a random

number 0 � δ < 1 and N the number of configurations. This
strategy, however, turns out to be problematic for many RAS
partitions, including the MCTDHF case, due to the many local
minima of the energy located in the manifold [68]. Then a
more careful consideration of the design of the initial guess
wave function becomes mandatory in order to reach a good
approximation, ideally the global minimum, for the ground
state [69].
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TABLE I. Ground state energies of Be for several RAS schemes.
M1 and M2 denote the numbers of spatial orbitals inP1 andP2 (Fig. 1),
respectively. When all the orbitals are in P1 (M1 = M and M2 = 0),
the TD-RASSCF approach is equal to the MCTDHF approach with
M = M1 orbitals. When, for Be, M = M1 = 2, the TD-RASSCF
approach is equal to the TDHF approach. The M = 3 entry denoted by
random is an example, where we use a random initial wave function.
In the other cases the initial guess wave function was designed as
described in the text.

Number of orbitals Number of Ground state
M = M1 + M2 M1 M2 configurations energy (a.u.)

2 2 0 1 −14.573 30
3 3 0 9 −14.587 34 (random)

3 0 9 −14.590 87
2 1 5 −14.590 87

4 4 0 36 −14.605 53
3 1 18 −14.605 11
2 2 19 −14.605 51

5 5 0 100 −14.619 57
3 2 51 −14.618 57
2 3 43 −14.618 43
4 1 52 −14.618 26

6 0 6 225 −14.631 15
5 1 125 −14.631 03
3 3 108 −14.630 20
2 4 77 −14.625 61

7 7 0 441 −14.638 90
6 1 261 −14.638 38
5 2 220 −14.638 27
4 3 216 −14.638 14
2 5 121 −14.636 84

9 9 0 1296 −14.654 14
2 7 239 −14.650 82

One of the great advantages of the TD-RASSCF method
is that we can choose the partition in the active space,
which induces the most important Slater determinants for a
given physical process. In the 3D case this choice becomes
very important, since an appropriate set of configurations
can facilitate the couplings of the spherical harmonics to
the 1Se ground state. For example, in the case of Be, the
main configuration for the ground state is (1s22s2)1Se, and an
appropriate RAS scheme would be two spatial orbitals in the
P1 space and the rest in P2. The orbitals in the P1 space would
be close to s-type orbitals, whereas the orbitals in P2 would
be linear combinations of a set of orbitals, which together
with the orbitals in P1 can couple to 1Se. As an example,
we focus on the case of M = 3 orbitals, included in Table
I, where we show the ground-state energy for different RAS
schemes. On the one hand, we use a random initial guess
function for the MCTDHF approach with M = 3 orbitals
and we obtain the energy −14.587 34 (the entry in Table I
denoted by random). This value of the MCTDHF energy is in
agreement with the energy previously reported in Ref. [61].
We note that it is very unlikely that the ITP of a random initial
wave functions leads to a lower ground state energy. This is a
consequence of the dominating nature of the s orbitals in the
minimization of the energy. On the other hand we design an

initial guess function as follows: (i) we choose two orbitals
as the 1s and 2s hydrogenic functions for Z = 4, (ii) we set
the amplitude of the Slater determinant, which contains them
equal to C1 = 0.9, (iii) we choose the third orbital randomly,
and (iv) we set the rest of the coefficients of the configurations
to the same non-negative value to obtain a normalized wave
function. In this case we obtain the lower M = 3 MCTDHF
energy −14.590 87 shown in Table I. We note that this design
procedure is somewhat similar to first performing an HF
calculation with s electrons and then adding a third orbital
to perform a MCSCF calculation; a strategy often followed in
quantum chemistry multiconfigurational self-consistent-field
calculations. In a sense, this procedure leaves more freedom to
the last orbital to adjust in an optimal manner. Also, note that
the fact that the energy is lower with the designed initial guess
wave function does not guarantee that the global minimum for
the energy is found. The variational principle only allows us
to conclude that the ground state obtained with this designed
initial guess is more accurate than the one obtained from a
completely random initial state.

In the case of TD-RASSCF-D, we impose the most
important configurations by setting M1 = 2 and M2 = 1, and
we obtain again E = −14.590 87 now using a random initial
guess function, obtained by choosing the coefficients and
amplitudes as described in the beginning of this section.
The difference between these two approximations to the
ground state lies in the orbitals. For the ground state with
energy −14.587 34, the angular part of all the orbitals turns
out to be Y00(�), that is, the many-electron wave function
corresponds to a multiconfigurational Hartree-Fock (MCHF)
using 1s, 2s, and 3s orbitals. However, for E = −14.590 87
and (M1 = 2,M2 = 1), we obtain that the main contribution
to the angular part of the two orbitals φ1 and φ2 is spherically
symmetric, while the third orbital φ3 is a linear combination
of Y1,1(�) and Y1,−1(�), such that the expansion coefficients
[Eq. (12)] fulfill c3

α11 = c3
α1−1. This condition ensures that

the total magnetic quantum number of the ground state
is vanishing, consistent with its 1Se term. Note that the
ground-state energies of the RAS, (M1 = 3,M2 = 0) and
(M1 = 2,M2 = 1), are the same because these two schemes are
equivalent [48]. This improvement in the ground-state energy
for M = 3 orbitals manifests the importance of the mixing
of the orbitals with different values of m. If this mixing is
not permitted, we would require at least 5 orbitals to improve
the HF energy, i.e., the 1s, 2s, 2pm=−1, 2pm=0, and 2pm=+1

orbitals, to guarantee the coupling to 1Se. Let us remark
that the ground-state energy for MCTDHF with 5 orbitals
is lower than the energy obtained from time-independent
multiconfigurational Hartree Fock calculations with 5 orbitals
with fixed � and m [70], and that the M = 5 and M = 9 results,
for which case comparison is possible, are in good agreement
with time-independent MCHF results [71].

For a given number of orbitals M , the RAS scheme M1 = 2
and M2 = M − M1 may be seen as an improvement to the
TDHF solution by adding the possibility for double excita-
tions. The wave function associated with this RAS (2,M − 2)
is formed by 5M2 − 21M + 23 configurations, whereas the
number of configurations of the MCTDHF is 1

4 (M2 − M)2. For
example, for M = 9, the number of configurations required for
this RAS is 239, whereas it is 1296 for the MCTDHF approach.
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The discrepancy in the energy is, however, only ∼0.3% (see
Table I). Because of the reduction in configurations, the results
in Table I are obtained with the TD-RASSCF-D approach at a
reduced computational cost in terms of CPU and memory
compared to those obtained with the MCTDHF approach.
The number of operations scales with the sum of two major
contributions: The calculation of the two-body operator and
the integration of the amplitude equations [48]. The numerical
effort of the first one is discussed in detail in Sec. II B. The
integration of the amplitude equations scales with the number
of configurations, dim(VRAS), as O[M4dim(VRAS)]. We will
come back to the reduction in computational cost in connection
with the photoelectron spectra discussed below.

B. Photoelectron spectra

In this section, we illustrate the application of the TD-
RASSCF-D method to photoelectron spectra (PES) of Be after
interacting with short linearly polarized XUV laser pulses.
We consider pulses described by the vector potential �A(t) =
A0ẑ cos2(ωt/(2np)) sin(ωt), where the duration of the pulse is
T = 2πnp/ω and the frequency bandwidth �ω ≈ 1.44ω/np

with np the number of cycles. The pulse begins at t = −T/2.
For the photon energies considered in this paper, the photoelec-
trons come from the ionization of Be to one of the three low-
lying states of Be+: Be+[(1s22s)2Se] (with an ionization poten-
tial of Ip(1s22s)2Se = 9.32 eV), Be+[(1s22p)2P o] (Ip(1s22p)2P o =
13.28 eV), Be+[(1s23s)2Se] (Ip(1s23s)2Se = 20.26 eV), and
the higher lying channel Be+[(1s2s2)2Se] (Ip(1s2s2)2Se =
123.35 eV) [72]; see Fig. 2.

1. 30 eV photon energy

First, we consider laser pulses with a central frequency
corresponding to a photon energy of 30 eV and an intensity of

FIG. 2. Energy levels of Be and Be+ involved in the photoioniza-
tion process. Experimental energies [72] are labeled by their terms
and dominant configurations. As indicated by the arrows, we consider
lasers with central frequencies corresponding to photon energies of
30 eV and 150 eV. The zig-zag curve above the 30 eV arrow denotes
a change in energy scale between the 30 eV and the 150 eV arrows.

FIG. 3. Photoelectron spectra for linearly polarized laser pulses
with (a) 6 and (b) 10 cycles with a central frequency corresponding
to 30 eV, and an intensity of 1013 W/cm2. The RAS schemes are
(M1,M2) = (2,0) (black, solid), (4,0) (red, solid), (6,0) (blue, long-
dashed), (7,0) (orange, dotted), (9,0) (dark green, dash-dotted), (2,5)
(black, long dash-double dotted) and (2,10) (dark purple, dotted).

1013 W/cm2. To illustrate the accuracy of the TD-RASSCF-D
method, we show the PES after the ionization with pulses
containing np = 6 [Fig. 3(a)] and np = 10 cycles [Fig. 3(b)]
for several RAS schemes. According to the ionization channels
in Fig. 2, the peaks of the photoelectron spectrum should be
located at 9.74, 16.72, and 20.68 eV. We first note that the result
of the TDHF (M1 = 2,M2 = 0) calculation overestimates the
height of the PES compared with the results of the rest of the
RAS schemes. This behavior of the TDHF result clearly shows
the inadequacy of this approach to describe the electronic
structure and dynamics of Be during the ionization process. We
find for MCTDHF with 4 orbitals and 6 cycles that the main
peak is located at ≈21.02 eV, and ranges from 20.3–20.5 eV for
the rest of the schemes in Fig. 3(a). The PES for the 10 cycles
pulse in Fig. 3(b), presents more narrow peaks in the PES, since
the bandwidth of the pulse is reduced from �ω ∼ 7.2 eV to
4.3 eV but the peak positions remain similar to the ones in
Fig. 3(a). For the schemes with more than 4 orbitals, the main
peak is located at identical positions at the scale of the figure.
Also note that the results for MCTDHF for 6, 7, and 9 orbitals
are indistinguishable over the entire energy range. In the tail at
lower energies, however, the RAS schemes (M1 = 2,M2 = 5)
and (M1 = 2,M2 = 10) differ from the MCTDHF results. This
disagreement lies at energies corresponding to the peak of
the ionization channel Be[(1s22s2)1Se] → Be+[(1s22p)2P o],
Fig. 2. This means that M1 = 2 and only two electrons in P2 is
not sufficient to describe one electron in an excited orbital and
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FIG. 4. Triply differential probabilities for (a) θ = 0 (parallel to
the laser polarization direction) and (b) π/2 (perpendicular to the
laser polarization direction) and ϕ = 0 for linearly polarized laser
pulses with 6 cycles, central frequency corresponding to 30 eV and
an intensity of 1013 W/cm2. The RAS schemes shown are as in Fig. 3.

another in the continuum, even for M2 = 10. To isolate the
corresponding peak we use that single ionization changes the
angular momentum of the system by �L = ±1 and �ML = 0.
Since the ionic channels (1s22s)2Se and (1s22p)2P o have
different symmetries, the ejected electron must be p for the
first ionic channel and s or d for the second channel. The
maximum in the probability of the p continuum electron
lies in the direction parallel to the polarization of the laser,
whereas it vanishes in the perpendicular direction. The s

and d photoelectrons can be detected in both directions.
Then, we can disentangle the contributions of the two peaks
by analyzing the momentum distributions in the directions
parallel and perpendicular to the laser polarizations, such
differential quantities are shown in Figs. 4 and 5 for 6 and
10 cycles, respectively.

In Figs. 4(a) and 4(b) we show the triply differential proba-
bilities [Eq. (35)] parallel and perpendicular to the polarization
of the laser pulse. We note that the TDHF is not sufficient
to obtain the peak in the perpendicular direction, because
the channel Be+[(1s22p)2P o] is inaccurately described at
that level of approximation. The reason is that the one-body
operator cannot couple directly to that correlated channel. In
Fig. 4(a) the peak along the polarization direction is smaller
than for MCTDHF with 4 orbitals. By carefully analyzing
the triply differential probability we find that the angular
distribution for TDHF is wider which explains the large
PES. We see that the probability for ionization in the parallel

FIG. 5. Triply differential probabilities for (a) θ = 0 and (b) π/2
and ϕ = 0 for a linearly polarized laser pulse with 10 cycles, a central
frequency corresponding to 30 eV and an intensity of 1013 W/cm2.
The RAS schemes shown are as in Fig. 3.

direction [Fig. 4(a)] is much higher for MCTDHF with 4
orbitals than with the other schemes. Around 10 eV there
is a small peak which contributes to the main peak, and
which comes from the s and d electrons associated with
the Be+[(1s22p)2P o] channel. The energy and angle resolved
signals for the other methods overlap and are indistinguishable
on the scale of the figure. For 10 cycles there is, however, a
small difference among them between approximately 10 and
17 eV, as shown in Fig. 5(a). Compared to the 6 cycles case, for
10 cycles, the bandwidth of the pulse is smaller, � ≈ 4.3 eV,
and the influence of the s and d electrons is present in the
PES for all the RAS schemes considered. To investigate this
difference further, we turn to the perpendicular direction. For
both 6 and 10 cycles, the MCTDHF solution for 6, 7, and 9
orbitals overlap, [Fig. 4(b) and Fig. 5(b)], whereas they are dif-
ferent from the RAS schemes (M1 = 2,M2 = 5) and (M1 = 2,

M2 = 10). For a 10 cycles pulse, the peaks are located at
16.24 eV for MCTDHF, 15.7 eV for (M1 = 2,M2 = 5) and
15.3 eV for (M1 = 2,M2 = 10). For the 6 cycle pulse, the
peaks are shifted by approximately 0.3 eV for all the active
spaces. This effect may be caused by the enhancement of other
ionization channels opening up due to the wider bandwidth.

To analyze only the influence on the spectra of choos-
ing different RAS schemes, we describe the PES for sev-
eral partition schemes fixing the number of orbitals. In
Figs. 6 and 7 we show the PES and the triply differential
probabilities, respectively, for several RAS schemes for 7
orbitals, i.e., (M1 = 7,M2 = 0),(M1 = 5,M2 = 2),(M1 = 4,
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FIG. 6. Photoelectron spectrum for linearly polarized laser pulses
with (a) 6 and (b) 10 cycles, a central frequency corresponding to
30 eV, and an intensity of 1013 W/cm2, for a RAS scheme with 7
orbitals. The RAS schemes are (M1,M2) = (7,0) (red, solid), (5,2)
(blue, dashed), (4,3) (orange, dotted), and (2,5) (green, dash-dotted)

M2 = 3), and (M1 = 2,M2 = 5). For 10 cycles, the peak at
20.3 eV corresponding to ionization into the ionic (1s22s)2Se

channel as well as the tail for higher energies coincide for all
the schemes, whereas for 6 cycles, the peak is shifted to lower
energies, probably due to the ionization into the ionic state
(1s22p)2P o. As in the previous cases, the disagreement comes
at lower energies corresponding to the ionic state (1s22p)2P o.
In this range, the MCTDHF and the RAS (M1 = 5,M2 = 2)
results can not be distinguished on the scale of Fig. 6. However,
for the RAS (M1 = 4,M2 = 3) there is an excess in the
signal for energies lower than 17 eV, whereas for larger
energies we find a smaller signal than for MCTDHF. This
effect is more pronounced for (M1 = 2,M2 = 5). This can
be understood in terms of the differential energy distribution
in Fig. 7. In the parallel direction, the curves for these
last two RAS schemes overlap, and they differ between
the (M1 = 7,M2 = 0) and (M1 = 5,M2 = 2) schemes. In
the perpendicular direction we can see differences among
all the schemes. The peak of the MCTDHF calculation is
located at 16.25 eV with a value 2.2×10−6eV−1, which is
slightly larger than 1.9×10−6eV−1 for (M1 = 5,M2 = 2). For
(M1 = 4,M2 = 3) and (M1 = 2,M2 = 5), the peak is shifted
to lower energies, both lying at 15.24 eV. The height of these
peaks is very similar to the heights obtained with the MCTDHF
results.

The peak in the PES coming from the ionic state
Be+[(1s23s)2Se] is not observed in the present results due to

FIG. 7. Triply differential probabilities for (a) θ = 0 and (b) π/2
and ϕ = 0 for a linearly polarized laser pulse with 10 cycles, a central
frequency corresponding to 30 eV and an intensity of 1013 W/cm2

for a RAS scheme with 7 orbitals. The RAS schemes shown are the
same are as in Fig. 6.

the small cross section of this transition [38]. For the pulses of
finite duration used here, this peak is buried in the tails of the
other peaks.

The RTP calculations also illustrate the reduction of the
numerical effort of the TD-RASSCF-D approach compared
with the MCTDHF method. For the RAS scheme (M1 = 2,

M2 = 5), 110 cycles of propagation takes 18 h in 20 cores
compared to 22 h for MCTDHF. In the case of 9 spatial orbitals
the difference is more marked, taking 34h for the RAS scheme
(M1 = 2,M2 = 7) and 47 h for MCTDHF.

2. 150 eV photon energy

We analyze the core ionization to the ionic channel
Be+[(1s2s2)2Se] [Fig. 2] using 150 eV linearly polarized laser
pulses for several RAS schemes. The PES is shown in Fig. 8
for a 10-cycles pulse with ω = 150 eV and an intensity of
1014 W/cm2. The PES are almost overlapping for all the
RAS schemes used, which means that the MCTDHF and
TD-RASSCF-D methods describe with the same accuracy
the ionization into this channel, even for the minimum
number of configurations, that is, using the RAS scheme
(M1 = 2,M2 = M − 2). These RAS schemes contain the
most relevant configurations needed to describe the dynamics
of the process, that is, (1s2s2)2Se and an electron εp in the
continuum. The peak is located at ≈21.37 eV, corresponding
to an ionization energy of 128.63 eV, a bit higher than the
experimental value 123.35 eV [72], which is in agreement
with the 4 eV shift found in Ref. [38].
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FIG. 8. Photoelectron spectrum for a linearly polarized laser
pulse with 10 cycles, a central frequency corresponding to 150 eV
and an intensity of 1014 W/cm2. The RAS schemes shown are as
in Fig. 3.

C. Photoelectron dynamics and time delay

In recent years there has been a large interest in time delays
in photoionization studies (see, e.g., the review Ref. [16] and
references therein). Here we consider the EWS time delay be-
tween ionization into the channels Be+[(1s22s)2Se] (tEWS,1s22s)
and Be+[(1s22p)2P o] (tEWS,1s22p) and we exploit the flexibility
of the TD-RASSCF method to address the role of electron
correlation on photoionization time delays. We do so in the
following by considering the angle-resolved radial density
after the pulse for several RAS schemes. We show in Figs. 9(a)
and 9(b) the density along the polarization direction and in
Figs. 9(c) and 9(d) the density in the perpendicular direction
at different times after the end of the laser pulse. As we
have discussed in previous sections, the ionization into both
channels contributes in the parallel direction, whereas in
the perpendicular direction only the s and d photoelectrons
associated with the Be+[(1s22p)2P o] channel contribute. Let
us remark that the results of the MCTDHF calculations have
also been obtained with 9 spatial orbitals, and on the scale of
the figure they coincide with the results of the calculation
for 7 orbitals. In the parallel direction, the height of the
density decreases as it spreads during the propagation. In
the perpendicular direction the outgoing wave packet is not
yet formed at t1 = 28.50 a.u., therefore the peak in the
density increases for later times. The RAS (M1 = 5,M2 = 2)
reproduces accurately the dynamics for ionization into the
channel Be+[(1s22s)2Se] [Fig. 9(a)], whereas there are small
differences with the (M1 = 4,M2 = 3) scheme, as shown in
Fig. 9(b). The main differences between the different levels
of theory are found in the perpendicular direction shown in
Figs. 9(c) and 9(d). In the case of (M1 = 5,M2 = 2), we
find that the heights of the density peaks are smaller than
in MCTDHF case, but remain on equal positions. In contrast
to this case, for (M1 = 4,M2 = 3) the density distributions are
similar, but the RAS result is shifted in the radial coordinate
with respect to the MCTDHF result.

To analyze independently the dynamics of the ejected
electrons from each ionic channels we can use that the ejected

FIG. 9. Triply differential probabilities in position space for
(M1 = 7, M2 = 0), (M1 = 2, M2 = 5), and (M1 = 3, M2 = 4) RAS
schemes with 7 spatial orbitals after the interaction with a linearly
polarized laser pulse with a central frequency corresponding to
30 eV, 10 cycles and an intensity of 1013 W/cm2, where (a) and (b)
corresponds to the θ = 0, ϕ = 0 and (c) and (d) to θ = π/2, ϕ = 0.
All the panels contain the results for MCTDHF with 7 spatial orbitals
at t1 (red, solid), t2 (black, dashed) and t3 (purple, dash-dotted),
together with (M1 = 5,M2 = 2) in panels (a) and (c) (t1, blue, dotted;
t2, green, dash-double dotted; and t3, orange, short dashed) and
(M1 = 4, M2 = 3) in panels (b) and (d) (t1, blue, dotted; t2, green,
dash-double dotted; and t3, orange, short dashed). The instants of
time in atomic units are indicated in panel (d).

p electron associated with the ionic channel Be+[(1s22s)2Se]
only contributes in the direction parallel to the polarization
axis of the laser, whereas the s and d electrons associated
with the Be+[(1s22p)2P o] channel contribute to both the
parallel and perpendicular directions. To distinguish between
these two channels by the angle resolved radial density in
the parallel and perpendicular directions we benefit from the
fact that the influence of the s and d electrons in the parallel
direction is negligible compared to the p electron ejected from
Be+[(1s22s)2Se], as seen in Fig. 9. As discussed in Ref. [16]
(see also Ref. [10]), the time delay can be directly extracted
from the motion of the outgoing wave packet without the
explicit need for the energy-derivative phase of the dipole
matrix element. Accordingly, we may extract the time delay
in the two channels by considering the radial density in the
parallel and perpendicular directions, i.e., by considering the
expectation value of the position of the electron in the outer
region, which fulfils Ehrenfest’s theorem, 〈r(t)〉 = 〈k〉(t − t0),
with t0 the time delay, which is a sum of the EWS time delay
and a Coulomb specific contribution due to the logarithmic
phase distortion of the outgoing wave [16]. The latter is
estimated by 1/〈k〉3[1 − ln(2〈k〉2t)] and is a function of t [16].
To isolate the EWS time delay, the procedure that we will
follow therefore is to calculate t0 in the two channels for a
finite time interval (in practice the time interval 65–80 a.u. is
used), and then subtract the contribution from the Coulomb
specific time-dependent shift.

We now calculate the time delays for TD-RASSCF and
MCTDHF and compare the impact of the electron correlation
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TABLE II. Relative EWS time delay τEWS in attoseconds (as)
between the single photon ionization channels Be[(1s22s2)1Se] →
[Be+(1s22s) + εp] 1P o and Be[(1s22s2)1Se] → [Be+(1s22p) + ε�]
1P o with � ∈ s,d for RAS schemes specified by the values of
(M1, M2).

M1 M2 τEWS (as)

9 0 21.04
7 0 20.81
5 2 19.19
4 3 19.40
2 5 20.19
2 10 21.04

by varying the RAS scheme. Let us remark that we need to in-
clude correlation in the photoionization process of Be, because
we cannot resolve the ionization process Be[(1s22s2)1P e] →
Be+[(1s22p)2P o] + e−(s or d) using TDHF. We find for
MCTDHF with 7 orbitals a time delay between the two
channels of τEWS = tEWS,1s22p − tEWS,1s22s ≈ 20.81 as, which
is a bit smaller than the result for 9 orbitals, τEWS = 21.04
as. By reducing P1 and adding two orbitals to P2, (M1 = 5,

M2 = 2), τEWS is 19.19 as, which slightly increases to 19.4 as
for (M1 = 4,M2 = 3). The RAS scheme (M1 = 2,M2 = 5)
leads to 20.19 as. When we increase the number of orbitals
in P2 to (M1 = 2,M2 = 10) we obtain τ0 = 21.04 as, in
agreement with the MCTDHF value for 9 orbitals. For these
two latter RAS schemes the ionization from the channel
Be+[(1s22p)2P o] is not well described, but nevertheless the
resulting value for τEWS is acceptable. The values for the time
delays are collected in Table II.

In conclusion, the relative time delay of ionization into
Be+[(1s22p)2P o] and Be+[(1s22s)2Se] is around 21 as. Note
that this method is sensitive to an error in the calculation
of 〈r(t)〉 and in the estimation of the Coulomb shift. It can
be estimated that for this process, an error of �〈r(t)〉 =
10−2 a.u. implies an error in the time delay of the order of
�τ0 ≈ 0.8 as, which together with the error associated to the
Coulomb distortion, leads to an estimation of the uncertainty
in τEWS of around �τEWS ≈ 2 as, which is comparable to the
experimental accuracy reported in the most recent experiment
on He (0.9–1.6 as) [15]. We also note that the relative accuracy
of the different RAS schemes, beyond TDHF, can not be
addressed within the uncertainty in the extraction procedure.

IV. CONCLUSIONS AND OUTLOOK

In this work, we addressed the effect of electron correlation
in Be in the ground state, in photoelectron spectra and in
relative time delay in photoionization by application of the
TD-RASSCF-D [46,48] method, extended in this work to fully
3D systems. We used the coupled basis method on the angular

momentum of the single orbital basis to compute the two-
body operator. This method reduces the numerical cost since
the number of operations to obtain the mean-field operator
scales linearly with the radial grid points and quadratically
with the number of angular functions. We found that the TD-
RASSCF method, including double excitations, diminishes
the numerical effort compared to the MCTDHF by reducing
the accessible configurations and that it is accurate mainly
due to the importance of the pairwise nature of the electron
correlation. Furthermore, the selection of the RAS makes it
possible to identify the most important active space orbitals,
which facilitates a convergence to the global ground state. We
found that the restriction on the RAS scheme permits a random
initial guess function to reach a lower ground state energy than
with the MCTDHF method, unless we start with a designed
initial guess function in the latter case.

We analyzed the PESs resulting from the interaction with
a short linearly polarized XUV laser pulse, and found that the
mean-field TDHF method is inaccurate in describing single
ionization. Using the TD-RASSCF-D method we identified
the most important active space orbitals which capture the
most relevant configurations.

We also computed an EWS time delay of around 21
as between the ionization channels Be[(1s22s2)1Se] →
Be+[(1s22s)2Se] + e− and Be[(1s22s2)1Se] →
Be+[(1s22p)2P o] + e− for ionization with a few cycle,
XUV laser operated in the perturbative regime. We compared
the results for several RAS schemes. For example, the TDHF
is unable to describe accurately both ionization channels, and
therefore, also the time delay. As we include more orbitals in
the method, we obtain a better description of the ionization
into the two channels, and within the estimated uncertainty of
the time delay, we obtain agreement in the results obtained by
different RAS schemes. This agrees with the findings in Ne
at different levels of approximation for photon energies in the
range 100–140 eV [73].

Over all, we found that the TD-RASSCF-D methodology
constitutes an efficient tool to deal with many-electron atomic
systems in the presence of time-dependent interaction as, e.g.,
an external XUV field. Combined with the coupled basis
method, it provides a stable, accurate and efficient procedure to
treat orbitals with undefined magnetic quantum number, which
is crucial to describe, e.g., of the interaction with circularly
polarized light, where the rotational symmetry is broken.
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