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Multielectron effects in the photoelectron momentum distribution of noble-gas atoms driven by
visible-to-infrared-frequency laser pulses: A time-dependent density-functional-theory approach

Mitsuko Murakami,1,2,* G. P. Zhang,2 and Shih-I Chu1,3

1Center for Quantum Science and Engineering, Department of Physics, National Taiwan University, Taipei 10617, Taiwan
2Department of Physics, Indiana State University, Terre Haute, Indiana 47809, USA

3Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
(Received 30 March 2017; published 26 May 2017)

We present the photoelectron momentum distributions (PMDs) of helium, neon, and argon atoms driven
by a linearly polarized, visible (527-nm) or near-infrared (800-nm) laser pulse (20 optical cycles in duration)
based on the time-dependent density-functional theory (TDDFT) under the local-density approximation with
a self-interaction correction. A set of time-dependent Kohn-Sham equations for all electrons in an atom is
numerically solved using the generalized pseudospectral method. An effect of the electron-electron interaction
driven by a visible laser field is not recognizable in the helium and neon PMDs except for a reduction of the
overall photoelectron yield, but there is a clear difference between the PMDs of an argon atom calculated with
the frozen-core approximation and TDDFT, indicating an interference of its M-shell wave functions during the
ionization. Furthermore, we find that the PMDs of degenerate p states are well separated in intensity when driven
by a near-infrared laser field, so that the single-active-electron approximation can be adopted safely.
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I. INTRODUCTION

Since x-ray free electron lasers around the world, such as
LCLS (Linac Coherent Light Source) in the United States,
SACLA (SPring-8 Angstrom Compact free-electron Laser)
in Japan, and FLASH (Free-Electron Laser in Hamburg) in
Germany, became operational around 2010, many
groundbreaking experiments have been conducted in the field
of angle-resolved photoelectron momentum spectroscopy
of gaseous atoms, e.g., the orbital-dependent observation of
lithium (Li) excited states [1], the two-color core excitation
of neon (Ne) atoms [2], and the xenon Rydberg states [3],
to name a few. Resolutions of the photoelectron momentum
distribution (PMD) in these experiments are unprecedentedly
high, which has made detailed comparison with theoretical
calculations possible.

There are various methods to calculate the PMD of
atoms, such as the R-matrix theory [4,5], the perturbation
approach [6], the strong-field approximation [7,8], and the
time-dependent Schrödinger equation (TDSE) [9,10]. The
PMD of hydrogen atoms has been studied extensively in
the past using the TDSE [11–14], but the PMD of many-
electron atoms previously studied was limited by the single-
active-electron (SAE) approximation [3,15,16]. One notable
exception is the calculation of PMD based on the time-
dependent density-functional theory (TDDFT) in Ref. [17]
using the OCTOPUS code [18], but their method was not tested
with real many-electron atoms but with the one-dimensional
soft-Coulombic hydrogen atom. The highest-occupied atomic
orbitals (HOAOs) of noble-gas atoms beyond helium (He)
are in p states, where the electron-electron interaction forces
three degenerate orbitals to be perpendicular to each other,
and they ionize by a linearly polarized laser field into different
angles. Since the orbital-dependent measurements of p-state
PMD are already available [1,19], theoretical calculations

*mitsuko.murakami@indstate.edu

beyond the SAE approximation are urgently needed. Recently,
the multielectron PMDs of noble-gas atoms driven by an
extreme ultraviolet (XUV) laser pulse were calculated based
on the solution of the two-electron TDSE in the limit of the
frozen-core (FC) approximation [20]. Their calculation was in
excellent agreement with experimental data.

In this paper, we calculate the PMD of He, Ne, and argon
(Ar) atoms driven by a linearly polarized visible (527-nm)
or near-infrared (800-nm) laser pulse (20 optical cycles in
duration) based on TDDFT. TDDFT is a mathematically
tractable alternative to the many-electron TDSE and assumes a
single-electron Hamiltonian for each electron in an atom. The
resulting set of linearly independent Kohn-Sham (KS) equa-
tions is numerically solved using the generalized pseudospec-
tral (GPS) method [21]. The KS effective potential of the atom
is calculated by using the local-density approximation with a
self-interaction correction (LDA-SIC) [22]. This scheme has
been successfully used in the past to calculate high-order-
harmonic spectra of He, Ne, and Ar [23] atoms, the strong-field
ionization of Li and beryllium atoms [24], the resonance
energies of He Rydberg states [25], the Cooper minimum in
the high-order-harmonic spectra of an Ar atom [26,27], and
the transient absorption spectra of a He atom [28]. This paper
complements those works with the PMD calculation of He,
Ne, and Ar atoms.

With rapid technological advances in high-performance
computing, all-electron calculations of atoms in a strong laser
field have become as affordable as ever. For the modest-
intensity (0.5–1 × 1014 W/cm2), linearly polarized driving
laser we use in this paper, our TDDFT calculation of the
PMD based on the GPS method requires a very moderate
number of special points (150–250 radial and 31–63 polar
angles) and takes only 5–20 h per electron per CPU (central
processing unit). While we consider the multiphoton ionization
of noble-gas atoms driven by a visible-to-infrared (a few eV)
laser pulse in our work, the process considered in Ref. [20] is
the one-photon double ionization driven by an XUV (∼100 eV)
laser pulse. In general, the calculation of a one-photon, double
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ionization requires the approximately PW/cm2 driving-laser
intensity, which makes our all-electron TDDFT calculation
too difficult to converge in a reasonable computation time.
Therefore, we restrict our goal in the present paper to
the observation of a multielectron interference effect in a
moderately intense, low-frequency driving laser field.

This paper is organized as follows. In Sec. II, we
describe the numerical methods in our calculations. Sec-
tion II A introduces the KS Hamiltonian for TDDFT based
on the LDA-SIC approximation, and Secs. II B and II C
describe the numerical schemes for the initial-value problem
and the time evolution, respectively. Results are presented
in Sec. III. The PMDs generated by a 527-nm driving laser
pulse are discussed first, separately for He (Sec. III A),
Ne (Sec. III B), and Ar (Sec. III C) atoms. The PMDs of
the Ne and Ar atoms are studied further using an 800-nm
laser pulse in Sec. III D. Then, we discuss the applicability of
our method to the experiments of Refs. [1,19] in Sec. III E.
Section IV summarizes the results. Atomic units (e = me =
h̄ = 1) are used throughout, unless specified otherwise.

II. METHODS

A. Time-dependent density-functional theory

Consider an atom interacting with a strong laser field E(t).
To describe the dynamics of each electron in the atom, we
solve the time-dependent KS equation in the length gauge,
given by [29]

i
∂

∂t
ψiσ (r,t) = H(r,t)ψiσ (r,t), (1)

where i = 1,2, . . . ,Nσ ranges over occupied atomic orbitals,
σ ∈ {↑ ,↓} specifies the electron spin ± 1

2 , and

H(r,t) =
[−1

2
∇2 − Z

r
+ vKS

σ [n↑,n↓](r,t) + r · E(t)

]
. (2)

The charge number of a nucleus is equal to the total number
of electrons, i.e., Z = N↑ + N↓.

The KS potential vKS
σ [n↑,n↓](r,t) in the HamiltonianH(r,t)

is a functional of the electron spin density

nσ (r,t) =
Nσ∑
i=1

niσ (r,t) =
Nσ∑
i=1

|ψiσ (r,t)|2 (3)

and consists of two parts, such that

vKS
σ [n↑,n↓](r,t) = VH[n](r,t) + vxc

σ [n↑,n↓](r,t). (4)

The first term in the above equation is the Hartree potential,
defined by

VH[n](r,t) =
∫∫∫

n(r′,t)
|r − r′|d

3r′, (5)

which is a functional of total electron density: n(r,t) =∑
σ nσ (r,t). The second term, vxc

σ [n↑,n↓](r,t), is an exchange-
correlation potential and needs to be approximated in practice.
We employ the LDA-SIC [22,30]

vxc
σ [n↑,n↓](r,t) � V LDA

σ [nσ ](r,t) − V SIC
σ (r,t), (6)

where

V LDA
σ [nσ ](r,t) = −

(
6

π
nσ (r,t)

)1/3

(7)

and

V SIC
σ (r,t) = V SI

σ (r,t) + 1

nσ (r,t)

Nσ∑
i=1

′niσ (r,t)viσ (t). (8)

In the last expression, V SI
σ (r,t) is the self-interaction potential

given by

V SI
σ (r,t) = 1

nσ (r,t)

Nσ∑
i=1

niσ (r,t)wiσ (r,t), (9)

with

wiσ (r,t) = VH[niσ ](r,t) − V LDA
σ [niσ ](r,t). (10)

Moreover, viσ (t) ≡ 〈V SIC
iσ (t)〉 − 〈wiσ (t)〉, where

〈
V SIC

iσ (t)
〉 =

∫∫∫
V SIC

σ (r,t)niσ (r,t) d3r (11)

and

〈wiσ (t)〉 =
∫∫∫

wiσ (r,t)niσ (r,t) d3r. (12)

The asymptotic condition, where V SIC
σ → 0 as r → ∞,

requires that viσ = 0 for the HOAOs, and thus, the primed
summation

∑′ in Eq. (8) denotes a summation over all
orbitals except for the HOAOs [31]. We can calculate viσ (t)
noniteratively as [32]

viσ (t) =
Nσ∑
j=1

′[A−1
σ (t)]ij

[〈
V SI

jσ (t)
〉 − 〈wjσ (t)〉], (13)

where

[Aσ (t)]ij = δij −
∫∫∫

niσ (r,t)njσ (r,t)
nσ (r,t)

d3r (14)

and 〈
V SI

jσ (t)
〉 =

∫∫∫
V SI

σ (r,t)njσ (r,t)d3r. (15)

The LDA-SIC is an exchange-only approximation, so that
electrons with opposite spins do not interact. For noble-gas
atoms in particular, the number of linearly independent KS
equations to be solved is therefore Z/2. The total density
can then be found by multiplying the spin-up (or spin-down)
electron density by 2.

B. Initial-value problem

For the stationary states of atoms, we may assume the
separable solution of the form

ψiσ (r) = R�
iσ (r)

r
Ym

� (θ,φ), (16)

where Ym
� (θ,ϕ) are the spherical harmonics,

Ym
� (θ,ϕ) =

√
(2� + 1)

4π

(� − m)!

(� + m)!
P m

� (cos θ ) eimφ, (17)

and P m
� (cos θ ) are the associated Legendre polynomials. Each

spin orbital ψiσ (r) is (2� + 1)-fold degenerate for different
m’s. If we take an average over these degenerate states,
then electron spin density of an individual atomic orbital is

053419-2



MULTIELECTRON EFFECTS IN THE PHOTOELECTRON . . . PHYSICAL REVIEW A 95, 053419 (2017)

spherically symmetric and given, using the addition theorem
of spherical harmonics, as

n̄iσ (r) =
(

1

2� + 1

)∣∣R�
iσ (r)

∣∣2

r2

�∑
m=−�

|Y�m(θ,φ)|2

=
∣∣R(�i )

iσ (r)
∣∣2

4πr2
, (18)

where �i is the angular momentum of ψiσ (r). Note that �i is
not a summation index but specific to each ith orbital, and
hence, we enclose it in parentheses. In the limit of the central
field approximation (18), the Hartree potential (5) reduces to
a function of only the radial coordinate, i.e.,

VH[n̄](r,0) =
∫

n̄(r ′)
r>

4πr ′2dr ′, (19)

where n̄(r) = ∑
σ

∑Nσ

i=1 n̄iσ (r), and r> ≡ max(r,r ′). The
scaled function U (r) ≡ rVH[n̄](r,0) satisfies the following
Poisson’s equation:

− d2

dr2
U (r) = 4πr n̄(r), (20)

with the boundary conditions

U (0) = 0, U (rmax) =
∫ rmax

0
n̄(r) 4πr2dr. (21)

In the same limit, the LDA-SIC potential (6) also reduces to a
radial function, such that

V LDA
σ [n̄σ ](r,0) = −

(
6

π
n̄σ (r)

)1/3

, (22)

and

V SIC
σ (r,0) = V SI

σ (r,0) + 1

n̄σ (r)

Nσ∑
i=1

′n̄iσ (r)viσ , (23)

where

V SI
σ (r,0) = 1

n̄σ (r)

Nσ∑
i=1

n̄iσ (r)wiσ (r,0), (24)

wiσ (r,0) = VH[n̄iσ ](r,0) − V LDA
σ [n̄iσ ](r,0), (25)

viσ =
Nσ∑
j=1

′(A−1
σ

)
ij

[〈
V SI

jσ

〉 − 〈wjσ 〉], (26)

and

(Aσ )ij = δij −
∫

n̄iσ (r)n̄jσ (r)

n̄σ (r)
4πr2dr. (27)

Accordingly, the eigenvalue problem for the KS equa-
tion (1) becomes diagonal in each �, such that

H0
�(r)R�

iσ (r) = εiR
�
iσ (r), (28)

where

H0
�(r) = −1

2

∂2

∂r2
+ �(� + 1)

2r2
− Z

r
+ vKS

σ [n̄σ ](r,0), (29)

TABLE I. Ground-state energy εi of each bound electron
(in a.u.), calculated using the LDA-SIC or KLI approximations. Also
shown are the Hartree Fock results (HF) and experimental values
(Expt.) from Refs. [33,34], respectively.

LDA-SIC KLI HF Expt.

He 1s2 − 0.918 − 0.918 − 0.918 − 0.904

Ne 1s2 − 30.836 − 30.802 − 32.772 31.976
2s2 − 1.644 − 1.707 − 1.930 − 1.781
2p6 − 0.808 − 0.850 − 0.850 − 0.794

Ar 1s2 − 114.364 − 114.929 − 118.610 − 117.829
2s2 − 10.981 − 11.958 − 12.322 − 11.991
2p6 − 8.619 − 9.558 − 9.571 − 9.132
3s2 − 1.050 − 1.149 − 1.277 − 1.077
3p6 − 0.549 − 0.630 − 0.591 − 0.581

and

vKS
σ [n̄σ ](r,0) = VH[n̄](r,0) + V LDA

σ [n̄σ ](r,0) − V SIC
σ (r,0).

(30)

Equation (28) is solved by using the generalized pseu-
dospectral method [21]. The resulting set of eigenvalues and
eigenstates is used to construct a time-evolution operator for
the stationary part of the Hamiltonian in Eq. (2).

Table I lists the ground-state energies εi of occupied atomic
orbitals for He, Ne, and Ar atoms obtained by the LDA-SIC
approximation. In the self-interaction-free theory, the ground-
state energy of the HOAOs should be equal to the negative of
the first ionization potential [30]. For reference purposes, we
also calculated the ground-state energies using the Krieger-Li-
Iafrate (KLI) approximation [31], whose method is relegated
to the Appendix. Also shown are the calculations based
on the Hartree-Fock (HF) method from Ref. [33] and the
experimental values from Ref. [34]. For a comparison of total
energies between these methods, see Ref. [22].

C. TDDFT in a linearly polarized field

Without loss of generality, we may assume that the laser
polarization of a linearly polarized field is along the z axis.
Then,

E(t) = Eo(t) sin(ωot) (31)

−→ r · E(t) = Eo(t) sin(ωot) r cos θ, (32)

where Eo(t) is a pulse envelope function, given by

Eo(t) =
√

Io cos2

(
ωo t

2n

)
, (33)

with Io and n being the peak intensity and the number of optical
cycles (T = 2π/ωo) per pulse, respectively.

Because of the azimuthal symmetry in (32), the magnetic
quantum number mi of the ith orbital is conserved during the
time evolution, so that we can assume a solution of the form

ψiσ (r,t) =
∑

�

R
�(mi )
iσ (r,t)

r
Y

(mi )
� (θ,φ). (34)
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It then follows that the electron spin density of each orbital
is independent of the azimuthal angle φ and can be expanded
with the Legendre polynomials, such that [35]

niσ (r,θ,t) =
∑

�

n�
iσ (r,t)

√
2� + 1

4π
P�(cos θ ), (35)

where

n�
iσ (r,t) =

√
2� + 1

4π

∫∫
d |ψiσ (r,t)|2 P�(cos θ ). (36)

Similarly, the Hartree potential of each orbital in a linearly
polarized field can also be expanded with the Legendre
polynomials as

VH[niσ ](r,θ,t) =
∑

�

V H
� [niσ ](r,t)

√
2� + 1

4π
P�(cos θ ), (37)

where

V H
� [niσ ](r,t) =

√
2� + 1

4π

∫∫
d VH[niσ ](r,θ,t) P�(cos θ ).

(38)

The scaled functions U�(r,t) ≡ rV H
� [niσ ](r,t) satisfy the fol-

lowing Poisson’s equation:[
− d2

dr2
+ �(� + 1)

r2

]
U�(r,t) = 4πr n�

iσ (r,t), (39)

with the boundary conditions

U�(0,t) = 0,

U�(rmax,t) = 4π

2� + 1
(rmax)−�

∫ rmax

0
n�

iσ (r,t) r�+2dr. (40)

The Hartree potential (5) is then found as

VH[n](r,θ,t) =
∑

σ

Nσ∑
i

VH[niσ ](r,θ,t). (41)

For the time evolution, the Hamiltonian given by Eq. (2) is
split into H0

�(r) + V (r,θ,t), where the stationary Hamiltonian
is given by Eq. (29), and

V (r,θ,t) = VH[n](r,θ,t) + V LDA
σ [nσ ](r,θ,t) − V SIC

σ (r,θ,t)

− vKS
σ [n̄σ ](r,0) + Eo(t) sin(ωot) r cos θ. (42)

Then, the wave function (34) is evolved as [29]

ψiσ (r,t + �t) � e−iH0
� (r)�t/2L−1(�)e−iV (r,θ,t+�/2)�t

×L(θ )e−iH0
� (r)�t/2ψiσ (r,t), (43)

where L denotes the Legendre transform defined by

L
{
R

�(mi )
iσ (r,t)

}
(θ ) ≡

∑
�

P
(mi )
� (θ,φ) R

�(mi )
iσ (r,t)

=
∑

�

√
(2� + 1)(� − mi)!

2(� + mi)!
P

(mi )
� (cos θ ) R

�(mi )
iσ (r,t)

= R
(mi )
iσ (r,θ,t). (44)

FIG. 1. Cross section of photoelectron momentum distributions
(PMDs) of a He atom, driven by the 527-nm, linearly polarized,
20-cycle laser pulse along the z axis with a peak intensity of
(a) Io = 5 × 1013 W/cm2 and (b) 1 × 1014 W/cm2. The PMD
intensity is in the logarithmic scale and shown as a color map.

In the FC approximation, one would neglect the change in the
potential that depends on the electron density during the time
evolution, so that Eq. (42) reduces to

V (r,θ,t) � Eo(t) sin(ωot) r cos θ. (45)

In Sec. III, we will discuss the difference in the PMDs
calculated with or without the FC approximation.

In each time step, the wave function ψiσ (r,t) is split
into inner and outer regions by a smooth masking function,
and the PMD is found from the outer-region wave function
that is propagated in the momentum space with the Volkov
Hamiltonian in the velocity gauge [10,14]. We study the PMD
of each individual electron at the end of the time evolution
t = tf , given by

Diσ (p,θp) = ∣∣ψ̃v
iσ (p,tf )

∣∣2
, (46)

where ψ̃v
iσ (p,tf ) is the Fourier transform of the outer-region

wave function, as well as the PMD of all electrons, given by

D(p,θp) =
∣∣∣∣∣
∑

σ

Nσ∑
i=1

ψ̃v
iσ (p,tf )

∣∣∣∣∣
2

. (47)

III. RESULTS

A. Helium

The total number of electrons in a He atom is Z = 2, and
therefore, only one time-dependent KS equation (1) for one
of the two electrons needs to be solved, as the other electron
evolves exactly the same way. The TDDFT calculation of a
He atom is relatively stable, and the time step of �t = 0.2 is
sufficient to obtain converging results.

Figure 1 shows the PMDs of a He atom (1s2) driven
by a 527-nm, linearly polarized laser pulse (n = 20 optical
cycles) of peak intensity Io = 5 × 1013 or 1 × 1014 W/cm2.
In Fig. 1, a well-known interference pattern caused by the
electron rescattering [11,16] intercepts the concentric circles
of discrete momenta, given by [4]

ps = √
2(s ωo + no ωo − Ip − Up), (48)
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FIG. 2. Above-threshold-ionization (ATI) spectra of a He
atom, obtained by integrating the polar angle out of the
PMDs in Fig. 1, are shown with solid lines (TDDFT) for
(a) Io = 5 × 1013 W/cm2 and (b) Io = 1 × 1014 W/cm2. Also
shown with dotted lines are the spectra from the frozen-core (FC)
approximation.

where s = 1,2, . . . is the number of above-threshold photons
absorbed, Ip is the ionization potential, Up = Io/4ωo

2 is the
ponderomotive energy, and no = �Ip/ωo� + 1. The number
of angular nodes in each concentric circle increases with
the driving-laser intensity. The calculation with the FC
approximation given by Eq. (45) yields PMDs similar to
those in Fig. 1, except that the overall PMD yield with the
FC approximation is greater than the TDDFT calculation by
roughly 10%. This is consistent with the previous TDDFT
calculations in Refs. [26,29], where it was found that the
ionization probability of noble-gas atoms according to TDDFT
is smaller than the one based on the FC approximation. To
elucidate this point, we integrate the polar angle out of the
PMDs with and without the FC approximation and plot the
resulting above-threshold-ionization (ATI) spectra in Fig. 2.
The first positive photoelectron kinetic energies given by
Eq. (48) with an assumption of Ip = −εi (the first ionization
potential, given in Table I) are 1.96 eV for Io = 5 × 1013

W/cm2 and 0.66 eV for Io = 1 × 1014 W/cm2 (and all
subsequent spectra are separated by ωo = 2.35 eV), which
agree with the locations of the ATI spectral peaks in Fig. 2.

FIG. 3. Photoelectron-momentum-distribution (PMD) cross sec-
tion of a Ne atom, driven by the 527-nm, linearly polarized, 20-cycle
laser pulse along the z axis with a peak intensity of Io = 5 × 1013

W/cm2, obtained from (a) the 2s state, (b) the 2p0 state, (c) the 2p1

state, and (d) the sum of all (1s22s22p6) states.

B. Neon

For a Ne atom, Z/2 = 5 wave functions are evolved in total,
one electron per spin. A time step as small as �t = 0.05 is
necessary to make the TDDFT calculation stable for p-state
systems such as Ne or Ar atoms. Figure 3 shows the individual
Ne PMDs of 2s, 2p0, and 2p1 states in the L shell, as
well as the PMD of all Z = 10 states, driven by a 527-nm,
linearly polarized, 20-cycle laser pulse with a peak intensity of
Io = 5 × 1013 W/cm2. Because of the symmetry in the
Hamiltonian, the 2p−1 state evolves in the same way as the
2p1 state. The PMD of the 1s state is not shown because
its photoelectron density turned out to be negligibly small
(<10−18) compared to the other states.

The PMD yield of the Ne 2s state in Fig. 3(a) is the
smallest, as expected from its relatively large binding energy
−εi (see Table I). More strikingly, we find that there is a clear
suppression along the z axis in the Ne 2p1 PMD in Fig. 3(c),
in contrast to the Ne 2p0 PMD in Fig. 3(b). This is because
the atomic orbital of the 2p1 state is aligned perpendicular to
the driving-laser polarization with a node at z = 0. One can
compare the PMD yields of Ne L-shell electrons in the ATI
spectra in Fig. 4. As expected, the spectral intensity of the 2p0

state, whose atomic orbital is parallel to the driving-laser field,
is the largest. The first positive photoelectron kinetic energy
for the 2p state predicted by Eq. (48) is 0.25 eV, which agrees
with the ATI peaks of the 2p0 and 2p1 states in Fig. 4.

It is known that the PMD of the hydrogen atom driven
by a linearly polarized laser field has a fourfold symmetry,
i.e., D(r,θ ) = D(r,π − θ ) = D(r, − θ ) [4]. The He PMDs
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FIG. 4. ATI spectra of a Ne atom, obtained by integrating the
polar angle out of the PMDs in Figs. 3(a)–3(c).

in Fig. 1 also exhibit such a fourfold symmetry, and so
does the PMD of each individual electron of a Ne atom in
Figs. 3(a)–3(c). On the other hand, the fourfold symmetry is
broken in the PMD evaluated from the sum of all states in
Fig. 3(d), presumably because of the quantum interference
among the complex wave functions ψ̃v

iσ (p,tf ) of different
phases. A similar effect is known in the high-order-harmonic
spectra of a carbon-dioxide molecule [36].

C. Argon

For an Ar atom, Z/2 = 9 wave functions are evolved.
Figure 5 shows the individual Ar PMDs of 3s, 3p0, and 3p1

states in the M shell, as well as the PMD of all Z = 18 states.
All driving-laser parameters are the same as those in the Ne
calculation in the previous section. The PMDs of the inner
atomic orbitals in the K and L shells are not shown, as the
electron density in their PMDs turned out to be negligibly
small (<10−17) compared to the M-shell electrons.

Similar to the Ne (2p1) PMD in Fig. 3(c), the Ar 3p1 PMD
in Fig. 5(c) is suppressed along the z axis, whereas the PMDs
of 3s and 3p0 states in Figs. 5(a) and 5(b) are not, reflecting
their orbital structures. On the other hand, the intensity of the
Ar 3s PMD in Fig. 5(a) is fairly large, in contrast to the Ne
2s PMD in Fig. 3(a). Figure 6 compares the ATI spectra of
Ar M-shell electrons. The intensities of the ATI spectra from
degenerate 3p0 and 3p1 atomic orbitals are particularly close
to one another. The first positive photoelectron kinetic energies
given by Eq. (48) are 0.72 eV for the 3s2 states and 0.23 eV
for the 3p6 states, in good agreement with the location of the
first spectral peaks in Fig. 6.

The fourfold symmetry we found in the PMDs of each
individual atomic orbital in He and Ne atoms also holds for
the Ar PMDs in Figs. 5(a)–5(c), but it breaks in the PMD
of all electrons in Fig. 5(d), similar to what occurs in the
Ne case in Fig. 3(d). Last, the Ar 3p1 PMD in Fig. 5(c)
shows a suppression of electron density in directions both
parallel and perpendicular to the laser polarization, resulting
in a four-lobe structure; this is consistent with the recent p-state
measurement of the PMD of krypton atoms during two-photon

FIG. 5. PMD cross section of an Ar atom, driven by the 527-
nm, linearly polarized, 20-cycle laser pulse along the z axis with a
peak intensity of Io = 5 × 1013 W/cm2, obtained from (a) the 3s

state, (b) the 3p0 state, (c) the 3p1 state, and (d) the sum of all
(1s22s22p63s23p6) states.

ionization (13 eV excitation, followed by a 595-nm linearly
polarized laser pulse) [37].

In Figs. 7 and 8, we plot the PMDs and the ATI spectra
of an Ar atom calculated with the FC approximation given
by Eq. (45). All the laser parameters are kept the same
as the TDDFT calculation in Figs. 5 and 6. We find that
the PMD yield from the 3s state in Fig. 7(a) is negligibly
small compared to the one from the 3p0 or the 3p1 state, in
contrast to the TDDFT results in Fig. 5. A comparison of

FIG. 6. ATI spectra of an Ar atom, obtained by integrating the
polar angle out of the PMDs in Figs. 5(a)–5(c).
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FIG. 7. The same as Fig. 5, but calculated with the frozen-core
approximation.

ATI spectra in Figs. 6 and 8 shows that the FC approximation
does not affect the location of ATI spectral peaks but boosts
the 3p0-state contribution over the other M-shell orbitals
(3s and 3p1). In view of the electron-electron interaction, inner
electrons would ionize more easily after valence electrons
ionize, and thus, the enhanced ATI yield from the 3s state
in the TDDFT calculation relative to the FC approximation
makes sense.

Another striking difference between the TDDFT and the
FC approximation is in the PMD from the Ar 3p1 state. Notice
that there are eight angular nodes in the central region of both

FIG. 8. ATI spectra of an Ar atom under the frozen-core approx-
imation, obtained by integrating the polar angle out of the PMDs in
Fig. 7.

FIG. 9. ATI spectra from (a) the L-shell electrons of a Ne atom
and (b) the M-shell electrons of an Ar atom, driven by an 800-nm,
linearly polarized, 20-cycle laser pulse along the z axis with a peak
intensity of 1 × 1014 W/cm2.

Figs. 5(c) and 7(c). While the intensity of each peak separated
by these nodes is uniform under the FC approximation in
Fig. 7(c), it is weaker in the z direction according to the TDDFT
in Fig. 5(c). This is reasonable, given that the electrons in the
3s and 3p0 states ionize along the z axis (in parallel with the
laser polarization) most in Figs. 5(a) and 5(b). They should
interfere with the electron in the 2p1 state and keep it from
ionizing in the same direction, but the FC approximation fails
to predict such electron-electron interaction.

D. Ionization by infrared lasers

In Secs. III A–III C, atoms are driven by a visible (527-nm)
linearly polarized laser pulse. Experimentally, a driving laser
with longer wavelengths (typically near to midinfrared) is more
commonly used in the momentum spectroscopy [3,15,19]. In
this section, we study the PMDs of Ne and Ar atoms driven
by a near-infrared (800-nm), linearly polarized, 20-cycle laser
pulse with a peak intensity Io = 1 × 1014 W/cm2.

Figure 9 shows the ATI spectra of L-shell and M-shell
electrons in Ne and Ar atoms, respectively. The ATI yields
from inner electrons are negligibly small (<10−20 for the
Ne 1s2 states and < 10−15 for the Ar 1s22s22p6 states) and are
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FIG. 10. PMD cross section of (a) the Ne(2p0) state and
(b) the Ar(3p0) state in Fig. 9.

therefore not shown. We find that the ATI spectral intensities
from degenerate p states in Fig. 9 are well separated, and
the m = 0 state that is parallel to the driving-laser field (2p0

for Ne and 3p0 for Ar) yields the most photoelectrons. As a
result, it is safe to assume that the SAE approximation is valid
in the PMD calculation with an infrared driving laser field, in
accordance with recent publications by other groups [3,38].
In Fig. 10, we plot the single-electron PMDs of the 2p0 state
of Ne and the 3p0 state of Ar. They exhibit complex structures
due to the electron rescattering, similar to the xenon PMD
measured using a midinfrared (24–31 μm) driving laser pulse
in Ref. [3].

E. Discussion

In this section, we discuss the applicability of our cur-
rent GPS method based on TDDFT to the experiments in
Refs. [1,19]. They are two of the earliest measurements of the
p-state PMDs, resolving the information of different orbitals
(m = 0 and ±1). The all-electron calculation of the excited-
state Li PMD, which was measured using an XUV laser pulse
(85–91 eV) in Ref. [1], is significantly more complicated
than the noble-gas atoms we study in the this paper because
(1) the valence shell of a Li atom is partially filled even in
the ground state, which makes electrons with opposite spins
evolve differently, and (2) the stationary Hamiltonian for the
excited-state of a many-electron atom is different from the
ground-state calculation in TDDFT due to the Kohn-Sham
potential, which depends on the electron density. Our TDDFT
calculation can handle both problems, and our calculation of
Li excited states is currently in progress.

There are two reasons why we did not attempt to reproduce
the experimental results of Ref. [19]. First, their PMD
measurement used a circularly polarized field, whereas our
present TDDFT calculation can deal with only a linearly
polarized laser field due to the following computational
constraints. With a circularly polarized driving-laser field, the
spherical-harmonic expansion of the time-dependent electron
density involves complex-valued coefficients, which makes
the numerical calculation of a Hartree potential in each time
step significantly more time-consuming than with a linearly

polarized field. Such calculations will be a subject of our future
work.

Second, the main result presented in Ref. [19] was an
observation of the quantum beating, where a pump field
prepares the initial state as a superposition of two fine-
structured states (2P1/2 and 2P3/2 of the Ne atom) and a probe
field measures the Rabi oscillation of frequency τ = 2π/�E,
where �E is the fine-structure splitting of the two states. This
effect is independent of the probe-field polarization (and the
rest of the laser parameters such as intensity, frequency, and
duration) and happens as long as the initial state is prepared
as a superposition of two states with different energies. In
fact, Ref. [19] demonstrated the Rabi oscillation between
the two fine-structure states using a linearly polarized field
as well. Furthermore, this type of quantum beating is not
restricted to the fine-structure states but can happen between
any two nondegenerate eigenstates, as evidenced in Ref. [39],
where the quantum beating between various excited states
of a He atom was measured. Reference [39] also presents
a TDSE calculation in the limit of the SAE approximation,
which reproduces the quantum beating in their experiment;
in this sense, the quantum beating in Ref. [19] is not a
multielectron effect we aimed to study in our present work.
That is the second reason why we did not attempt a direct
comparison between our calculation and the experimental
results in Ref. [19]. A theoretical calculation was given in
Ref. [19] based on the rotating-wave approximation for a
two-level system, which was sufficient to explain the quantum
beating. It would be more desirable, however, to diagonalize
the stationary-state Hamiltonian in the (j,mj ) basis rather than
the (�,m) basis in the GPS method to take the fine structure into
account.

IV. CONCLUSION

In this paper, we calculated the photoelectron momentum
distribution (PMD) of noble-gas atoms (He, Ne, and Ar)
driven by a linearly polarized 20-cycle laser pulse with peak
intensities 0.5–1 × 1014 W/cm2 based on time-dependent
density-functional theory (TDDFT). With a visible (527-nm)
driving-laser frequency, we find that the PMD yields from
outer orbitals according to the TDDFT are comparable in
strength, so that they could interfere with each other and break
the fourfold symmetry in the PMDs. This is an example of
the quantum interference due to different complex phases
among the individual wave functions in an atom. There
are no experimental data to compare our results with yet,
but such symmetry breaking should exist in the PMD of
multielectron atoms driven at a visible (400–700-nm) laser
frequency. To observe the many-electron interference effect,
it is crucial that the spectral intensities of multiple orbitals
are comparably strong. With a longer (800 nm) driving-laser
frequency, more commonly used in the PMD experiments, we
found that the PMDs of degenerate p-state orbitals are well
separated in their intensities, so that the interference effect
is not observable. Moreover, the PMDs of p-state electrons
with m = ±1 are suppressed along the z axis, reflecting
their orbital orientations and interference with the m = 0
electron that mostly ionizes along the z axis. Therefore,
when driven by a linearly polarized field at an infrared
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frequency, the PMD yield from the outermost electron with
m = 0 dominates over the rest of the electrons, so that
one can safely adopt the SAE approximation to calculate
the PMD.

ACKNOWLEDGMENTS

This work was partially supported by the U.S. Department
of Energy under Contract No. DE-FG02-06ER46304 (M.M.
and G.P.Z.) and by the Chemical Sciences, Geosciences and
Biosciences Division of the Office of Basic Energy Sciences,
Office of Sciences, U.S. Department of Energy under Grant
No. DE-FG02-04ER15504 (S.-I.C.). M.M. and S.-I.C. also
acknowledge partial support from the Ministry of Science
and Technology of Taiwan and National Taiwan University
(Grants No. 106R104021 and No. 106R8700-2). Numerical
calculations were done on Indiana State University’s quan-
tum cluster and high-performance computer (obsidian). The
research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

APPENDIX

The Krieger-Li-Iafrate (KLI) approximation [31] is an
exchange-only KS potential for the stationary state of a
many-electron atom, given by

vxc
σ [n↑,n↓](r) � V S

σ (r) + 1

n̄σ (r)

Nσ∑
i=1

n̄iσ (r)viσ , (A1)

where V S
σ is the Slater potential defined by

V S
σ (r) = 1

n̄σ (r)

Nσ∑
i=1

n̄iσ (r)vHF
iσ (r), (A2)

with vHF
iσ being the single-particle Hartree-Fock exchange

potential,

vHF
iσ (r) = −1

R
(�i )
iσ (r)

Nσ∑
j=1

R
(�j )
jσ (r)

×
�i+�j∑

�=|�i−�j |

(
�i �j �

0 0 0

)2

W
σ,�
ij (r). (A3)

In the above expression, R
(�i )
iσ (r) is the radial function in

Eq. (16),
(
�i �j �

0 0 0

)
are Wigner 3j coefficients, and

W
σ,�
ij (r) ≡

∫
r<

�

r>
�+1

R
(�i )
iσ (r ′)R(�j )

jσ (r ′)dr ′, (A4)

with r< ≡ min(r,r ′) and r> ≡ max(r,r ′). In practice, W
σ,�
ij (r)

is obtained by solving the following differential equation:[
− d2

dr2
+ �(� + 1)

r2

]
Q

σ,�
ij (r) = (2� + 1)

R
(�i )
iσ (r)R

(�j )
jσ (r)

r
,

(A5)

where Q
σ,�
ij (r) ≡ rW

σ,�
ij (r). The boundary conditions are

Q
σ,�
ij (0) = 0,

Q
σ,�
ij (rmax) =

{
δij if � = 0

1
(rmax)�

∫ rmax

0 R
(�i )
iσ (r)R

(�j )
jσ (r) r�dr otherwise.

(A6)

The orbital-dependent constant viσ in Eq. (A1) is found as

Ciσ ≡ 〈
V KLI

iσ

〉 − 〈
vHF

iσ

〉 =
Nσ∑
j=1

(
A−1

σ

)
ij

[〈
V S

jσ

〉 − 〈
vHF

jσ

〉]
, (A7)

where Aσ is given by Eq. (27).
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