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Loading a linear Paul trap to saturation from a magneto-optical trap
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We present experimental measurements of the steady-state ion number in a linear Paul trap (LPT) as a function
of the ion-loading rate. These measurements, taken with (a) constant Paul trap stability parameter ¢, (b) constant
radio-frequency (rf) amplitude, or (c) constant rf frequency, show nonlinear behavior. At the loading rates
achieved in this experiment, a plot of the steady-state ion number as a function of loading rate has two regions: a
monotonic rise (region I) followed by a plateau (region II). Also described are simulations and analytical theory
which match the experimental results. Region I is caused by rf heating and is fundamentally due to the time
dependence of the rf Paul-trap forces. We show that the time-independent pseudopotential, frequently used in
the analytical investigation of trapping experiments, cannot explain region I, but explains the plateau in region II
and can be used to predict the steady-state ion number in that region. An important feature of our experimental
LPT is the existence of a radial cutoff R, that limits the ion capacity of our LPT and features prominently in the
analytical and numerical analysis of our LPT-loading results. We explain the dynamical origin of Iécm and relate
it to the chaos border of the fractal of non-escaping trajectories in our LPT. We also present an improved model

of LPT ion-loading as a function of time.
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I. INTRODUCTION

The loading dynamics of the linear Paul trap (LPT) are
of interest in relation to recent work measuring the total
charge exchange and elastic collision rate of atomic ions with
their parent atoms in a hybrid trap [1,2]. In these hybrid-trap
measurements of collisions between atoms and dark ions, those
without optically accessible transitions, the fluorescence of
the atoms in the magneto-optical trap was monitored in the
presence of trapped ions. Knowledge of both the number of
trapped ions and the size of the ion cloud is necessary for
finding the interaction rates. In the experiments described in
[1,2] which measured the total interaction rate, the ion species
used were Rb™ and Na™, both of which are noble-gas-like
ions and have no optical transitions. This made a direct
measurement of the trapped ion number difficult. Both groups
attempted to create a model for the loading of ions into a
Paul trap that depends on quantities that are easily measured
experimentally in order to predict the trapped ion number.
However, neither group was able to create a satisfactory model
of Paul trap loading [2]. This paper aims to understand and
model the loading of a linear Paul trap at the conditions used
in current hybrid trap experiments, but its findings apply to
Paul trap loading in general.

Hybrid traps consist of a neutral atom trap coincident with
an ion trap. A variety of neutral atom traps have been used
in hybrid trap experiments: magnetic traps [3—5], magneto-
optical traps (MOTs) [1,2,6-15], and optical dipole traps
[16—18]. In contrast, every hybrid trap experiment listed above
used a Paul trap to hold the ionic species, except [10], which
used an octupole trap.

In hybrid trap experiments for dark ions and their parent
atoms, the ion-atom interaction rate per atom y;, is given by [2]
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In the experiments described in [1,2], ki, is the total elastic
and charge-exchange collision rate constant, N is the total
number of trapped ions, C is a function that describes the
concentricity of the atom and ion clouds, and V), is the
effective overlap volume of the two clouds [2].

In [1,2] the ion trap is saturated, which has two benefits. The
first is that this maximizes the rate and thus the experimental
resolution of the rate constant, k;,, because the ion number and
volume will be as large as possible.

The second benefit of a saturated ion trap is that the
ion number, the concentricity, and the overlap volume will
all be time independent on average. In the case of dark
ions, destructive measurement of the ion number is the most
straightforward method; this measurement would be difficult
to perform experimentally and model quantitatively if the ion
number were time dependent. We mention that it is possible, in
principle, to measure the number of dark ions nondestructively,
for instance by embedding the ions in a crystal of bright ions
and counting the dark spots (see, e.g., [19]). However, since
in our collision experiments we are dealing with ion numbers
typically exceeding 10° (see Sec. III), and since crystallization
of dark ions requires a co-trapped bright ion species for
efficient laser cooling, these kinds of experiments are far from
straightforward, in particular in view of the large number of
dark ions that need to be crystallized by sympathetic cooling. In
addition, experiments, including our own, may not be set up for
the significant additional technology required to perform non-
destructive measurements. Thus, a saturated trap, combined
with a destructive ion-counting technique, is an appealing
option. For bright ions, i.e., those with optical transitions,
ion number, concentricity, and the overlap volume could all
be measured in a time-dependent way using the fluorescence.
Typically, however, bright-ion experiments have focused on
the charge-exchange rate constant and have not measured
the total rate. If the technique described in [1,2] were used
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in conjunction with the methods for measuring the charge-
exchange rate constant, then the elastic rate constant could be
found as well. In the case of homonuclear ion-atom collisions,
the total interaction rate is of interest to studies of sympathetic
cooling. Additionally, the total interaction rate can be com-
pared to theoretical predictions of scattering rates, since dif-
ferences might suggest pathways missing from the theoretical
calculations.

Neither of the dark ion experiments developed a satis-
factory model for predicting the steady-state population of
the saturated Paul trap as a function of the ionization rate.
In the model used in Lee et al. [1], an ad hoc term was
required to prevent the ion number from becoming infinite
at large photoionization intensities and y;, was proportional to
the Paul trap loss rate £. The model proposed by Goodman
et al. [2] considered how the number of atoms in the MOT
depended on the photoionization intensity, so it predicted
a finite ion number as the photoionization intensity tends
to infinity without the ad hoc term in Lee’s model. In
[2] it was found experimentally that y;, is not proportional
to £.

Ion loading in a Paul trap as a function of time is typically
fitted to the solution of

dN(7)
dt

=A—€;N(x) — ,N(x)?, (2)

where 7 is the time, A is the loading rate, £, is the one-body loss
rate, and ¢, is the two-body loss rate. All quantities in (2) are
in ST units. The model (2) is used, e.g., in [1,2,20,21], though
sometimes ¢, is set to zero without significantly affecting the
fit. The loading rate A is constant and set by the ion source.
The one-body and two-body loss rates ¢; and ¢, are usually
assumed to be independent of the loading rate. However,
in Goodman et al. [2] we found that not to be the case.
Additionally, while this model can fit well, as in [1,2], in
other cases it overshoots the rise, undershoots the knee of the
curve, and overshoots the plateau, as can be seen in Fig. 1.
This trend is present even in experiments that do not have
a hybrid trap and therefore do not load from a MOT (see,
e.g., Ref. [20]).

Neglecting the two-body loss mechanism in (2), i.e., for
£, = 0, the traditional model from the solution of (2) predicts
that the steady-state ion number is directly proportional to
the loading rate. In our previous work, Bliimel ef al. [22]
simulations showed that the steady-state ion number depends
on the loading rate nonmonotonically. There are four regions
in a plot of the steady-state ion number as a function of
loading rate. At small loading rates, the steady-state ion
number increases monotonically, but nonlinearly, in region I.
In region II, the steady-state ion number plateaus. Region III
is characterized by a dip, where the steady-state ion number
decreases with increasing loading rate. Finally, in region I'V, the
steady-state ion number once again increases monotonically
with the loading rate, but much faster than in region I, and
with a power that does not agree with the predictions of
the model defined in (2). This behavior was present for
simulations of both the linear and three-dimensional Paul trap
geometries.
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FIG. 1. Fits of ion loading as a function of time based on (2)
overshoot the rise, undershoot the knee, and overshoot the plateau.
This is the case regardless of whether the ion number is measured
via fluorescence at low loading rates (top; reproduced from Ref. [20]
with permission from The Royal Society of Chemistry) or measured
using a channel electron multiplier at high loading rates from a hybrid
trap by our group (bottom). Where the error bars (showing statistical
errors) are not seen, they are smaller than the corresponding plot
symbols.

Despite being in use for over 50 years [23] in many
disciplines, including mass spectrometry, biology, chemistry,
and physics, the fundamental loading behavior of the Paul trap
is still unknown. This work examines the loading behavior of
the Paul trap experimentally, analytically, and with simulations
in regions I and II, where the loading rates are achievable
experimentally in every hybrid trap system and many mass
spectrometry systems. The model described here also allows
for the direct calculation of the pseudopotential radius and
therefore the trap depth without approximation.

This paper is organized as follows: Section II describes the
experimental apparatus and technique. Section III describes
the experimental results, and Secs. IV and V compare those
results with the simulations and the analytical models. We
conclude in Sec. VI.
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FIG. 2. A diagram of the hybrid apparatus used in these exper-
iments. The anti-Helmholtz coils, with current directions shown by
arrows, are located outside of the vacuum chamber (not shown).

II. APPARATUS AND METHOD

The apparatus used in this experiment has been described
elsewhere [2], so we will only briefly describe it here. A
diagram of our system can be seen in Fig. 2. Our hybrid trap
uses a linear radio frequency (rf) Paul trap with a segmented
design as the ion trap and a sodium MOT as the neutral
trap. The MOT is a vapor cell design where the background
sodium vapor is generated by a getter source. Even with
constant loading from the getters, the background pressure
is below ~0.1 x 10~ Torr. There are two MOT transitions
in sodium involving different hyperfine levels [24]. We use
the type-II MOT transition to take advantage of the higher
trapped atom number achieved using that transition. The MOT
is made by retroreflecting the three trapping beams and the
repumper is obtained from a sideband put on the 589-nm
beam using an electro-optic modulator prior to splitting them
into three beams. Using the release and recapture method, we
measured the temperature of the atoms in the type-II MOT as
2.3 £ 0.1 mK. The anti-Helmholtz coils are located outside of
the vacuum chamber.

The MOT can be characterized in two ways: using a
photomultiplier tube (PMT) or using a CMOS camera. Both
the PMT and the CMOS camera can be used to measure the
trapped atom number, but the camera can also be used to
measure the MOT radius. The MOT has a 1/e-density radius
of ~0.75 mm and holds on the order of 107 atoms. The PMT
yields temporal information about the loading of the MOT.

The ions are created by a two-step process: atoms are
resonantly excited to the 3P state by the trapping laser beams
of the MOT, then they are ionized by a second laser beam
at 405 nm. The first resonant step assures that the sample
of loaded ions is pure, from the same species as the MOT
neutrals. The beam size is fixed at a 1/e-intensity radius of
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1.8 mm, so the beam is always larger than the MOT and the
intensity is approximately uniform over the size of the MOT.
The photoionization intensity is controlled by changing the
power of the 405 nm beam.

The LPT consists of four cylindrical segmented rods, each
having three segments, that lie along the long edges of a
square prism. The short segments at either end of the rods are
known as the end caps and provide axial confinement when dc
voltages are applied to them. The length of these segments is
17.0 mm. The longer central segment of the rod provides the
radial confinement using rf voltages applied to the diagonal
pairs of rods. The length of this segment is 2zp = 48.4 mm.
The diagonal distance between the surfaces of the rods is
2ro = 19 mm and the vertical distance between the surface
of the rods is 8.5 mm, to allow for access to the MOT cooling
laser beams. The electrode radius is r, = 8.8 mm, giving a
ratior, /ro = 0.9, slightly smaller than the ideal ratio of 1.1468
according to Ref. [25].

Our trap also deviates from the ideal Paul trapping poten-
tials because the central segment is longer than the optimal
length for a quadratic axial confining potential. Instead, the
static axial confinement is a superposition of a quadratic
and a quartic potential. As shown in our experiments and
by the results of our simulations reported in Appendix B,
trapping is possible even for electrode geometries that result
in trapping potentials that have a strong quartic component
and thus deviate considerably from the ideal quadrupole
trapping potential. The price, as shown in Appendix B, is the
emergence of deterministic chaos, even on the single-ion level,
which reduces, and ultimately defines, the trapping volume of
the LPT.

The number of ions in the Paul trap can be destructively
measured using a channel electron multiplier (CEM). By
putting dc voltages on the end caps in a dipole configuration,
the ions can be directed out of the trap along the axial direction
toward the CEM. The programmed CEM extraction sequence
captures a constant fraction of the number of ions trapped
immediately before extraction. This extraction efficiency is
built into our calibration [2], which thus allows us to determine
the number of ions immediately before extraction. We use
a custom LabVIEW virtual instrument (VI) to control the
experimental timing and to record the measurements.

The basic experimental scheme is to allow the MOT to load
to steady state from the background vapor in the presence of
the photoionizing (PI) beam, then the ion trapping potentials
are turned on. This way the loading rate from the MOT is
constant during the entire time the ion trap is being loaded.
The ions are extracted after a set delay time of 0.001 s after
the loading ends and the ion number is measured by the CEM
during a 1 s interrogation time. Since we can only measure
the ion number destructively, we take many measurements at
different loading times to create a time series of the ion number
as a function of loading time.

It is impossible to completely remove the ion loss mecha-
nisms of the LPT, so the loading rate can never be measured
independently of the loss rate. Whatever the exact form of the
differential equation for the loading of the LPT, the loss rate
depends on the number of trapped ions and the loading rate
is independent of the number of trapped ions. Therefore, to
measure the loading rate, the ion number is measured for very
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FIG. 3. Ton signal as a function of time for short loading
times, which minimizes the effects from losses. The ion signal is
proportional to the number of trapped ions; the slope is the loading
rate from the MOT. Where the error bars (showing statistical errors)
are not seen, they are smaller than the corresponding plot symbols.

short loading times (&0.05 s or shorter), where the loading
can be described by [see (2)]

dN A 3

dt ) )
An example of this is shown in Fig. 3. We see that in the limit
of small loading times the number of ions trapped is a linear
function of loading time.

To measure the steady-state ion number, the loading time
is set to be long enough to ensure that the ion population in
the trap has reached equilibrium. At the lowest loading rates
this time could be up to 3 minutes; at the highest loading
rates the trap is saturated in milliseconds. Several consecutive
measurements of the ion number are taken at a single loading
time, then averaged to find the steady-state ion number. The
loading rate is controlled by changing the 405 nm PI beam
intensity and the process is repeated until the accessible part
of the steady-state ion number as a function of loading rate
is mapped out. With no PI beam present, no ion signal is
measured.

The CEM measures a voltage that is proportional to the
ion number, but the exact proportionality depends on the
high-voltage gain applied to it. The most straightforward way
to calibrate the CEM voltage would be to use an optical method
to count the ion population and record the corresponding CEM
voltage. However, because there are no optically accessible
transitions in Na™, the number of ions could not be measured
directly. Furthermore, our CEM is designed to have a large
bias current, which allows it to detect large ion signals.
Consequently, the CEM can only operate in an analog detection
mode and cannot be calibrated using pulse counting methods
like those used in Ref. [26].

Instead, we used the same indirect method that we have used
previously [2], which we will briefly describe here. The ion
loading rate is measured two ways and then compared. First,
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FIG. 4. Two-way measurement of the ion loading rate as a
function of the intensity of the photoionizing laser for the purpose of
finding the calibration factor between the ion signal and the number
of ions. Measurements using the CEM (black squares) are compared
to measurements of the atom loss rate from the MOT in the presence
of the photoionization laser (solid red line) multiplied by a fitted
scaling factor, which is the reciprocal of the CEM calibration factor.
Where the error bars (showing statistical errors) are not seen, they are
smaller than the corresponding plot symbols.

the method described in Fig. 3 is used, with the assumption
that the fraction of ions measured by the CEM, whatever it
may be, does not change. The second method compares the
loading of the MOT as a function of time with and without the
PIbeam present. The increase of the loss rate in the presence of
the 405 nm beam is equivalent to the loading rate of the Paul
trap, under the assumption that every ion created from the
MOT is trapped. This assumption is good when the MOT is
smaller than the trapping volume of the Paul trap. To convert
the PMT voltage to units of number of atoms, we use the
two-level atom model to determine the excited-state population
of the type-Il MOT. One would expect this approximation to be
especially poor in the case of the type-II MOT, where multiple
hyperfine levels in the excited state play a role in the pumping
transition. We find however that the two-level model used with
a modified saturation intensity of 37.6 mW/cm?, compared
to the theoretical saturation intensity of 13.4 mW/cmz, fits
quite well.

The two ion-loading rates are plotted and compared using a
one-parameter fit, where the fitting parameter is the number of
volts per ion. As seen in Fig. 4, the fit shows good agreement
with the data for all CEM bias voltages. This justifies the
assumptions required for the calibration.

III. EXPERIMENTAL RESULTS

As discussed in Sec. II, the electric potential in our LPT
is not a pure, ideal quadrupole potential, but has a significant
admixture of a quartic component. As discussed further in
Appendix B, the quartic component in our potential leads to
single-ion chaos, which renders our trap unstable in the radial
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direction from about r = 5 mm on, where r = \/x2 + y2 is
the radial distance from the axis of the LPT. This might
suggest that a proper description of our LPT is possible
only in terms of a sum of quadratic and quartic terms.
However, since up to » = 5 mm the quartic terms are small
compared to the quadratic component, a simpler description
of our LPT potential as a quadratic potential with a cutoff
at r = Rey ~ 5 mm is possible. In this approximation, for
r < Reu, the electric potential of our LPT, written in SI units,
is a pure quadrupole potential, given by [11,27]

X2 y2
o, 1) = Vit cos(Qr)( )

2
o

nvend 2 1 2 1 2
I - — , 4
+ Z(z) (Z 2x 2y (@)

where ¥ = (x,y,z) is the position vector of an ion in the trap,
7 is the time, Vj; is the rf voltage applied to the electrodes of
the trap, 2 = 2 f is the angular frequency of the applied rf
voltage (f is the laboratory frequency), ¢ and z are defined
in Sec. II, n = 0.3 is a dimensionless efficiency parameter, and
Venda 18 the voltage applied to the end segments of the trap. For
r > Rey the form of the potential is not needed, since ions
are rapidly ejected from the trap (see Appendix B) as soon
as they cross the chaos border at r = Iécm. Measured with
respect to Rey, and in the pseudopotential approximation (see
Appendix A), the depth of the LPT potential is given by

eZVr% envend 52
b= |:sz;"6‘ B 222 ]Rcut' ©)

Experimentally, the trap depth D can be changed by changing
the rf amplitude Vi, the angular rf frequency Q2 [via its
dependence on the laboratory frequency f = Q/(2m)], or the
end-cap potential Vipg. In the experiments reported in this
paper, Veng = 30 V is kept constant and only Vis and f are
varied. Equation (5) was derived for a single trapped ion; if
a second ion is trapped, the Coulomb repulsion changes the
effective trap depth each ion experiences. The antitrapping
space-charge effect from multiple trapped ions makes the
trap depth no longer expressible analytically. However, as
supported by our analysis of ion numbers in the saturation
region II below, the functional dependence of the trap depth
on Vs and f appears to be the same.

It is convenient to express the trap depth in terms of the
single-particle stability parameter

= r:;‘;rfg ©
so that
D= [qurf _ enVend]ﬁ,z . 7
4r§ 218 eut
We also define the dimensionless loading rate
rA=2mA/Q, )]

i.e., the number of ions loaded per rf cycle.

In Fig. 5, loading curves of the steady-state ion number
as a function of loading rate A are shown for three sets of rf
parameters that each result in ¢ = 0.3. In each case, both the
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FIG. 5. Loading curves taken at constant ¢ = 0.3 and plotted on
a lin-log scale. The trap settings were V;y = 13 V and f = 450 kHz
for the black squares, V,y = 16 V and f = 500 kHz for the red circles,
and Viy = 19.5 V and f = 550 kHz for the blue triangles. Where the
error bars (showing statistical errors) are not seen, they are smaller
than the corresponding plot symbols.

monotonic rise in region I and the plateau of region II are
visible, predicted, and previously observed in [21]. Since g
is kept constant in all three cases shown in Fig. 5, the depth
of the LPT potential in these three cases is most conveniently
evaluated according to (7). In addition, (7) shows that, for
constant g, D is independent of the frequency and depends
only on V;; and geometric constants of the LPT. Because of
the quadratic form (4) of the LPT potential, the trapped ion
cloud is an ellipsoid with semimajor axes equal to Rey in the

x and y directions. In the z direction we have D = mw?Z2,

where Z, is the extent of the ion cloud in the z direction and
w, is the pseudo-oscillator frequency in the z direction. Since
w, is determined by the static potential due to the end caps
of the LPT, w, is a constant and, therefore, Zcm ~ /D. Thus,
the volume of the trapped ion cloud is V = (47/ 3)1?2 Zcm ~

cut
Iéfmx/ﬁ . According to Poisson’s equation of electrostatics, the
density p of the trapped ions is proportional to the Laplacian
of the trapping potential, i.e., according to (4), p ~ V?¢ ~
Vr% / Q2. This is all we need to predict, up to a proportionality
constant, the number, N, of stored particles in the LPT. On the
basis of the above discussion we have

N =pV ~ R>,VZD'?/ Q2. )

More details on the derivation of (9) can be found in Sec. V B.

We can now use (9) for a consistency check of our
experimental results in Fig. 5. Denoting by N;3, Nig, and Nig s
the particle numbers corresponding to the cases Vi = 13V,
Vie = 16 V,and Vi = 19.5 V, respectively, in their asymptotic
regimes, we may take their ratios Nj3 : Njg : Nig5, which
we can predict on the basis of (9), even without knowledge
of the proportionality constant in (9). Indeed, assuming that
Rewt depends only weakly on Vi and €2, the cutoff radius
Ry cancels when taking ion-number ratios on the basis of
(9). Thus, the computation of ratios involves only Vi, €2, and
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FIG. 6. Loading curves taken at constant V;; = 16 V and plotted
on a lin-log scale. The trap settings were ¢ = 0.22 and f = 580 kHz
for the black squares, g = 0.26 and f = 535 kHz for the red circles,
q = 0.30 and f = 500 kHz for the upright blue triangles, and g =
0.37 and f = 450 kHz for the inverted turquoise triangles. The plots
are in order of their trap depths. Where the error bars (showing
statistical errors) are not seen, they are smaller than the corresponding
plot symbols.

known geometric constants. This way we obtain the explicit,
analytical prediction N3 : Nig : Njgs = 1 :1.63 : 2.48. This
prediction may be compared with the actual ion numbers in
the plateau regimes read off from Fig. 5. With N3 =~ 225 000,
Nig ~ 380000, and Nig5 ~ 550000, we obtain N;3 : Ni¢ :
Nigs =1:1.69:2.44. This is in excellent agreement with
the theoretical prediction. As mentioned above, taking ratios
has the advantage of eliminating Iécut, which is difficult to
obtain directly in our experiments, since the trapped Na% ions
are dark.

Region I and region II can likewise be seen in the
curves shown in Fig. 6, which are taken at a constant rf
amplitude, Vi = 16 V. Shown in Fig. 6 are four loading
curves with f = 580 kHz, 535 kHz, 500 kHz, and 450 kHz.
Using the frequencies as labels, we read off Nsgy ~ 130 000,
Ns35 ~ 200000, N5go ~ 380000, and N4s9 ~ 430000, which
yield the ratios Nsgy : Nsas : Nsgo : Ngso = 1:1.54:2.92:
3.31. The theoretical prediction for these ratios, according to
(9), is Nsgo : Nszs : Nsgo : Naso = 1:1.57 : 2.14 : 3.29. Just
like for the results shown in Fig. 5, and except for the curve with
f =500 kHz, the experimental ratios match the theoretical
predictions very well. At present it is not clear why the third
curve,at f = 500 kHz, is an outlier in this sequence. This is the
more puzzling that this curve is the same as the corresponding
curve shown in Fig. 5, where it fits the sequence in Fig. 5
very well. That this curve does not fit well in Fig. 6 is also
immediately obvious from the visual context in Fig. 6. This
curve produces a gap in region II of Fig. 6, whereas a more
even spacing was expected, mirroring the small decrements in
frequencies corresponding to the four curves shown in Fig. 6.

Several loading curves were also taken at a constant rf
frequency; they are shown in Fig. 7. Akin to Figs. 5 and 6, the
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FIG. 7. Loading curves taken at constant f = 500 kHz and
plotted on a lin-log scale. The trap settings were g = 0.22 and
Vit = 12V for the black squares, ¢ = 0.26 and Vy = 14 V for the
red circles, ¢ = 0.30 and V;; = 16 V for the upright blue triangles,
and g = 0.37 and V;; = 20V for the inverted turquoise triangles. The
plots are in order of their trap depths. Where the error bars (showing
statistical errors) are not seen, they are smaller than the corresponding
plot symbols.

three lower curves all show both region I and region II. Only
the loading curve taken at the largest rf voltage (V;y = 20 V)
does not look like it has reached saturation (region II) yet, an
impression confirmed by our ratio test to be conducted next. In
the case of Fig. 7 there is a wrinkle in our theoretical analysis
of the case Vit = 12 V in that for the experimental parameters
the density (7) comes out negative, which means that we do
not obtain a real square root in (9) and therefore N cannot
be predicted. This is not a disaster. It simply means that for
Vit = 12 Vand f = 500 kHz, our trap is operated so closely to
the global instability border of the LPT that the pseudopotential
analysis (see Appendix A) is not accurate enough in this
borderline case to make accurate predictions. For our ratio test
we opted to ignore this case and normalize to the second curve
in Fig. 7, i.e., the case V;y = 14V, f = 500 kHz, for which
we obtain a positive trap depth of substantial magnitude for
which our pseudopotential analysis is valid. Using voltages
as labels, like we did in the case of Fig. 5, we predict
Nig: Nig: Nyg=1:1.95:4.65. From Fig. 7 we read off
Nis =~ 190000, Nie =~ 380000, and Ny =~ 660000, which
results in the experimental ratios N4 : Nig : Nyg = 1:2.00 :
3.47. Similarly to the cases discussed in connection with
Figs. 5 and 6, the ion-number ratio of the two cases of Fig. 7,
which are confidently in region II, is very close to its predicted
value. In contrast, the predicted ratio for Nyy/Ny4 is much
larger than the experimentally observed ratio, confirming our
suspicion that for Vi =20 V and at A = 3 ions/rf-cycle the
loading curve in this case is still climbing (still in region I),
and its saturated ion number, expected to occur at higher values
of A than those shown in Fig. 7, will eventually be larger than
N = 660 000.

The question arises whether we may simplify the expression
(5) [(7), respectively] for the trap depth D, perhaps by
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neglecting the term proportional to V,q4, in order to turn (9)
into a more concise formula. Alas, as the case V;y = 12 V in
Fig. 7 vividly illustrates, this is not possible. The two terms,
i.e., the terms involving Vi and Veyq in (5) [(7), respectively],
are of similar magnitude, which makes it impossible to neglect
one with respect to the other. Thus, the square-root behavior
in (9) is essential.

Our theoretical estimates and predictions above are based
on a single-ion picture (the pseudopotential analysis presented
in Appendix A), and do not include any space-charge or
many-body effects. The overall excellent agreement of our
predictions for the ion-number ratios in region II of the cases
shown in Figs. 5, 6, and 7 leads us to conclude that in
our LPT experiments these effects are either negligible or
lead to a simple renormalization of our expression for N
that results in an overall constant that cancels upon taking
ratios. In Sec. V B, based on the single-particle pseudopotential
picture, we make predictions of the absolute magnitude of N
in region II, which agree very well with the experimentally
observed values. This might argue for the space-charge and
many-body effects to be negligible. However, since I?cut enters
these formulas multiplicatively, we cannot be sure whether
the renormalization constant is not simply absorbed in our
effective I?Cm, used in Sec. VB. Only direct experimental
observation of I?Cm can resolve this issue. This, however, due to
the optical darkness of the Na% ions used in our experiments, is
currently beyond our experimental capabilities. Nevertheless,
the excellent agreement of the experimental ion-number ratios
in region II with our theoretical predictions supports the
validity of our experimental LPT ion-loading curves.

IV. SIMULATIONS

Model simulations have already been done [22] that confirm
the existence of the four different dynamical regimes. In
addition it was shown in [22] that the phenomenon is robust
with respect to the statistical distribution of time between
loading events, temperature, loading mechanisms, and the
geometry of the absorbing boundary. So here the emphasis
is not so much on proving the existence of the four dynamical
regions, or their robustness, but to see whether the simulations
can qualitatively, and to some extent quantitatively, describe
the experimentally observed characteristics of regions I and II.

Since independence of the loading statistics has already
been demonstrated in [22], we focus in this paper on the case of
uniform loading statistics. Qualitatively, our results stay valid,
which we checked explicitly, if different loading statistics,
such as Gaussian statistics, are used.

The Newtonian equations of motion of a singly charged ion
of mass m in the trap is

I e (10)
m— = —e r,7),

dt?
which, written out in components, results in

—2Vye cos(Qr)rx—g + %‘g““x

2Viee cos(SZr)% + "e—‘é”y ) (11)

_ 27I€¥snd z
20
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Defining the dimensionless time

t = 2 12
-(5) -

the set of equations may be written as

—2g cos(2t)x + bx
2g cos(2t)y + by |, (13)
—2bz

ISERCEER
I

where the dots indicate differentiation with respect to di-
mensionless time ¢, the dimensionless control parameter g

is defined in (6), and
4enVend
b= ——. 14
mQ2z] (14

If more than one ion of charge e and mass m are stored in the
trap, the ions interact via the Coulomb force, resulting in the
following set of coupled equations:

X; + 2q cos(2t)x; — bx; N

. i —F;
Ji = 2qeos@yi —byi | =) =—="5. (15)
s |ri — 7|
Zi + 2bZi j=1 t J
J#i
where i = 1,...,N counts the number of particles in the trap
at time ¢, and 7 is measured in units of
2 1/3
e
lp=|—— , 16
0 <n60m§22) (16)

where € is the electric permittivity of the vacuum.

It is the introduction of the unit of length (16) that allows
us to normalize the coefficient in front of the Coulomb force
on the right-hand side of (15) to 1, and thus arrive at the set
of equations (15) that depends only on the two dimensionless
parameters g and b. g is an adjustable control parameter that,
depending on the trap voltage V;s and frequency f, may be set
to a value in the interval 0 < g < 0.9, where ¢ ~ 0.9 is the
Mathieu instability limit [28]. It is shown in Appendix A that
for given g, in order to achieve trapping, the parameter b has
to satisfy 0 < b < ¢%/2.

Numerically, because of the repulsive Coulomb interactions
in (15), and even for a large number N of trapped ions, the
coupled set of equations (15) is well conditioned. Therefore, a
standard fourth-order Runge-Kutta method [29] is enough to
reliably integrate (15).

While our numerical model (15) captures the essence
of the experimental LPT, and its parameters ¢ and b are
adjusted to their experimental values, our model is nevertheless
an idealization. The electrodes in our experiment are not
hyperbolic surfaces, as required if (15) is expected to be exact,
and while (15) assumes a quadratic potential in the z direction,
the potential in our LPT also has a quartic component [11,27].
Still, the proportions of the numerical trap, as expressed in
(15), are correct and we expect that our model captures the
essential parts of the physics in our experimental LPT.

A final comment concerns the number of particles we
are able to simulate compared with the number of particles
in our experimental trap. In order to accumulate sufficient
statistics, and given our computer resources, we found that
2000 simultaneously stored ions are a practical upper limit
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for our numerical simulations. Although orders of magnitude
smaller than the experimental number of particles in our
trap, 2000 particles is not a small number, and using scaling
relations, to be discussed below, we are able to compare our
simulations not just qualitatively, but also quantitatively with
our experimental results.

Our simulations proceed in the following way. For a given
loading rate A we generate a time sequence ¢;,j = 1,...,M
of loading events, which have a Poissonian distribution whose
average corresponds to the specified loading rate A. For each
individual parameter setting we check that M is large enough
so that we are deeply in the saturated regime where we are
able to extract the steady-state number of ions, N, with
excellent statistics. Denoting by (...); the time average in
the saturated regime, we also compute the statistical spread
AN, = (NSZ) = (Ns)lz, which characterizes the ion-number
fluctuations in the saturated regime due to the Poissonian
loading process. At each loading event ¢; a new ion with zero
initial velocity is created in the trap at a random location
inside of a spherical loading zone of radius Iéload (in SI
units), representing the creation of ions from the MOT via the
photoionizing 405 nm laser. Between loading events, i.e., for
tint; <t < tj41, we integrate the ion trajectories in the trap,
including the newly created ion, according to the system (15).
Once t; is reached, we eliminate all ions from the trap whose
positions at 7;; lie beyond a pre-specified absorbing boundary
B. In [22] we already showed that the qualitative shape of the
Ny () curves does not depend on the geometry of B. Therefore,
making use of this freedom, we chose in this paper a cylindrical
absorbing boundary B with radius Rey in the x — y direction
and total length 2z, in the z direction; i.e., ions are absorbed
in the z direction if they exceed |z| = Zewt = 70 = 24.2 mm.

In addition to ¢, all we need for our §imulations are the
Harameters b, Ripad = Rload/lO’ Ry ZARcul/ lo, and Zoy =
Zcut/ lo. The radius of the loading zone Rjy,q is defined by the
size of the type-II MOT, which, according to Ref. [2], is r, =
0.75 mm. The electrodes are positioned at ro = 9.5 mm, which
is the upper bound for I?Cm. According to the discussion above,
we cannot simulate the full-sized experimental LPT, since it
typically holds more ions than we are able to realistically
simulate. Accordingly, we simulate a scaled-down version of
our LPT in which all linear dimensions are scaled by a factor
0 < 0 < 1, resulting in

Rioad = 0 Rioaa/lo = 88.4 0 [ f(MHz)]*,
Rew = 0 Rew/lp = 1119.1 0 [ f(MHz)]*,
Zew = 0 Zew/ lo = 2827.2 0 [ f(MHz)]>3. (17)

As discussed in Sec. III, in a harmonic trap, i.e., a trap
with time-independent quadratic trapping potentials in all three
directions, and at zero temperature, the charge density p. in the
trap is constant, which follows immediately from p¢ ~ V2¢.
In this case the particle number in the trap scales with the
volume of the trap, i.e.,

N ~ o°. (18)

Although our experimental trap is not exactly harmonic, and
the temperature is finite, we nevertheless expect that (18)
holds to a good approximation. Therefore, in order to compare
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FIG. 8. Simulation results for the model LPT performed at
constant g = 0.3 for three different combinations of rf voltage
and frequencies. f = 450 kHz, V = 13 V: open, blue circles; f =
500 kHz, V = 16 V:filled, greencircles; f = 550 kHz, V = 19.5 V:
red asterisks. Scale parameter: o = 1/40. These simulation results
may be compared with the three corresponding LPT experiments
shown in Fig. 5. The heavy solid line (purple) is the analytical result
for Ny(1) in region IV [22]. The lengths of the error bars, equal to
2AN;, characterize the statistical fluctuations of the ion number in
the saturated regime.

with our experimental results, we scale N, obtained from our
simulations according to

Nsscaled — N'Ssimulated/o_37 (19)

which allows a direct comparison between the results of our
simulations with experimental results of the saturated number
of ions in the trap.

We are now ready for the numerical simulations. Since
they are expensive, we focused on simulating the constant-
q experiments, performed with ¢ = 0.3, and described in
Sec. I1I. Figure 8 shows the results of our simulations.

Compared with the experimental results shown in Fig. 5 we
see that in our simulations the maximum of region II occurs
at a loading rate which is about a factor 10 lower than in the
experiments. However, the location of the region-II maximum
depends on the scaling factor o and shifts to higher loading
rates as o approaches 1 where the simulated ion trap size
becomes identical to the experimental Paul trap. This effect
can be seen in Fig. 9, where simulations are plotted at several
different values of o, along with several experimental curves.
Additionally, the simulations in Fig. 9 have been scaled up
in ion number [see (19)]. The simulated ion curves match
the experiments in the ion number, but the regions occur at
different ion loading rates. The reason for this discrepancy
is not clear. It is possible that effects not included in the
idealizations made for the simulations, such as stray fields
causing excess micromotion or the presence of the grounded
vacuum chamber, are the cause. Since there are differences
between the simulations and the experiment, the question
arises whether our results are applicable to other experimental
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FIG. 9. Simulations of loading curves at three scaling factors,
from top to bottom: o = 1/10, small blue triangles; o = 1/8, large
black triangles; and 0 = 1/5, red circles. Also shown are a number of
experimental loading curves (squares) at ¢ = 0.30, V;y = 13 V, and
f = 450kHz. The scatter of the experimental data points gives an idea
of the statistical and systematic variations in our experimental loading
data. For these simulations, Iécm = 4.5 mm was chosen, which, as a
result of many simulations, akin to those shown in this figure, turned
out to yield the best agreement with the experimental results. Where
the experimental error bars (showing statistical errors) are not seen,
they are smaller than the corresponding plot symbols.

realizations of LPTs, which may have other geometries,
instability reasons, stray fields, and possibly other or no
quartic terms in the potential. Simulating various different
trap geometries, including LPTs and the three-dimensional
Paul trap, operated at various settings of ac and dc trap fields,
we have shown previously [22] that the existence of the four
dynamical regions is a generic feature of all rf traps in which
rf heating occurs as a natural by-product of the rf drive of
these traps. What may be different, and are indeed expected to
depend critically on the particular technical realization of each
of these traps, are the details reflected in the four dynamical
regimes. In region I, this will be the precise value of the power
law that will crucially depend on the particular rf heating
rate exhibited by the trap under investigation (see Sec. V);
in region II, it will be the position and the saturation particle
number of the plateau; in region III, it will be the precise
location of the dip and dip depth (expressed in number of
particles below the plateau), and in region IV, it will be the
value of the loading rate at which the onset of the steep rise in
particle number occurs that characterizes region IV. However,
the fact that we have four dynamical regions, characterized by
apower law in region I, a plateau in region II, a dip in region III,
and a 2/3 power law in region IV, will be independent of the
specific rf trap under consideration. These features, therefore,
can be generalized to other traps. The comparison between
simulations and experiment in Fig. 9 is, in fact, an excellent
illustration of this point. Our simulation results shown in Fig. 9
are based on the potential (4) [see (10)], which is quadratic in
z (note, however, that the results in Appendix B are computed
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including the quartic potential of our LPT). Therefore, we
may consider our simulations reported in Fig. 9 as simulations
of an LPT that is different in several crucial aspects from our
experimental LPT. Nevertheless, the simulations in Fig. 9 show
that all generic features are present, including all four regions,
and only the details are different, as expected. In summary we
may say that the qualitative and in some aspects quantitative
agreement of our simulations and our experiments shown in
Fig. 9 indicates that we now fundamentally understand the
LPT loading process, in particular the physical origins of the
four dynamical regimes.

V. ANALYTICAL THEORY

In this section we present an analytical theory for regions
I and II. In Sec. V A we show that in region I the saturated
ion number N;()) follows a power law in A, which we confirm
experimentally. We also compute the approximate exponent
of the power law, which agrees well with our experiments.
In Sec. VB we present a theory for region II. This theory
explains the plateau behavior of N,(A) in region II and also fits
the temporal behavior of N(A,t) better than all other theories
so far described in the literature.

A. Region I

In this subsection we present a simple, analytically solvable
model for the steady-state ion population N(A) as a function
of loading rate A. Our model predicts monotonic power law
behavior in region I. Under certain reasonable assumptions,
based on heating rates obtained from molecular-dynamics
simulations of non-neutral plasmas published in the literature
[30], the exponent derived from our analytical model is close to
the exponent observed in our experiments. Since our analytical
calculations assume spherical symmetry, our analytical results
for region I are primarily applicable to the three-dimensional
quadrupole Paul trap (3DPT). Comparing with experiment, we
found that these results also hold well for the LPT.

In region I we need to consider the stationary state in
which for each particle loaded one particle escapes. In the
stationary state the spatial probability distribution, p(¥), of
the ions in the trap is approximately Gaussian with a width
that is proportional to /T, where T is the temperature. Since,
according to E ~ kT, where k is the Boltzmann constant, the
average energy E of a stored ion is proportional to 7', the width
of the spatial Gaussian is proportional to ~/E.

In order to obtain analytical results in closed form, we
replace the Gaussian distribution by a flat distribution with a
sharp cutoff; i.e., we represent the spatial density p(¥) by a
homogeneous sphere according to

3N, >
- e Irl<w,
p(F)=1*% - (20)
0, r| > w,
where Nj is the number of ions in steady state,
w=avE 21

is the radial width of the density distribution, and o is a
constant. Since a Gaussian is a steeply descending function
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in the wings, the approximation (20) is benign and does not
change the scaling of Ny(A) in A.

We start with the situation in which the probability sphere,
due to rf heating [30-32], has expanded beyond the location
Ry of the absorbing boundary B, just far enough for the
total excess probability beyond R to integrate to 1 particle.
Denote by « the heating rate per particle. Then, the energy E
per particle is

E = Ey + kAT, (22)

where A7 is the time that has passed since the last loading (ion
creation) event and Ej is the energy per particle immediately
after the last loading event. Since we are in the steady state,
exactly At = 1/A has passed on average between ion creation
and ion loss, where A is the loading rate. Therefore, from (22),

K
E=E;+ X (23)
and, according to (21),
e\ 12
w = oz<E0 + X) . 24)

The excess width is
e\ /2
Sw=w— Royt = Ol(E() + X) — Reut. (25)

In steady state, the excess width §w corresponds to exactly 1
particle. Therefore, denoting by 8V the volume of the shell of
width Sw,

1 = p8V = p4n R% sw

cut

3N, , «\ 12
= )R Bt 5 ) — R
cut

3N; K\
= Rcm [O{ <E0 + X) - Rcm:| . (26)

Inregion [, i.e., for small A, the dominant term in (26) is «/A.
Therefore, in region I, we may approximately write

3N;a [k 12
1= — . 27)
Rewe \ A

In order to compute the dependence of N; on A, we need to
know how the heating rate ¥ depends on N;. In order to answer
this question we turn to Fig. 2 of [30]. This figure shows the
heating rate H of N-ion clouds in steady state as a function of
cloud size §. This figure is relevant since, up to the choice of
units, ¥ and H are identical. Therefore, the N scaling of « is
the same as the N scaling of H. Although Fig. 2 of Ref. [30]
was computed for a 3DPT, it nevertheless gives us a first idea
on the N; scaling of « for the LPT that we focus on in this
paper. Since our trap has an effective radius R, we need to
extract heating rates H from Fig. 2 of [30] as a function of N at
constant cloud size §. The most striking feature of the heating
data shown in Fig. 2 of [30] is that the heating rate curves for
different N are parallel to each other and have about the same
spacing when doubling the number of particles N. Therefore,
since Fig. 2 of [30] shows H on a log scale, both features
combined show that, at given §, independently of §, H follows
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FIG. 10. The data points from Fig. 5 shown with fit using
N, = AP The trap settings were Vi = 13 V and f = 450 kHz
for the bottom curve, Vi; = 16 V and f = 500 kHz for the middle
curve, and Vi = 19.5 V and f = 550 kHz for the top curve. We
see that the power-law form of the fit function, as predicted by our
analytical model, fits the data in region I very well. Where the error
bars (showing statistical errors) are not seen, they are smaller than
the corresponding plot symbols.

a power law in N. On the basis of the data displayed in Fig. 2
of [30], we find, at constant §,

H~ N'5, (28)
Therefore, because of k ~ H, we obtain

Kk = BN, (29)
where B is a constant. Using this result in (27), we obtain

B 301,3]/2Ns8/3

Rew A G
Using (8), we solve (30) for N; in terms of A:
3/8
Ny = | Rew 15, (31)
' 3a(2np/ Q)12

Thus, this simple model predicts N, ~ 20188

compared with the experimental region-I result N
Since the numerical value of the exponent predicted by our
model depends on the scaling of the heating rate « in N,
which was not separately determined for our LPT, the value
of the exponent predicted by (31) is less important than
the prediction that N, follows a power law. Therefore, we
treat the value of the exponent as a fit parameter. Fits of the
data from Fig. 5 using this model can be seen in Fig. 10.
The difference in the value of the exponent is likely due to
the difference in heating rate between the ideal 3DPT of [30]
and the heating rate in the experimental LPT.

Since rf heating is one of the central ingredients in this
model, both the prediction of a power law in itself and the
approximate agreement of the power-law exponent with our
experimental results indicate that rf heating is the factor that
governs the behavior of Ny(A) in region 1. This is corroborated

, which may be
~ 30281
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FIG. 11. Simulation of the LPT: Comparison between the time-
dependent model with rf switched on (asterisks) and the pseudopo-
tential model with only the pseudopotential present (filled circles).
We simulated the case V;; = 16 V, f = 450 kHz, with scaling factor
o = 1/40. The lengths of the error bars, equal to 2A Ny, characterize
the statistical fluctuations of the ion number in the saturated regime.
Where error bars are not seen, they are smaller than the plot symbols.

by Fig. 11, which shows a comparison between N, obtained as
a result of solving the fully time-dependent set of equations of
motion (15), i.e., the equations of motion including rf heating
(asterisks in Fig. 11) and N; obtained as a result of solving
the time-independent pseudo-oscillator equations of motion
(A16), which, due to the lack of explicit time dependence,
are not capable of simulating rf heating (filled circles in
Fig. 11). Clearly, while the pseudo-oscillator model is capable
of reproducing regions II, III, and IV, it completely fails to
reproduce region I, which can only be attributed to a lack of
rf heating in the pseudo-oscillator model, since otherwise this
model contains all many-body forces exactly as in the full
set of equations (15). Thus, we proved conclusively that it is
rf heating that determines both the power law and the power
law’s exponent in region I.

B. Region II

In region II, the steady-state ion number plateau is
determined by the depth of the trap. The pseudopotential
approximation, described in Appendix A, is valid in region II.
The pseudopotential well is completely filled with ions in this
region. The expression for the depth of the pseudopotential
predicts a steady-state ion number in region II of

43em x 103

N/ = e /IMHz
n 2 1
% Rey[mm*g> Z—b -5 (32)

There are no adjustable parameters in this expression.
However, ﬁcut is not easily determined for dark ions.
The traditional derivations of the pseudopotential depth
assume that Ii’cm =ro and that the ions are only lost when
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they collide with or move beyond the trap electrodes [33,34].
This has been shown not to be the case in recent hybrid trap
work [2,9]. Finding Reut directly allows the trap depth to be
calculated without making any approximations. In principle,
Rey can be found in a variety of ways.

The first is to follow the method used in [2,9], where the
idealized single-particle trap depth is equated to the energy of
a simple harmonic oscillator with spring constant k = ma?,
where w is the secular frequency of the ionic motion. This
method has the advantage of being simple, but the drawback
is that it relies on the single-particle trap depth, which is
a credible approximation, but may not be accurate enough.
Indeed, this simple model disagreed with subsequent hybrid
trap experiments, described in [2], by 25%.

A second method, mentioned in the caption of Fig. 9, is to
find the R,y value which makes the simulations best match
the experimental results. This requires some computationally
demanding simulations of the trapped ions.

A third method is to find an Rcul that makes (32) fit best at
one trap setting. For sodium ions, (32) becomes

. f[2 1
N!' = 548344 f[MHz]* R [mm]*¢* qub -3 (33)

By selecting a single data set and finding the Ry that makes
both sides of (33) approximately equal, we are able to fit
nearly all of our data at least as well as the other methods, and
in some cases much better, using a much simpler procedure
(see Table I). The data set with the smallest ion number,
which was taken at ¢ = 0.22, Vi = 16 V, and f = 500 kHz,
is the one exception; using these parameters in this model
returns an imaginary number of ions. These settings also have
the smallest number of ions at steady state in region II, i.e.,
approximately 80000, which is still a large number for most
Paul trap experiments. It is also unclear what differentiates the
settings where this value of Iécm fits well and the ones that
do not.

There has been no previous study of why I?Cm # 1o, but it
has been hypothesized that it could be due to contributions
from higher-order multipoles [35]. In this paper we confirm
that it is the admixture of the quartic component of the
confining potential in the z direction that is responsible for
the reduction of Iécut to ﬁcut < rop. In fact, while a single ion in
an ideal trap, i.e., a trap in which only quadrupole potentials
are present, is never chaotic, even when driven by the rf trap
fields, a single ion in a potential with a quartic admixture
shows a transition in space from regular, confined motion, to
chaotic, unconfined motion (see Appendix B). This brings us
to a fourth method for determining R..i, described in detail in
Appendix B. According to this method, Ry is identical with
the single-ion chaos border. This means that for r < Rey the
ion’s motion is perfectly regular and the ion, in the absence
of noise, is perfectly trapped. However, as soon as r exceeds
Iécm, the ion’s motion becomes chaotic. As a consequence,
the ion is free to explore spatial regions with r > Reu, which
quickly leads to an encounter with the electrodes at which the
ion is absorbed. Thus, ﬁcut is determined by a method that is
based on the dynamics of a single ion and therefore allows a
very quick and efficient determination of Iécm for various trap
settings. This method does not only have technical advantages
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TABLEI. The experimental ion number compared with the ion number predicted by (33) with R.y = 3.74 mm. The cells with N/A indicate

an imaginary number predicted.

q f(MHz) b D (eV) Predicted Ion Number Measured Ion Number Percent Difference
0.30 0.550 0.022 0.12 574273 566 162 1.4
0.30 0.500 0.026 0.08 387308 381897 1.4
0.30 0.450 0.032 0.04 231851 229396 1.1
0.22 0.500 0.026 N/A N/A 81654 N/A
0.26 0.500 0.026 0.03 185254 198434 6.6
0.37 0.500 0.026 0.18 882 666 672169 31.3
0.37 0.450 0.032 0.12 594951 455767 30.5
0.26 0.535 0.023 0.05 271704 205591 322
0.22 0.580 0.019 0.03 163397 132166 23.6

for the determination of the value of Iécut. It also solves the
puzzle of the very existence of Ry, identifying its origin as
a fundamental, purely dynamical effect, a chaos transition,
whose exact location is determined by the strength of the
admixture of higher multipole fields to the LPT’s quadrupole
trapping field.

The loading of the Paul trap as a function of time was also
examined. In our previous work [22], the loading as a function
of time in region IV was determined from the equation

2R U
_ iV 172 2
t = 3)~L]/3{In((x N'/%) 21n(N+ozN +a)
N2 4 o 1
++Barctan | =——— ) — VBarctan | — )}, (34)
a3 V3

where o = R'/?X1/3, and the tilde indicates that the quantity
corresponds to the loading zone, which in this case is the MOT
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FIG. 12. Ion number vs time fitted to the model (34) [thick
blue (upper) line], the traditional model (2) (thin green line), that
model with £, =0 (dot-dashed purple line), and that model with
¢y = 0 (dotted red line). The traditional model displays the familiar
overshoot-undershoot-overshoot pattern, but the model (34) fits both
the knee and the plateau. Where the error bars (showing statistical
errors) are not seen, they are smaller than the corresponding plot
symbols.

volume. Therefore, for example, R is the radius of the loading
zone, which in this case is the MOT radius.

Equation (34) was derived for region IV and one should not
expect it to fit in regions I and II. Indeed, applying it to plots
at extremely small loading rates results in poor fits and the
prediction of imaginary ion numbers. However, in region II,
(34) fits the loading data at least as well, if not better, than the
traditional model (2). This includes versions of the traditional
model where £; = 0 or £, = 0, as can be seen in Fig. 12. All
forms of the traditional model demonstrate the overshoot of
the rise, undershoot of the knee, and overshoot of the plateau
seen also in Fig. 1. While (34) overshoots the rise as well, it
fits the knee and the plateau better than the traditional model.
Further, unlike the traditional model, it is derived from the
underlying physical process and depends on quantities that
can be experimentally measured independently of the model
itself.

VI. CONCLUSION

In this work, two of the four regions in the loading
curve of a Paul trap, predicted in [22], have been confirmed
experimentally. Additionally, both simulations and analytical
models match reasonably well the steady-state ion number and
shape of the curves. The two regions are relevant and accessible
to the majority of Paul trap experiments. Also proposed are
experimental and computational methods for finding Ry, a
quantity necessary for finding the actual trap depth (a difficult
experimental prospect), the total collision rate constant for
dark ions [1,2], and for describing the behavior of the Paul-trap
loading in region III [22]. Further work remains to be done to
fully understand the loading of the Paul trap at very high rates.
An upcoming paper will examine the behavior of regions III
and I'V through experiment, simulations, and analytical theory.
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APPENDIX A: LPT PSEUDOPOTENTIAL

In this Appendix we derive the single-particle pseudopo-
tential for the LPT used in the analysis of our experiments.
The pseudopotential is used in our numerical simulations to

053416-12



LOADING A LINEAR PAUL TRAP TO SATURATION FROM ...

prove (a) that the power-law behavior of the loading curves
in region I is a consequence of rf heating, which we prove in
reverse by demonstrating that the pseudopotential equations
of motion, lacking an rf term, cannot explain region I, and (b)
that the existence of region II does not depend on the time
dependence of the rf drive of the trap; i.e., as demonstrated
in Sec. VB, the time-independent pseudopotential alone is
capable of explaining the plateau in region II.

We start with the equations of motion (13), where x, y, and
z are in units of [y [see (16)], ¢ is in units of 2/ [see (12)],
and ¢, b are the dimensionless control parameters defined in
(6) and (14), respectively. Focusing on the x component of
(13), and following the procedure outlined in [36], we split the
x coordinate into a large-amplitude, slowly varying compo-
nent X(¢), called the macromotion, and a small-amplitude,
fast-oscillating component &(¢), called the micromotion,
according to

x(t) = X(1) +§@). (A1)
Defining the cycle average
1 /2
(f()) =— fa+1Har, (A2)
T Jn/2

and in line with the physical meanings of X and &, we assume
(X(n) = X(n), (@) =0,
(X)) =X, @) =0.

Focusing first on the time-dependent (rf) part of (13) and using
the decomposition (A1), we have

X(t)+E@1) = —2qcos@D[X(1) +EMD)].  (Ad)

Because &(7) dominates the left-hand side of (A4) and X(7)
dominates the right-hand side, we may write approximately

E(t) = —2q cos(2) X (7). (A5)

(A3)

Since, according to (A3), X(¢) is assumed to be constant over
one rf cycle, we may integrate (AS5) immediately, resulting in

£(r) = %cos(Zt)X(t), (A6)
where we set the integration constants to zero. This is necessary
for consistency, since these constants lead to nonoscillating,
slow terms that are assumed to be contained in X(z). To
compute X(t), we take the cycle average of (A4). Assuming
that X(¢) and &(¢) are uncorrelated, i.e., (X(¢#)&(¢)) = 0, and
(cos(2t)X (t)) = 0, we arrive at

X(1) = — 2q(cos(2DE(1)) = —2q<% cosz(Zt)X(t)>

2

q
=— =X,
5 X(®)

where we used (cos?(2¢)) = 1/2. This equation of motion for
X (¢) may be derived from the potential

(AT)

qz
Uetr(X) = —X?

4 (A3)
via
oo Uer(X)
X@) = —x (A9)
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To obtain Ueg(X) in SI units, we multiply (A8) with the unit

of energy

ml§Q2
4

The force proportional to b in (13) may be derived from the
potential

Ey = (A10)

b
Uslal(X) = _EX . (All)
Notice that this potential is deconfining. Combining (AS8)
and (A11) results in the total pseudopotential

2
q b

UPP(X) = Ueff(X) + Ustat(X) = (Z - §>X2 (A12)

acting on the macromotion coordinate X of an ion in the LPT.

Since the y equation of (13) is formally identical with the x

equation, we obtain immediately:

L)
Upp(Y) = (% - §>Y2,

where Y is the macromotion coordinate of a trapped ion in y
direction. To obtain the pseudopotential for the z coordinate of
a trapped ion, all we need to do is to set ¢ to zero and replace
b — —2b in the above derivations to obtain

(A13)

Up(Z) = bZ?, (Al4)

where Z is the macromotion coordinate of an ion in z direction.
Clearly, in order to achieve trapping in the x and y directions,
we need the pseudo-oscillator potentials in x and y directions
to be confining, which requires the coefficients in front of the
X? and Y? terms in (A12) and (A13) to be positive, which, in
turn, requires b < ¢2/2. In order to achieve trapping in the z
direction, we need b in (A 14) to be positive. Combining these
two conditions, we obtain the condition

0<b<gqg?)2 (A15)

as the condition for global stability of the LPT in the
pseudopotential approximation.

On the basis of the LPT pseudopotentials (A12), (A13),
and (A14), we now obtain the set of equations of motion of a
trapped ion in the pseudopotential approximation:

.. 2
X[-f-%xi —bxi N ’_; _7
. 2 L J
i+ Sy — by | = L E R (AL6)
" 7 =7
Zi + ZbZi =
J#i

Notice the change of sign in the y-equation part of (A16)
with respect to (15), which is consistent, since the rf field, on
average, produces a confining force in the y direction, which,

in the pseudopotential equations (A16), requires a “+” sign in
2
front of the %-y; term.

APPENDIX B: THE DYNAMICAL ORIGIN OF R,

In this Appendix we show that R, has a purely dynamical
origin. It is explained as a chaos border due to the quartic
admixture in the z potential P(z) of the trap. A fit of P(z) on
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the axis of the trap yields
P(z) = 3.231 x 107°z* — 1.985 x 10773
+3.391 x 107%2% + 4.826 x 107*z7 4+ 0.269, (B1)

where z is in mm and P(z) is in volts. Assuming cylindrical
symmetry and neglecting the small terms asymmetric in z pro-
portional to z and to z>, we extend P(z) into the x and y direc-
tions, i.e., P(z) — P(x,y,7), by requiring V2P(x,y,z) = 0.
We obtain

1.986 V 1
P(x.y.2) = 0.269V + _2<Zz _ _rz)
)

1oz v 1'032 v <Z4 + E1*4 — 322r2>, (B2)
b 8
where zo = 24.2 mm. The extension P(z) - P(x,y,z) is
unique, once cylindrical symmetry is assumed. We are aware
of the fact that cylindrical symmetry can be true only close to
the LPT’s axis, since closer to the rods, we have a fourfold
symmetry, which breaks rotational invariance around the
LPT’s z axis. However, close to the LPT’s axis, (B2) is an
acceptable analytical approximation, which, for r < 5 mm,
differs from the experimental P(x,y,z) by less than 30%.
On the basis of (B2) we obtain the following single-ion
equations of motion:

X+ 2q cos(2)x — byx + by[3(x® + xy?) — 6x2%]
¥ —2q cos(2t)y — byy + ba[3(y + yx?) — 6yz] | =0,
74 2byz + by[47° — 62(x* + )]
(B3)
where
1.986 eV
- mm2z) f2

and [y is defined in (16). Integrating the system of equa-
tions (B3) for many initial conditions, we found that the
single-ion dynamics governed by (B3) exhibits trapped and
escaping trajectories. We illustrate this in the following way.
For ¢ = 0.3, f =450 kHz (the case shown in Fig. 9), we
determined the lifetimes L (in rf cycles) of 72 000 tra-
jectories with initial conditions x, = —9 mm + n x 0.1 mm,
n=1,...,180, y =0, and z,, = —20 mm + m x 0.1 mm,
m =1, ...,400. The color-coded result is shown in Fig. 13.
We see that the set of initial conditions that leads to trajectories
that never escape (black region in Fig. 13) has a finite area,
extending less than 5 mm in the x direction, while trajectories
that visit any of the colored regions quickly escape. Therefore,

_ 11.082eV 12

, B4
Ry (B4)
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FIG. 13. Color-coded fractal of escape times. Denoting by L the
number of rf cycles it takes for an initial condition (x,z) to reach
|x| = ro = 9.5 mm, the colors code for L < 3 (cyan or lightest gray),
3 < L <6 (green or light gray), 6 < L < 9 (red or gray), 9 < L <
1000 (blue or dark gray), and L > 1000 (black). The black area
corresponds to initial conditions that lead to ion trajectories that never
escape. The black area is bounded in the x direction by Rewe ~ 5 mm.
The points with x = 0, protruding from the fractal, are also shown in
black, since they correspond to on-axis equilibrium points that, too,
never escape.

from Fig. 13, we conclude that R..: ~ 5 mm. This is consistent
with the value R.y ~ 4.5 mm used in Fig. 9. By repeatedly
zooming into the boundary of the black region in Fig. 13
we checked explicitly that the black region in Fig. 13 has a
fractal boundary [37], which indicates that trajectories started
close to the boundary are transiently chaotic [38]. Thus, Iécm is
identified as a chaos border. Therefore, far from caused by any
noncontrollable effects, such as patch fields, stray fields, or
noise (although these effects certainly may modify R.y), the
reduced trapping capacity of our LPT, characterized by Ry, is
apurely deterministic, dynamic effect, which is fundamentally
related to the shape of the trapping potential of our LPT in the
z direction. While the investigation of the properties of the
escape fractal shown in Fig. 13 is an interesting project in
itself, it is beyond the scope of this paper and not necessary
for the purpose of explaining the dynamical origin of Rey. We
will report more results on the escape fractal, including chaos
and order in our LPT, elsewhere.
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