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Photodetachment of negative ions in combined laser and low-frequency fields is investigated. The time-
dependent Green’s function method is used for calculation of electron flux at a macroscopic distance from
the photodetachment source, typical for a photodetachment microscopy experiment. In calculating the electron
flux, we use the stationary phase method for the time integral, equivalent to the semiclassical approximation, to
compute the time-dependent wave function. The stationary points t

(i)
1 , i = 1, . . . ,n correspond to time instances

of launching of classical trajectories arriving at the detector at a given spacetime point (r,t). The number of
trajectories n contributing to the electron flux at any point in the classically allowed spacetime domain can be
controlled by varying the switching interval of the high-frequency laser which initiates the photodetachment
process. The divergences inherent in the electron flux in the semiclassical treatment are removed by using the
uniform Airy approximation near the caustics.
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I. INTRODUCTION

Studies of electron photodetachment in external static
electric fields demonstrate spatial interference of electrons
traveling along different classical trajectories [1–4]. Similar
phenomena were predicted for photodetachment in parallel
electric and magnetic fields [5–7] and other external fields,
particularly due to metallic and dielectric surfaces [8–11].
Experimental observations of spatial interference in static
electric fields [12] allow very precise determination of electron
affinities [13–15]. These studies have developed in a whole
field called “photodetachment microscopy.” Similar studies
with neutral atoms [16–22] are called “photoionization mi-
croscopy.” Replacing static electric fields with low-frequency,
particular radio frequency, fields adds new interesting physics
[23–26] which was investigated in several recent theoretical
studies [27–31]. Yang and Robicheaux [28] showed that
time-dependent terahertz fields, in addition to the spatial
interference, create also temporal interference. Such studies
are important for the general theory of detachment of neg-
ative ions and ionization of neutral atoms and molecules
by radiation fields. The returning electron trajectories un-
dergo rescattering and this contributes to such interesting
phenomena as above-threshold ionization [32], high-order
harmonic generation [33,34] and multielectron nonsequential
ionization [35]. Qualitatively the contribution of rescattering
to these phenomena is described by the three-step model
of ionization (sometimes called the “simple man” model)
[36], although the modern computational techniques allow
an accurate quantitative description by numerical solution of
the time-dependent Schrödinger equation. For the purpose
of understanding of more physics, the quasiclassical and
semiclassical methods [32,37], which stand between the
three-step model of ionization and exact quantum-mechanical
calculations, are becoming quite useful.

There are two types of methods standing between classical
and quantum mechanics. Methods of the first type describe the
wave function in terms of classical quantities, classical proba-
bility density, and action [19,37–39]. The latter is equal to the
phase of the wave function. If necessary, these quantities can be
analytically continued in the complex-time plane to describe

the motion in classically forbidden regions [40–43]. However,
this extension is not always straightforward. Methods of the
second type start with the Schrödinger equation, and then use a
short-wavelength approximation or stationary phase methods
to obtain an approximate wave function [42,44,45].

In the present paper we use the second approach, but restrict
ourselves to the classically allowed region. In this case the
electron motion starts above the potential barrier binding the
electron in a negative ion. Practically, this is achieved by
using a high-frequency laser field which detaches electrons
and launches classically allowed trajectories in another static
or low-frequency field. Our approach to the description of
this process, belonging to the second type, is somewhat
different from that of Yang and Robicheaux [28]. We start with
the integral form of the Schrödinger equation involving the
exact quantum-mechanical propagator for electron motion in
a low-frequency field [46]. After calculating the integral in this
equation by the stationary phase method, we obtain the electron
wave function in terms of electron action along classical
trajectories. The advantage of this approach is in its generality,
since it allows description of classically forbidden trajectories
as well with stationary points lying in the complex-time plane.
It also can be extended to photoionization by inclusion of the
Coulomb field in calculation of classical trajectories.

The rest of the paper is organized as follows: In Sec. II
we present the theoretical formulation. In Sec. III we discuss
the behavior of the wave function near the caustic. In Sec. IV
we analyze electron trajectories contributing to the flux at
the detector. In Sec. V we present sample results. Section VI
contains conclusion and outlook. Atomic units are used
throughout the paper unless stated otherwise.

II. THEORETICAL FORMULATION

We start with the time-dependent Schrödinger equation
with the Hamiltonian

H = Ha + Hs + Hl,

where Ha is the atomic Hamiltonian containing interaction of
the active electron with the atomic residue, and Hs , Hl are

2469-9926/2017/95(5)/053414(9) 053414-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.95.053414


H. AMBALAMPITIYA AND I. I. FABRIKANT PHYSICAL REVIEW A 95, 053414 (2017)

electron interactions with the short-wavelength laser field and
the long-wavelength (low-frequency) field, respectively. The
frequency of the laser field should be high enough to allow one-
photon detachment of the negative ion, and the frequency of
the long-wavelength field can lie between the radio frequency
(rf) and terahertz frequency range. For specific calculations
we choose rf fields with frequencies 100 and 200 MHz. We
assume that both fields are linearly polarized and parallel and
direct them along the negative z axis. Then, in the dipole
approximation and using the length gauge, we have

Hs = −Fs(t)z, Hl = −Fl(t)z,

where Fs(t), Fl(t) are corresponding forces acting on the
electron. We assume both fields to be monochromatic, but
in order to obtain temporal interference we switch on the laser
field at time t0 and switch it off at time t2, so that

Fs(t) = �(t,t0,t2)� cos (ωst + φ),

�(t,t0,t2) = f (t − t0) − f (t − t2),

where � is the field amplitude, and φ is a phase which does not
influence the final result for the electron current. The function
f (t) is growing from 0 at t = −∞ to 1 at t = ∞ with the
switching interval ts small compared with t2 − t0. The exact
shape of f (t) is not important, as long as

2π/ωs � ts � t2 − t0. (1)

For example, the choice ts = 0, or f (t) = η(t), where η(t) is
the step (Heaviside) function would not satisfy the first condi-
tion. Yang and Robicheaux [28] choose f (t) = [tanh(t/ts) +
1]/2.

For the low-frequency field we have

Fl(t) = F0 cos ωt,

and there is no need to limit its duration as long as the duration
of the laser pulse is limited. If ts is sufficiently small, the
effective time instant for switching on the laser field is t0, and
the effective time instant for turning off the laser field is t2.
Therefore, by varying t0 and the time interval t2 − t0 we can
control the initial phase of the low-frequency field and the
number of cycles of the low-frequency field which affect the
detachment process.

The Schrödinger equation can be written in the following
integral form:

ψ(r,t) =
∫ t

−∞
dt ′

∫
dr′G(r,t,r′,t ′)Hs(r′,t ′)ψ(r′,t ′), (2)

where G(r,t,r′,t ′) is the electron propagator incorporating
the atomic and the low-frequency field, but not the laser
field. We then make two approximations typical in these
problems [40,42]: First, we neglect the influence of the
atomic field on the propagator. This is equivalent to the
neglect of the rescattering effects which are very weak for
short-range potentials describing electron interaction with
atomic residue in the photodetachment problem [47,48]. In the
photoionization problem the Coulomb field of the ion residue
should be included. Second, we neglect the influence of both
laser and low-frequency fields on the wave function in the
right-hand side of Eq. (2), i.e., we assume

ψ(r,t) ≈ e−iEbtψ0(r),

where Eb is the energy of the initial bound state, and ψ0(r) is
the corresponding bound-state wave function. This is justified
for the weak fields considered in the present paper [42].

For treating the absorption process the interaction Hamil-
tonian Hs can be replaced by the positive-frequency part

Hs = 1
2�(t,t0,t2)�z exp [−i(ωst + φ)]. (3)

Since the laser field is, strictly speaking, not monochromatic,
this can raise a question about possible contribution of the
negative-frequency part. However, Eq. (3) is valid as long as
conditions (1) are satisfied. The integral equation turns now to
the following integral representation for ψ(r,t):

ψ(r,t) = �e−iφ

2
u(r,t),

u(r,t) =
∫ t

−∞
dt ′�(t ′,t0,t2)e−iEt ′

∫
dr′G(r,t,r′,t ′)z′ψ0(r′),

(4)

where E = Eb + ω is the electron energy after detachment.
We assume it to be positive.

The quantity of physical interest is the ratio of electron
current density at the spacetime point (r,t) to the photon
current density in the laser field. It does not depend on �

and φ and is given by [4]

jel

jph

= 2πωs

c
Im

(
u∗(r,t)

∂u(r,t)
∂z

)
, (5)

where c is the speed of light.
The exact propagator for linearly polarized field is well

known and can be written as [46]

G(r,t,r′,t ′) = −iη(t − t ′)[2πi(t − t ′)]−3/2

× exp[iR(r,t,r′,t ′)], (6)

where R(r,t,r′,t ′) is the principal Hamiltonian function (or
action) along the trajectory joining spacetime points (r′,t ′) and
(r,t). We denote it by R to distinguish it from the abbreviated
action SE(r,r′) used usually in the problems of electron motion
in a static field.

To simplify Eq. (4), we note that the integrand in the
right-hand side contains a rapidly oscillating function, and
for its calculation we can use the stationary phase method.
The equation for the stationary point in t ′ is

∂R(r,t,r′,t ′)
∂t ′

− E = 0. (7)

Using the known relation from the classical mechanics, we
obtain

H (r,t,r′,t ′) = E, (8)

where H is the classical Hamiltonian of the electron in the
low-frequency field expressed as a function of the spacetime
points (r′,t ′) and (r,t). The explicit expressions for R and H

can be found by using the classical equations of motion. Since
both high- and low-frequency fields are linearly polarized
along the z axis, we can use the cylindrical symmetry of
the system to constrain the outgoing electron trajectories to
a plane with a constant azimuthal angle ϕ = 0. With these
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conditions, classical equations of motion of the electrons in the low-frequency field are as follows:

x(t) = ẋ ′(t − t ′) + x ′, z(t) = − F0

mω2
(cos ωt − cos ωt ′) + (t − t ′)

(
ż′ − F0

mω
sin ωt ′

)
+ z′, (9)

where the primed quantities represent the initial spacetime coordinates and components of velocity. Now, using Eq. (9), we can
write down the analytical expressions for R(r,t,r′,t ′) and H (r,t,r′,t ′) (see, for example, Ref. [49]):

R(r,t,r′,t ′) = m

2(t − t ′)
[(x − x ′)2 + (z − z′)2] + F0

(
1

ω2

(z − z′)
(t − t ′)

(cos ωt − cos ωt ′) + 1

ω
(z sin ωt − z′ sin ωt ′)

)

+F 2
0

(
1

2mω4

(cos ωt − cos ωt ′)2

(t − t ′)
+ 1

8mω3
(sin 2ωt − sin 2ωt ′) − (t − t ′)

4mω2

)
, (10)

H (r,t,r′,t ′) = m

2

(
x − x ′

t − t ′

)2

+ m

2

(
z − z′ + F0

mω2 (cos ωt − cos ωt ′)
t − t ′

+ F0

mω
sin ωt ′

)2

− F0z
′ cos ωt ′. (11)

We emphasize that R, H , and the preexponential factor
in Eq. (6) can be written in analytical forms because we
are dealing with photodetachment. For the photoionization
problem the Coulomb field should be included. This can be
done by numerical calculation of classical trajectories in the
superposition of the low-frequency field and the Coulomb
field.

The integral on the right-hand side of Eq. (4) can be
calculated now by the stationary phase method:

g(r,t,r′) ≡
∫ t

−∞
dt ′�(t ′,t0,t2)e−iEt ′G(r,t,r′,t ′)

= −e−iπ/4

2π

∑
t1

�(t1,t0,t2)

(t − t1)3/2

∣∣∣∣ ∂2R

∂(t ′)2

∣∣∣∣
−1/2

t ′=t1

× exp{i[R(r,t,r′,t1) − Et1 ± π/4]}, (12)

where the sum is over all solutions t1 of Eq. (8), and the sign
in the exponent is determined by the sign of ∂2R/∂(t ′)2. If

the switching time ts is short enough, the solutions of Eq. (8)
should be chosen from the interval t0 < t ′ < t , if t < t2, and
from the interval t0 < t ′ < t2, if t > t2. On the other hand, ts
should not be too short. If, for example, it is chosen to be 0, then
the boundaries t0 and t2 can contribute to the integral as well,
in addition to the stationary points. We therefore require that ts
satisfies conditions (1). Under these conditions, the switching
function �(t1,t0,t2) allows us, by varying t0 and t2, to select the
number of stationary points t1 which physically correspond to
the times of launching of trajectories. In this way we control
the number of classical trajectories contributing to the electron
current at the spacetime point (r,t).

For calculation of the spatial integral in Eq. (4) we note that,
whereas the coordinates r are allowed to reach macroscopic
values, the coordinates r′ are limited by the spatial extent of the
wave function ψ0(r′). Following Ref. [4], we therefore expand
R(r,t,r′,t1) − Et1 in powers of r′. Note also that, because of
Eq. (8), t1 is an implicit function of r′ and t . Therefore,

R[r,t,r′,t1(r,r′,t)] − Et1(r,r′,t) = R[r,t,0,t1(r,0,t)] + ∂R

∂r′

∣∣∣∣
r′=0

· r′ + ∂R

∂t1

∂t1

∂r′

∣∣∣∣
r′=0

· r′ − Et1(r,0,t) − E
∂t1

∂r′

∣∣∣∣
r′=0

· r′. (13)

According to Eq. (7), terms with ∂t1/∂r′ cancel each other,
and we obtain

R(r,t,r′,t1) − Et1 = SE(r,t) − p′(r,t,0,t1) · r′,

where

SE(r,t) = R[r,t,0,t1(r,0,t)] − Et1(r,0,t),

p′(r,t,0,t1) = − ∂R

∂r′

∣∣∣∣
r′=0

(14)

is the momentum of electron launched at the origin at time t1
and arriving at the spacetime point (r,t).

The function SE(r,t) which we will call a modified action,
recalls somewhat the abbreviated action used in stationary
problems [1,4]. However, there are two important differences:
first, the energy E is not a conserved quantity. Second, the sign
of the second term in Eq. (14) is negative since it contains the
initial time t1 rather than final time t .

The spatial integration is reduced now to calculation of the
well-known matrix element

M(p′) =
∫

e−ip′ ·r′
z′ψ0(r′)dr′.

For photodetachment of H− we can use the zero-range-
potential approximation with readjusted normalization con-
stant [50]. Then

ψ0(r) = B
e−r/a

r
,

where a = (−2Eb)−1/2, and

M(p′) = 8πiBp′

[a−2 + (p′)2]2
cos χ ′,

where χ ′ is the angle between p′ and the z axis.
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FIG. 1. Graphical solution of the equation ∂S/∂t ′ = 0 for t ′ at
different detection times t . For t = 351.00 ns no real roots exist. This
means that there are no real trajectories arriving at the center of the
detector. For t = 357.00 ns there are two roots corresponding to two
electron trajectories arriving at the center of the detector at the same
time. The amplitude and frequency of the field are 50 V/cm and
100 MHz, respectively. The detector is 0.5 m from the source.

Finally,

u(r,t) = −e−iπ/4

2π

∑
t1

M(p′)�(t1,t0,t2)(t−t1)−3/2

∣∣∣∣ ∂2R

∂(t ′)2

∣∣∣∣
−1/2

t=t1

× exp {i[S(r,t) ± π/4]}. (15)

This should be substituted into Eq. (5) for calculation of the
ratio of the current densities.

III. WAVE FUNCTION NEAR CAUSTIC

Before we move on to the description of the wave
function near the caustic surface, we first briefly investigate
the formation of caustics due to the photodetached electron
trajectories in time-dependent fields. As the final time t evolves
at an arbitrary point on the detector, new pairs of trajectories
emerge from the complex spacetime domain. In Fig. 1, we
show how the trajectories start to appear in pairs at the center
of the detector. Here, we have drawn ∂S

∂t ′ as a function of
t ′ with t ′ ∈ [t0,t] for some fixed final times. According to
Fig. 1, when the final time t gradually increases, the curve
∂S
∂t ′ passes through a special point in initial time, denoted by
t ′ = tc(r′,r,t). At this point, the following two conditions are
simultaneously satisfied:

∂R

∂t ′

∣∣∣∣
t ′=tc

= E,

∂2R

∂(t ′)2

∣∣∣∣
t ′=tc

= 0. (16)

We say that the two equations (16) define a caustic surface
which is the boundary for classically allowed trajectories in
spacetime domain. In other words, if we launch an ensemble
of trajectories from the source at r′ = 0 at a fixed initial time t ′,
the set of points, (r,t), in the real spacetime domain satisfying
the above conditions are said to lie on the caustic surface,
which in general depends on the initial time t ′. In Fig. 2, we
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FIG. 2. Electron trajectories (thin lines) and projections of the
caustic surfaces on the x-z plane (thick lines). Panels (a)–(c) show
the variation of the caustic surface for different initial times.

show electron trajectories and the projection of the caustic
surface on the x-z plane for three different initial times. Note
that trajectories do not cross the caustic surface in the three-
dimensional (x,z,t) space. Apparent crossing points in the x-z
plane observed in Fig. 2 do not represent actual crossings.

In the case of a static field, the caustic surface can be
obtained from similar equations

∂R

∂τ
= −E,

∂2R

∂τ 2
= 0,

where τ = t − t ′. These two equations can readily be sim-
plified to obtain an equation for the caustic surface in
configuration space, which is independent of the launching
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FIG. 3. Electron trajectories (thin lines) and the caustic surface
(thick solid line) for the case of a static field. F = 50 V/cm, E =
0.5 meV.

time, (
1 + zF

E

)(
1 + z′F

E

)
− F 2

4E2
(x − x ′)2 = 0.

Figure 3 shows the caustic surface as an envelope of electron
trajectories for a static field.

On the caustic, Eq. (12) is not valid. The integral can
be evaluated by expanding the action in powers of t − tc
where tc(r,r′,t) is the solution of Eq. (16). Introduce again
the modified action

S(r,t,r′,t ′) = R(r,t,r′,t ′) − Et ′.

Then in the vicinity of the caustic

S(r,t,r′,t ′) = b(r,r′,t)(t ′ − tc) + a(r,r′,t)(t ′ − tc)3,

where

b(r,r′,t) = ∂S

∂t ′

∣∣∣∣
t ′=tc

, a
(
r,r′,t

) = 1

6

∂3S

∂(t ′)3

∣∣∣∣
t ′=tc

.

Assuming now that t 	 tc and using the integral representation
of the Airy function, we obtain

g(r,t,r′) = − exp{i[S(r,t,r′,tc)]}
(2πi)1/2(t − tc)3/2[3a(r,r′,t)]1/3

× Ai

[
b(r,r′,t)

[3a(r,r′,t)]1/3

]
.

For calculation of the spatial integral in Eq. (4) we perform
the expansion similar to (13). Using

∂S(r,t,0,t ′)
∂t ′

∣∣∣∣
t ′=tc

= H (r,t,0,tc) − E,

∂S(r,t,r′,t ′)
∂r′

∣∣∣∣
r′=0

= −p′(r,t,0,tc),

we obtain

S(r,t,r′,tc) = S(r,t,0,tc) − p′(r,t,0,tc) · r′

+ [H (r,t,0,tc) − E]
∂tc

∂r′

∣∣∣∣
r′=0

· r′.
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FIG. 4. Profile of �(t,t0,t2) for the laser interval I2.

Finally,

u(r,t) = − exp {i[S(r,t,0,tc)]}
(2πi)1/2(t − tc)3/2[3a(r,0,t)]1/3

× Ai

[
b(r,0,t)

[3a(r,0,t)]1/3

]
M(pc),

where

pc = p′ − [H (r,t,0,tc) − E]
∂tc

∂r′

∣∣∣∣
r′=0

.

IV. TRAJECTORY ANALYSIS

In all calculations we assume that electrons reach a planar
detector, oriented perpendicular to the z axis, at a distance
0.5 m from the negative ion which is placed at the origin of
our coordinate system. The amplitude and the oscillation fre-
quency of the low-frequency field are 50 V/cm and 100 MHz,
respectively. The electron starts its motion in the classically
allowed region with an initial kinetic energy E = 0.5 meV
after the photodetachment process. It is important to note
here that this energy E is not a constant along the electron’s
trajectory. The incident photon energy corresponding to elec-
tron’s initial kinetic energy is ωs = E − Eb = 0.755 602 6 eV
where Eb = −0.755 102 6 eV is the electron energy in H−.
The stationary phase condition (8) generates the launching
time t ′ for a given launching position r′, final position r,
and detection time t , and allows us to find the corresponding
trajectory. We choose two suitable laser on-off intervals for
the high-frequency field, I1 = [t0,t2] = [−10 ns, 0 ns] and
I2 = [t0,t2] = [−10 ns, 10 ns]. The durations of the laser
intervals are multiples of the period of the low-frequency field.
For the switching function (envelope function) �(t,t0,t2), we
consider the following two trial functions where the first one
is the same as that of Yang and Robicheaux [28]:

�1(t,t0,t2) = 1

2

[
tanh

(
t − t0

ts

)
− tanh

(
t − t2

ts

)]
, (17)

�2(t,t0,t2) = 1

π

[
tan−1

(
t − t0

ts

)
− tan−1

(
t − t2

ts

)]
, (18)

where the switching interval is ts = 500 × 2π/ωs . Figure 4
shows the shapes of the switching functions �1(t,t0,t2) and
�2(t,t0,t2) for the laser on-off interval I2. Although the
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FIG. 5. Relation between the detection time t and the launching
time t ′. (a) The switching interval is I2. Maximum of eight trajectories
grouped as G1 and G2 are possible. (b) Switching interval I1.
Maximum of four trajectories grouped as A1 and A2 are possible.
C1 and C2 indicate the points of the caustic condition (16).

first type of switching occurs faster, both functions satisfy
conditions (1), and the results do not depend on the specific
choice of �.

As the duration of the laser interval increases, the number
of electron trajectories arriving at the detector at the same
time t increases as well. In Fig. 5 we show the solutions
t ′ for each final time t for the two intervals I1 and I2. In
Fig. 5(a), for large t , there are eight trajectories which can
be separated into two groups G1 and G2 arriving at the
detector at the same final time t . The difference between
the modified actions, S = S(r,t ′(1)) − S(r,t ′(2)), where S is
given by Eq. (14), corresponding to trajectories of groups
G1 and G2 with starting times t ′(1) and t ′(2), is large and the
interference pattern they produce is rapidly oscillating. This
is expected because the earlier trajectories in group G1 spend
more time in the low-frequency field than the trajectories in
group G2. In Fig. 5(b), we draw the initial times for electron
trajectories corresponding to the laser interval I1. Now for
large t , we can observe a maximum of four electron trajectories
arriving at the detector center. Here the labels C1 and C2 mark
the points where the conditions in Eq. (16) are simultaneously
satisfied. The semiclassical flux is diverging at temporal or
spatial caustics, and we will see these divergences as special
features in the temporal or spatial interference profiles in the
next section. Well beyond the two caustics in Fig. 5(b), S

between A1 trajectories and A2 trajectories also grows rapidly
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FIG. 6. Electron flux at the center of the detector is shown as a
function of time for F0 = 50 V/cm and ω = 100 MHz. Divergence
in the semiclassical flux (red dashed line) is corrected by using the
uniform Airy approximation (thick solid line) near the caustic.

due to the same reason as in Fig. 5(a). Therefore, the four
trajectory interference structure exhibits rapid oscillations.
The two trajectories in either of the groups A1 or A2 have
a very small initial time separation (t ′) and thus a small S

producing less-rapid oscillations.

V. TEMPORAL AND SPATIAL INTERFERENCE

Taking the switching interval I1, we now compute the
ratio given by Eq. (5) with u(r,t) calculated via Eq. (15). In
calculation of the numerical derivative ∂u(r,t)/∂z, we have to
make sure that the increment dz is small enough so that, at the
new location z + dz, we get the same number of trajectories
arriving at time t .

In Figs. 6 and 7, we show the electron flux calculated
by using semiclassical and uniform Airy approximations. In
Fig. 8, we also show the electron flux when the rf frequency is
increased to 200 MHz.

It is now interesting to see how the spatial interference
pattern changes over the detector plane as the final time
t changes. Figure 9 shows that, for a fixed final time t ,
there can be two or four trajectories arriving at an arbitrary
point in the detector. For example, when the final time
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FIG. 7. Same as Fig. 6, but the electron flux near the transition
region from two to four trajectories is shown.
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FIG. 8. Calculations for F0 = 50 V/cm and rf 200 MHz.
(a) Electron-arrival time plot, where C1 and C2 indicate the points
which satisfy the caustic conditions (16). (b) Semiclassical flux (red
dashed line) and the uniform Airy function approximation (thick solid
line) when the number of electron trajectories increases from 0 to 2.
(c) The same as panel (b), but the number of trajectories increases
from two to four.

t = 360 ns, there are four trajectories arriving at each point
in the detector. The interference pattern they produce over
the detector plane is shown in Fig. 10. For the final time
t = 358 ns or t = 359 ns, we can again see a transition region
from two to four trajectories along the x coordinate and,
therefore, a discontinuity in the corresponding semiclassical
interference pattern. Similar to the temporal interference
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FIG. 9. Initial electron launching time as a function of the x

coordinate on the detector plane for different final times t .

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

(a)

El
ec

tr
on

 fl
ux

 (
ar

b.
 u

ni
ts

)

x mm

Semiclassical Flux at t = 360.0 ns

-4 -3 -2 -1  0  1  2  3  4

y (mm)

-4

-3

-2

-1

 0

 1

 2

 3

 4

x 
(m

m
)

0

1

2

3

4

5

El
ec

tr
on

 f
lu

x 
(a

rb
. u

ni
ts

)

(b)

FIG. 10. (a) Variation of the flux along x at t = 360 ns.
(b) Interference pattern in the detector plane. The field amplitude
F0 = 50 V/cm and frequency 100 MHz.

pattern, we can remove these divergences using the uniform
Airy approximation near the caustics, as shown in Fig. 11. In
Fig. 11, we also show the spatial interference pattern of the
electrons arriving at the detector plane when the final time
t = 358 ns and t = 359 ns.

VI. CONCLUSION

In conclusion we have investigated photodetachment of
negative ions in time-dependent low-frequency fields by
calculation of the electron flux arriving at a detector located a
macroscopic distance from the photodetachment source. For
the calculation of the electron flux, we have used the quantum
propagator for the electron motion in a time-dependent field
and the stationary phase approximation in the evaluation
of the wave function. Specific calculations were done for
H−, but the approach is easy to extend to multielectron
negative ions. We have investigated both temporal and spatial
interference structures in the electron flux contributed by two
or four electron trajectories. Divergences in the electron flux
distribution in both spatial and time domains appear when
a new pair of real electron trajectories emerge from the
complex-time domain. This pairwise increment of the number
of trajectories happens when the point of observation lies
on the caustic surface defined by the electron trajectories
in the spacetime domain. The divergences in the electron
flux distributions were removed by using the uniform Airy
approximation near the caustics.
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FIG. 11. (a), (c) Variation of the spatial interference pattern along the x coordinate for t = 358 ns and t = 359 ns, respectively. (b), (d)
Corresponding spatial distribution of the electron flux in the detector plane.

In the current work we did not include the tunneling trajec-
tories. This can be achieved by extending the method we used
into complex time domain. For the case of photoioinization
in time-dependent fields, our method can be modified by
inclusion of the long-range Coulomb potential into the semi-
classical (Van Vleck) propagator [51]. Corresponding classical
amplitudes and action are obtained by numerical integration
of the classical equations of motion. As a further development
of the approach we used here, theory and calculation of the

electron flux for a time-dependent photoionization microscopy
experiment will be presented in a separate paper.
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