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Calculation of atomic photoionization using the nonsingular convergent close-coupling method

A. W. Bray and A. S. Kheifets
Research School of Physics and Engineering, Australian National University, Canberra ACT 2601, Australia

I. Bray
Curtin Institute for Computation and Department of Physics, Astronomy and Medical Radiation Science,

Curtin University, GPO Box U1987, Perth, WA 6845, Australia
(Received 26 February 2017; published 12 May 2017)

The convergent close-coupling method for atomic photoionization is modified by treating the singularity in the
Green’s function analytically. The resultant close-coupling equations are then free of any singularities, and can
be solved at all incident energies including at the exact thresholds. The utility and superiority of the approach is
demonstrated by considering single photoionization of the ground state of helium at photoelectron energies from
the ionic n = 1,2,3 thresholds through to 1 keV. For completeness, the double photoionization cross section is
also presented.
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I. INTRODUCTION

The problem of atomic photoionization is very closely
linked to electron scattering on the corresponding singly
charged atomic ion. The photon is absorbed by an atomic elec-
tron, which then proceeds to scatter elastically, inelastically, or
ionize the residual ionic target. Elastic scattering corresponds
to photoionization leaving the residual ion in the ground
state. Inelastic scattering corresponds to photoionization with
excitation of the ion. Lastly, ionization corresponds to double
photoionization.

The convergent close-coupling (CCC) method was initially
developed for the electron-hydrogen scattering problem [1],
and was then readily modified to the closely related electron
scattering on the He+ ion [2]. Application to photoionization
with excitation and double photoionization of helium and its
isoelectronic sequence of ions was presented by Kheifets and
Bray [3]. Detailed reviews of the application of the CCC
method to photon and electron-impact ionization processes
are given in Refs. [4,5].

The CCC method [1] relies on solving the close-coupling
equations in momentum space as outlined initially by
McCarthy and Stelbovics [6]. This approach involves numeric
integration over the Green’s function, which contains a
singularity for open reaction channels. While this has been a
manageable numerical difficulty, it is particularly problematic
near, or at, excitation thresholds. Furthermore, the subtraction
and addition of large numbers on either side of the singularity
leads to ill-conditioned linear equations due to potential
precision loss. The latter is particularly problematic in positron
scattering [7].

To address the deficiencies associated with the numerical
treatment of the singularity in the Green’s function an
analytical approach to the problem was implemented. This was
done first for the S-wave model electron-hydrogen problem
[8], then a full problem involving positron scattering on
hydrogen [9,10], and then further extended to scattering
involving charged targets [11]. Here, we show how this
development is also advantageous for calculating single and
double photoionization of He. An earlier demonstration has
already been made for the H− ion [12].

II. THEORY

The CCC method for calculation of helium photoionization
has been given in detail by Kheifets and Bray [3]. The general
idea is that the initial helium ground state is described by a
sizable Hylleraas expansion, while the final scattering state is
obtained from a CCC calculation of electron scattering on the
He+(1s) ion. Single photoionization is associated with discrete
excitation of the He+(nl) ion of energy −Z2/n2 Ry. Double
photoionization is associated with excitation of positive-
energy pseudostates included in the CCC calculations. The
expansions must be sufficiently large to ensure that the three
gauges of the dipole operator, length, velocity, and accelera-
tion, all yield much the same result. Here we concentrate solely
on the CCC calculated final state. Atomic units will be used
throughout unless specified otherwise.

Assuming reduced matrix element notation, we first obtain
target (pseudo)states nl by diagonalizing the target Hamilto-
nian HT in a Laguerre basis [1] for orbital angular momentum
l � lmax to yield

〈nf |HT|ni〉 = δf iεni
. (1)

Then, as in the original CCC approach the projectile states kL

are obtained from solving the Schrödinger equation
(

−1

2

d2

dr2
+ L(L + 1)

2r2
+ zpZa

r
− εk

)
〈r|kL〉 = 0, (2)

where the asymptotic charge Za = +1 (for He+ target) and
zp = −1 for the electron projectile.

The partial wave expanded Lippmann-Schwinger equations
in electron scattering from a charged target within the CCC
formalism can be written as

〈Lf kf lf nf |TSJ |nilikiLi〉
= 〈Lf kf lf nf |VSJ |nilikiLi〉

+
∑
l,L

Nl∑
n=1

∑∫
dk

〈Lf kf lf nf |VSJ |n l k L 〉
E + i0 − εn − εk

×〈L k l n |TSJ |nilikiLi〉. (3)
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Here kf and Lf (ki and Li) are the projectile final (initial)
linear and angular momentum respectively. Similarly we have
nf and lf (ni and li) for the He+ target electron final (initial)
principle quantum number and angular momentum. Nl is
the size of the Laguerre basis for a given l. The energy of
the projectile and target electron are denoted as εk and εn,
respectively. The notation i0 is used to indicate the limit of
ix as positive x → 0 included to ensure outgoing spherical
wave boundary conditions. The total spin and orbital angular
momentum of the system are respectively S and J , VSJ are
the interaction potentials, and TSJ are the required transition
amplitudes.

In order to work with purely real arithmetic we define the
K matrix

〈Lf kf lf nf |KSJ |nilikiLi〉 (4)

=
∑
l,L

No
l∑

n=1

〈Lf kf lf nf |TSJ |n l k L 〉

× (δli lδLiLδnin + iπkn〈L k l n |KSJ |nilikiLi〉),
(5)

where No
l is the number of open channels. With this definition

the coupled Lippmann-Schwinger equations (3) can be written
for this quantity as

〈Lf kf lf nf |KSJ |nilikiLi〉
= 〈Lf kf lf nf |VSJ |nilikiLi〉

+
∑
l,L

Nl∑
n=1

P
∑∫

dk
〈Lf kf lf nf |VSJ |n l k L 〉

E − εn − εk

×〈L k l n |KSJ |nilikiLi〉, (6)

where the P is used to denote the Cauchy principle value
component of the integral.

The above formulation, which has a singularity in the
Green’s function, encounters a numerical complication when-
ever the denominator E − εn − εk goes through zero. For
scattering on a neutral target εk = k2/2. However, for charged
targets, bound states of the projectile introduce an additional
countably infinite number of negative energies. Until recently
we were unaware that the CCC formulation for electron-
ion scattering had intractable problems in the vicinity of
thresholds [11]. This is particulary problematic because the
electron-ion scattering excitation cross sections are nonzero at
thresholds.

For electron scattering on charged targets (presently He+),
to address the singularity in the numerical implementation of
the Green’s function we utilize the relation [[13], Eq. (130.10),
p. 537, followed by a partial wave expansion]

GL
n (r ′,r ′′) = P

∑∫
dk

〈r ′|k L〉〈k L|r ′′〉
E − εn − εk

= Re

[−π

kn

fL(knr<)[gL(knr>) + i fL(knr>)]

]
, (7)

where k2
n/2 = E − εn. For open channels kn is real, purely

imaginary for closed channels, and exactly zero at thresholds.
The fL(kr) = 〈r|k L〉 and gL(kr) are the regular and irregular

solutions of Eq. (2) (Coulomb functions [14] for Za > 0),
respectively. Asymptotically, they are oscillatory for open
channels (E − εn > 0), and exponentials for closed channels
(E − εn < 0); see the Appendix. At the exact thresholds
(kn = 0), we utilize the relations

lim
kn→0

fL(knr)/
√

kn = √
πrJ2L+1(

√
8r),

lim
kn→0

gL(knr)/
√

kn = −√
πrY2L+1(

√
8r), (8)

where J and Y are (cylindrical) Bessel functions of the first
and second kind, respectively ([15], Eqs. 96, 98, normalization
differs by

√
2/π ). We also have to take care of the limit kn → 0

in the definition of cross sections. For neutral (Za = 0) targets
the f and g become Riccati-Bessel functions, and for kn = 0
a nonzero cross section is only obtained for the L = 0 elastic
channel (to yield the scattering length).

We now define

〈Lf kf lf nf |V ′
SJ |n l k L〉

=
∫ ∞

0
dr ′

∫ ∞

0
dr ′′

Nk∑
n′=1

×〈Lf kf lf nf |VSJ |n l kn′L〉
× 〈L kn′ |r ′〉GL

n (r ′,r ′′)〈r ′′|k L〉, (9)

which leads to the nonsingular formulation of Eq. (6)

〈Lf kf lf nf |KSJ |nilikiLi〉
= 〈Lf kf lf nf |VSJ |nilikiLi〉

+
∑
l,L

Nl∑
n=1

Nk∑
n′=1

〈Lf kf lf nf |V ′
SJ |n l kn′L 〉

× 〈L kn′ l n |KSJ |nilikiLi〉. (10)

Here the 〈r|kn′L〉 are Nk box-based solutions of (2) which
are zero at r = Rk , and are set to zero for r > Rk . They are
normalized such that 〈kn|kn′ 〉 = δnn′ . The usage of box-based
states as forming a complete set ensures that all integrals in (9)
exist, with the final results needing to be stable for sufficiently
large Rk and Nk .

To calculate photoionization amplitudes within the CCC
formalism [3] we write the following set of equations for the
D-matrix elements:

〈Lf kf lf nf |DSJ |nilikiLi〉
= 〈Lf kf lf nf |dSJ |nilikiLi〉

+
∑
l,L

Nl∑
n=1

∑∫
dk

〈Lf kf lf nf |TSJ |n l k L 〉
E + i0 − εn − εk

×〈L k l n |dSJ |nilikiLi〉. (11)

Here dSJ is the uncorrelated dipole matrix element and TSJ is
the half off-shell transition amplitude of the associated electron
scattering process. In the case of photoionization of the helium
atom this associated process is the scattering of an electron on
the He+ ion in the dipole singlet channel (S = 0, J = 1).
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FIG. 1. Photoionization cross sections σn of the ground state of helium leaving the residual ion in a state of the specified principal quantum
number n calculated with the CCC method using a numerical treatment of the Green’s function (nGF) and an analytic treatment (aGF). The
arrows indicate the calculated result when the outgoing electron energy is set to exactly zero, available for aGF only. The corresponding double
photoionization cross section σ 2+ is also presented. Experimental data are due to Samson et al. [16], Wehlitz et al. [17], and Dörner et al. [18].

We now introduce a nonsingular treatment for the D-matrix
elements in a similar fashion as for (6). We define

〈Lf kf lf nf |d ′
SJ |n l k L〉

=
∫ ∞

0
dr ′

∫ ∞

0
dr ′′

Nk∑
n′=1

×〈Lf kf lf nf |dSJ |n l kn′L〉
× 〈L kn′ |r ′〉GL

n (r ′,r ′′)〈r ′′|k L〉, (12)

using which we rewrite (11) as

〈Lf kf lf nf |DSJ |nilikiLi〉
= 〈Lf kf lf nf |dSJ |nilikiLi〉

+
∑
l,L

Nl∑
n=1

Nk∑
n′=1

〈Lf kf lf nf |TSJ |nlkn′L〉

× 〈Lkn′ ln|d ′
SJ |nilikiLi〉. (13)

The solution of (13) allows for the calculation of photoion-
ization amplitudes avoiding the aforementioned complica-
tions associated with numerical integration over the Green’s
function.

III. RESULTS

To test the nonsingular implementation of the CCC method
for atomic photoionization we set the target to be the
ground state of helium. For this system there is immense
reliable experimental data and theory for both photoionization
with or without excitation and double photoionization (see
Refs. [19–21] for detailed reviews). Our primary goal is to
contrast the original numerical implementation of the Green’s
function (nGF) and the present analytical treatment of the
Green’s function (aGF) implementation of the CCC method.
In addition we compare with experiment where available.

To yield convergence in the cross sections of interest,
with respect to the expansion of the total wave function
in a Laguerre basis, we take states with orbital angular
momentum l � lmax = 2 and Nl = 20 − l, all with exponential
falloff parameter λ = 2. Both sets of calculations have been
performed for a range of photoelectron energies from 10−4 eV
to 103 eV above threshold of the photoionization plus
excitation channels. Additionally, the aGF calculations have
been performed at the exact thresholds. In the case of double
photoionization obtaining accurate results in the near threshold
region is problematic due to the requirement of large Nl to yield
many low-energy positive target states. This is not a focus of
the present work. Their presentation is solely to demonstrate
that the aGF approach works equally well in this case.

The results of the calculations are presented in Fig. 1,
where the energy is on a logarithmic scale to enhance the near
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threshold regions. We see substantial discrepancy between the
two calculations below 1 eV. The nGF results, at energies
below 1 eV, are not stable with respect to the numerical
integration and sum over the virtual momenta in Eq. (6). One
such typical result is presented. The aGF results at all energies
have been obtained by taking Nk = 400 and Rk = 200a0, and
have been checked to be numerically stable. The evaluation of
aGF at the exact thresholds utilizing Eq. (8) is indicated by the
arrows, which are clearly consistent with the near-threshold
aGF results and the one near-threshold experimental point.
Away from thresholds both methods yield much the same
results and are in very good agreement with experiment. Note
that both methods yield correct results in the resonance regions,
which can be compared with the detailed studies presented
some time ago by Salomonson et al. [22].

IV. CONCLUSIONS

We have implemented an analytical treatment of the
Green’s function in the CCC equations with application to
photoionization of atoms that is valid at all energies, including
at exact thresholds. By utilizing the example of the ground
state of helium as the target, the extra utility of the approach
over the one used previously has been demonstrated. This
benefit is primarily at, and near, the thresholds. Such utility is
indispensible for threshold studies, in particular the study of
threshold behavior utilizing attosecond chronoscopy [12].
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APPENDIX

In generating the component functions of Eq. (7) we utilize
the computational program COULCC of Thompson and Barnett
[14] with η = zpZa/

√
2εk (η is purely imaginary for negative

TABLE I. L = 0 expressions for GL
n (r ′,r ′′) of (7) for neutral

targets (Za = 0) with energies εn = k2
n/2. Note that for k2

n/2 < 0 we
write kn = ik′

n, and that r< ≡ min(r ′,r ′′) and r> ≡ max(r ′,r ′′).

Energy L = 0

k2
n/2 > 0 −π

kn
sin(knr<) cos(knr>)

k2
n/2 = 0 −πr<

k2
n/2 < 0 −π

2k′
n
[exp(k′

nr<) − exp(−k′
nr<)] exp(−k′

nr>)

energies). We do not alter the normalization of the resultant
functions, which require a different mode depending on
whether the energy is positive (including zero) (MODE1=2
yields f and g) or negative (MODE1=12 yields f and h+ =
g + if ). Whether η = 0 for neutral targets or nonzero for
charged targets, the resultant functions are used in exactly
the same way.

In Table I explicit expressions for the neutral L = 0 cases
are given for positive, zero, and negative energies. Note how
the zero energy limit is readily obtained from the positive
or negative energy side. Note also how the positive energy
results transform to those of the negative upon k → ik′ in
Eq. (7).

In the case of a charged target (Za � 1) we are not able
to use elementary functions to express GL

n (r ′,r ′′) even for
L = 0. However, the asymptotic behavior is much the same as
for η = 0 except for the extra complexity of the Coulomb
term θL = −η ln(2knr) + σL, where σL is the Coulomb
phase. For positive energies (k2

n/2 > 0) and large r we have
fL(knr) → sin(knr − Lπ/2 + θL), and gL(knr) = cos(knr −
Lπ/2 + θL). For negative energies (kn = ik′

n), the f and
h+ are both complex, but their individual phases have no
r dependence with their product being always i, leading to
k′
n in the denominator of Eq. (7). For large r the function

of r< grows as exp(k′
nr<) and the function of r> behaves as

exp(−k′
nr>).
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