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Relativistic calculations of differential ionization cross sections:
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A. I. Bondarev,1,2,3,* Y. S. Kozhedub,2 I. I. Tupitsyn,1,2 V. M. Shabaev,2 G. Plunien,4 and Th. Stöhlker5

1Center for Advanced Studies, Peter the Great St. Petersburg Polytechnic University, Polytekhnicheskaya 29, 195251 St. Petersburg, Russia
2Department of Physics, St. Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia

3NRC “Kurchatov Institute” – ITEP, Bolshaya Cheremushkinskaya 25, 117218 Moscow, Russia
4Institut für Theoretische Physik, Technische Universität Dresden, Mommsenstraße 13, D-01062 Dresden, Germany
5Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena, Germany

(Received 28 February 2017; published 30 May 2017)

A relativistic method based on the Dirac equation for calculating fully differential cross sections for ionization
in ion-atom collisions is developed. The method is applied to ionization of the atomic hydrogen by antiproton
impact, as a nonrelativistic benchmark. The fully differential, as well as various doubly and singly differential,
cross sections for ionization are presented. The role of the interaction between the projectile and the target nucleus
is discussed. Several discrepancies in available theoretical predictions are resolved. The relativistic effects are
studied for ionization of hydrogenlike xenon ion under the impact of carbon nuclei.
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I. INTRODUCTION

Ionization in ion-atom collisions is of fundamental im-
portance for atomic physics. Within the modern “Reaction
Microscope” techniques [1,2], it is possible to experimentally
investigate ionization dynamics at the differential level. The
measured fully differential cross sections (FDCS) for ioniza-
tion being a stringent test of theory stimulate theoretical studies
of collisions of ions with atoms and molecules.

Up to date the FDCS for ionization have been success-
fully measured in collisions involving light targets such as
helium [3–5], lithium [6,7], and molecular hydrogen [8,9]. For
these targets, nonrelativistic theoretical treatment is sufficient.
However, for heavy targets relativistic effects cannot be ne-
glected, and appropriate target description is required. We note
that the relativistic effects induced by fast nuclear motion were
investigated for FDCS in the 100 MeV/u C6+-He collision in
Refs. [10,11]. The Facility for Antiproton and Ion Research
(FAIR) being constructed in Darmstadt (Germany) [12] will
be able to provide heavy ions up to bare uranium and has an
extensive scientific program aimed at the research of heavy-ion
collision dynamics [13].

At the same time, we would like to point out promising
plans for antiproton research at the FAIR [14,15] and the
European Organization for Nuclear Research (CERN) [16,17].
Experimental and theoretical studies of ionization processes in
collisions of antiprotons with atoms and molecules have been
recently reviewed [18]. Despite the lack of the experimental
FDCS, the essentially nonrelativistic antiproton-hydrogen
collision serves as an ideal benchmark to various theories.
This is due to the absence of the charged-transfer channel,
in contrast to the collisions with protons, and absence of
the electron correlations, in contrast to the electron-impact
or multielectron-target ionization. At the moment, some
differential cross sections for antiproton-impact ionization of
atomic hydrogen, predicted by recently developed advanced
approaches, markedly disagree with each other.

*bondarev@spbstu.ru

The perturbative calculations of FDCS for ionization
in antiproton-hydrogen collision have been performed in
Refs. [19–21]. Recently these FDCS have also been studied
by several nonperturbative methods [22–26]. First, McGovern
et al. [22,23] developed a method for extracting the FDCS
from an impact-parameter treatment of the collision within a
coupled pseudostate (CP) formalism. Later, Abdurakhmanov
et al. [24] worked out the fully quantal time-independent
convergent-close-coupling (QM-CCC) approach to differ-
ential ionization studies in ion-atom collisions. Recently,
Ciappina et al. [25] applied the time-dependent close-coupling
(TDCC) technique to investigate the role of the nucleus-
nucleus interaction in the FDCS. Afterwards, Abdurakhmanov
et al. [26] used the semiclassical wave-packet convergent-
close-coupling (WP-CCC) method to examine the FDCS. We
also would like to mention the recent paper by Sarkadi and
Gulyás [27], where the FDCS were investigated using the
classical-trajectory Monte Carlo method.

In this contribution, we present a relativistic single-center
semiclassical coupled-channel approach based on the
Dirac equation to calculation FDCS for ionization in
ion-atom collisions. The basis of target pseudostates is
used for the scattering wave-function expansion. These
pseudostates representing bound states as well as discretized
positive- and negative-energy Dirac continua are obtained by
diagonalization of the target Hamiltonian utilizing B splines.
B splines were introduced in atomic physics calculations in
the 1970s and are broadly used in various problems (see, e.g.,
reviews [28,29]). In particular, the B-spline expansion has
already been applied to calculate the total ionization cross
sections in antiproton-hydrogen collisions in Refs. [30,31]. We
report the results of the developed method application to the
problem of antiproton-impact ionization of atomic hydrogen,
where noticeable disagreements in available theoretical pre-
dictions exist. We also report the total ionization probabilities
of hydrogenlike xenon ion under the impact of carbon nuclei
to demonstrate importance of the relativistic effects.

The paper is organized as follows. In Sec. II the rela-
tivistic method is described. Details of the calculations are
given in Sec. III A. The results for the p̄-H and C6+-Xe53+
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collisions are presented in Secs. III B and III C, respectively.
In Sec. IV we give the conclusions. Atomic units (a.u.) h̄ =
e = me = 1 are used throughout the paper unless otherwise
stated.

II. THEORY

A. Time-dependent Dirac equation in a finite basis set

We consider the collision of a one-active-electron target
with a bare projectile. Within the semiclassical approximation,
we treat the nuclei as sources of an external time-dependent
potential. Thus the many-particle problem is reduced to the
motion of the relativistic electron in a two-center time-
dependent potential. The electron dynamics is described by
the time-dependent Dirac equation,

i
∂�(r,t,R)

∂t
= H (t)�(r,t,R), (1)

where the total Hamiltonian of the system is the sum of the free
relativistic Dirac Hamiltonian and the interactions between the
active electron with the target atom and the projectile, and is
given by

H (t) = H0 + VP(t), (2)

H0 = c(α · p) + (β − 1)c2 + VT, (3)

where α and β are the Dirac matrices. Let us assume that the
target is located at the origin, while the projectile moves along
a straight-line trajectory R = b + vt with the constant velocity
v and at the impact parameter b, so that b · v = 0. Then the
total two-center potential V (r,t) is written as

V (r,t) = VT(r) + VP(|r − R(t)|). (4)

We note that the potential V (r,t) does not include the
interaction between the target nucleus and the projectile.
This nucleus-nucleus (NN) interaction does not affect cross
sections, which are not differential in the scattered projectile
variables. For cross sections, which are differential in these
variables, it can be taken into account by a phase transforma-
tion in Eq. (1). The target potential VT consists of the Coulomb
potential of the nucleus Vnucl and the screening potential of the
passive electrons Vscr,

VT = Vnucl + Vscr. (5)

The finite nuclear size effects are incorporated in Vnucl

using an appropriate nuclear charge distribution. The local
screening potential of the passive electrons Vscr can be obtained
using various approximate methods.

To solve Eq. (1), we expand the time-dependent wave
function �(r,t,R) over a finite basis set,

�(r,t,R) =
∑

a

Ca(t,b)e−iεa tϕa(r), (6)

where the basis functions ϕa are orthonormal and obtained
by diagonalization of the stationary atomic Hamiltonian H0

employing B splines [32,33],

〈ϕa|H0|ϕa〉 = εa, 〈ϕa|ϕb〉 = δab. (7)

Since the target potential VT(r) possesses the spherical symme-
try, the basis function ϕa(r) may be represented as the bispinor

ϕnaκaμa
(r) with a given principal quantum number na , angular

momentum-parity quantum number κa = (−1)la+ja+1/2(ja +
1/2), and angular momentum projection on the z axis μa ,

ϕa(r) ≡ ϕnaκaμa
(r) = 1

r

(
Gnaκa

(r) χκaμa
(r̂)

i Fnaκa
(r) χ−κaμa

(r̂)

)
, (8)

where Gnaκa
(r) and Fnaκa

(r) are the large and small radial
components, respectively, and χκaμa

(r̂) are the spherical
spinors, and r̂ = r/r [34]. In the following, we assume that
the z axis is directed along the vector v.

The basis functions ϕa represent bound states and positive-
energy as well as negative-energy Dirac continuum. Moreover,
for low-lying bound states they are very close to the exact
ones. Their quality and overall number depends on the size
of the B-spline basis set. We note that due to using the dual-
kinetic-balance approach [35], the basis set is free from the
so-called spurious states, which may arise in a finite-basis-set
representation of the Dirac equation [36].

Substituting Eq. (6) into Eq. (1), one derives the set of
coupled-channel equations for the expansion coefficients,

i
dCa(t,b)

dt
=

∑
b

Cb(t,b)ei(εa−εb)t 〈ϕa|VP|ϕb〉, (9)

with the initial conditions corresponding to the initial active
electron state i,

Ca(t → −∞,b) = δai . (10)

It should be noted that the atomiclike basis set centered
at the target does not allow for the explicit description of
charge-transfer processes. So the method is reliable, if the
charge-transfer processes are minor compared to the direct
ionization ones. This condition is met for fast projectiles,
relatively (compared to the target) light projectiles, and
projectiles without electron bound states.

From the properties of the matrix element Vab(R) ≡
〈ϕa|VP|ϕb〉 under rotation around the z axis, it follows that

Vab(R) = Ṽab(t,b)ei(μb−μa )φb , (11)

where φb is the angle of b in the plane perpendicular to the z

axis. Then the dependence of the expansion coefficient Ca(t,b)
on φb can also be factorized,

Ca(t,b) = C̃a(t,b)ei(μi−μa )φb , (12)

where C̃a(t,b) satisfies the system

i
dC̃a(t,b)

dt
=

∑
b

C̃b(t,b)ei(εa−εb)t Ṽab(t,b), (13)

with the initial conditions

C̃a(t → −∞,b) = δai . (14)

To evaluate the matrix elements, it is convenient to reexpand
the potential of the projectile to the target position, where the
basis functions are centered. If the finite nuclear size effect
for the projectile is neglected, the reexpansion of its Coulomb
potential can be done analytically [37],

− ZP

|r − R| = −ZP

r>

∞∑
l=0

(
r<

r>

)l l∑
m=−l

Cl
m(r̂)Cl∗

m (R̂), (15)
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where r< and r> are the minimum and maximum values of
(r,R), respectively, and Cl

m denotes the spherical tensor, which
is related to the spherical harmonic Ylm as

Cl
m(r̂) =

√
4π

2l + 1
Ylm(r̂). (16)

Thus the matrix element Ṽab may be represented in the
following form:

Ṽab(t,b) ≡ Ṽnaκaμanbκbμb
(t,b)

=
∑
lm

Rl
naκanbκb

(t,b) Alm
κaμaκbμb

Cl∗
m (arccot vt/b,0),

(17)

where the radial part is given by

Rl
naκanbκb

= −ZP

∫ ∞

0
dr

1

r>

(
r<

r>

)l[
Gnaκa

(r)Gnbκb
(r)

+Fnaκa
(r)Fnbκb

(r)
]

(18)

and the angular part is the so-called relativistic Gaunt coeffi-
cient,

Alm
κaμaκbμb

= 〈χκaμa
|Cl

m|χκbμb
〉 = glm(jaμa; jbμb). (19)

It may be expressed through the 3j symbols as

glm(jaμa; jbμb) = (−1)
1
2 +μa

√
(2ja + 1)(2jb + 1)

×
(

ja l jb
1
2 0 − 1

2

)(
ja l jb

−μa m μb

)
,

(20a)

where la + lb + l should be even number; otherwise,

glm(jaμa; jbμb) = 0. (20b)

The commonly used nonrelativistic Gaunt coefficient is
proportional to the well-known integral of three spherical
harmonics [37].

We note that here the matrix elements are calculated in
the laboratory reference frame. From the computational point
of view, this is not the most efficient way. There are two
alternative possibilities. One may calculate them in the local
reference frame, where z axis is parallel to the internuclear
vector R at each time moment. Then one should either rotate
these matrix elements from the local to the laboratory reference
frame using the Wigner D functions (see, e.g., Ref. [38])
or rewrite the time-dependent equation (1) in this local
rotating reference frame. Since the rotating reference frame
is noninertial, an additional term arises in the Hamiltonian (2)
(see, e.g., Ref. [39]).

We also would like to mention the symmetry properties of
the matrix elements, which can be used for their calculation
and storage:

Ṽnaκa−μanbκb−μb
= (−1)(jb+lb+μb−ja−la−μa )Ṽnaκaμanbκbμb

.

(21)

The system of equations (13) may be rewritten in the matrix
form,

i
d ˜C
dt

= M ˜C, Mab = ei(εa−εb)t Ṽab, (22)

where ˜C is the vector incorporating the expansion coef-
ficients C̃a . To solve Eq. (22), we use the short iterative
Lanczos propagator [40,41]. It is an exponential-type prop-
agator, where the matrix exponential is approximated in the
Krylov subspace [42]. The Lanczos propagation is a standard
procedure widely used in various chemical and physical
calculations [43,44].

B. Cross sections

The total ionization probability is calculated as the follow-
ing sum over the positive-energy basis states:

Pion(b) = Pion(b) =
(εa>0)∑

a

|C̃a(t → ∞,b)|2. (23)

An alternative method used in Refs. [22,45], where the
summation runs over all basis states and for each of them
the overlap with the positive-energy continuum is taken into
account, gives almost the same results in a sufficiently large
basis set.

The total ionization cross section follows from

σion =
∫

db Pion(b) = 2π

∫ ∞

0
db b Pion(b). (24)

Using the Stieltjes technique for every symmetry κa , we are
also able to calculate partial transition probabilities differential
in the energy of the electron [46],

dP
κa

tr

dε

(
ε

κa

na+1 + εκa
na

2
,b

)
= 1

2

P
κa

na+1(b) + P κa
na

(b)

ε
κa

na+1 − ε
κa
na

,

P κa

na
(b) =

∑
μa

|C̃naκaμa
(t → ∞,b)|2. (25)

After interpolation of the partial probabilities on a common
energy grid, summation over the symmetries, and integration
over the impact parameter, one obtains the single differential
cross section for the transition,

dσtr

dε
= 2π

∫ ∞

0
db b

∑
κa

dP
κa

tr (b)

dε
. (26)

We note that the energies εκa
na

≡ εa are obtained by diagonal-
ization of the stationary atomic Hamiltonian H0 in the finite
B-spline set [see Eq. (7)] and cannot be chosen arbitrarily.
Moreover, basis functions ϕa with energy εa near the ionization
threshold have a similar behavior for positive and negative
values of energy εa . Thus Eq. (25) can be used for εa < 0
as well, giving in this case the excitation probability into
an energy interval, in contrast to the differential ionization
probability for εa > 0.

We proceed with evaluation of the probability of the
electron ejection in a given direction. The spherical-wave
decomposition of the outgoing continuum electron wave
function �

(−)
ε p̂μs

(r) with a given asymptotic momentum p and
spin projection at the z axis μs is [47]

�
(−)
ε p̂μs

(r) =
∑
κμm

il e−iκ C
jμ

lm, 1
2 μs

Y ∗
lm( p̂) ψεκμ(r), (27)
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where C
jμ

lm, 1
2 μs

is the Clebsch-Gordan coefficient, ψεκμ is

the Dirac partial wave, and κ is the difference between
the asymptotic large-distance phase of the Dirac-Coulomb
solution and the free Dirac solution [34]. The Dirac partial
wave ψεκμ with a given energy ε, angular momentum-parity
quantum number κ , and angular momentum projection μ is
represented by

ψεκμ(r) = 1

r

(
Gεκ (r) χκμ(r̂)

i Fεκ (r) χ−κμ(r̂)

)
(28)

and normalized on the energy scale,

〈ψεκμ|ψε′κμ〉 = δ(ε − ε′). (29)

The radial components Gεκ and Fεκ of the wave function
ψεκμ and the phase shift κ are obtained using the RADIAL

package [48]. In contrast to the energies εa used in Eq. (25),
ε may be chosen arbitrarily. Note that since we quantize the
spin of the ejected electron in the direction of the z axis, the
summation over μs = ±1/2 is required in final expressions
for observables. Alternatively, one may quantize the spin of
the ejected electron in the direction of its propagation. Then
the components with different projections (helicities) can be
obtained and, in principle, measured.

The transition amplitude T μs (ε,θe,φe,b,φb) is obtained
projecting the wave function �(r,t,R) on the wave function
�

(−)
ε p̂μs

(r) at the asymptotic time,

T μs (ε,θe,φe,b,φb) = 〈�(−)
ε p̂μs

e−iεt |�(t)〉, t → ∞, (30)

where the angles θe and φe correspond to the direction p̂ of the
ejected electron. Projecting �

(−)
ε p̂μs

onto the basis states ϕa and
using their orthonormality (see Ref. [46] for details) we come
to the following expression for the transition amplitude:

T μs (ε,θe,φe,b,φb)

=
∑

κ

(−i)leiκ

∑
μm

C
jμ

lm 1
2 μs

Ylm(θe,φe)ei(μi−μ)φb

×
∑

n

I κ
εnC̃nκμ(t → ∞,b), (31)

where μi is the angular momentum projection of the initial
state and the radial overlapping integral I κ

εn is given by

I κ
εn =

∫ ∞

0
dr [Gεκ (r)Gnκ (r) + Fεκ (r)Fnκ (r)]. (32)

Then the fully differential ionization probability as a function
of the impact parameter b, the electron ejection energy ε, and
the electron ejection angles θe and φe is given by

d3P (b)

dε d(cos θe) dφe

=
∑

μs=± 1
2

|T μs (ε,θe,φe,b,φb)|2. (33)

We note that, in the nonrelativistic limit, the electron spin
projection at any axis is conserved and, as a result, one term
in Eq. (33) vanishes.

For comparison with an experiment, it is usually more con-
venient to express the differential probabilities in terms of the
transverse (perpendicular to v) component η of the projectile
momentum transfer q rather than the impact parameter b. The

projectile momentum transfer is the difference between the
initial (ki ) and final (k f ) projectile momenta q = ki − k f .

Transition amplitudes in the b and η representations are
related by a two-dimensional Fourier transform [49,50],

T μs (ε,θe,φe,η,φη) = 1

2π

∫
db eiη·b eiδ(b) T μs (ε,θe,φe,b,φb),

(34)

where δ(b) is the additional phase due to the NN interaction
omitted in Eq. (4). This phase depends on the explicit form
of the NN interaction, which may include the Coulomb
interaction between the projectile and the target nucleus,
the projectile and the passive target electrons, as well as
polarization effects. In the simple approximation, where the
presence of the passive target electrons is accounted for by
changing the target charge ZT to some screened value Zeff ,

VNN (R) = ZeffZP

R
. (35)

In this case, the phase factor δ(b) reads as

δ(b) = 2ZeffZP

v
ln vb. (36)

Some useful remarks on the derivation and applicability of this
expression can be found in Ref. [51]. Moreover, in the present
calculations, we explicitly checked that inclusion of the NN
interaction (35) directly in Eq. (4) or as the phase factor (36)
in Eq. (34) gives indistinguishable results.

Using the Jacobi-Anger expansion [52], we express the
Fourier transform of the amplitude T μs (ε,θe,φe,b,φb) as

T μs (ε,θe,φe,η,φη)

= 1

2π

∫ 2π

0
dφb

∫ ∞

0
b db

∑
n

in ein(φb−φη) Jn(ηb)

× eiδ(b) T μs (ε,θe,φe,b,φb). (37)

Here Jn(ηb) is the nth-order Bessel function of the first kind
and φη is the azimuthal angle of the transverse component of
the momentum transfer η. The integration over φb gives

T μs (ε,θe,φe,η,φη)

=
∑

κ

(−i)leiκ

∑
μm

C
jμ

lm 1
2 μs

Ylm(θe,φe) i(μ−μi ) ei(μi−μ)φη

×
∑

n

I κ
εnB

μ−μi

nκμ (η), (38)

where

Bm
nκμ(η) =

∫ ∞

0
b db Jm(ηb) eiδ(b) C̃nκμ(t → ∞,b). (39)

Then the fully differential ionization probability as a function
of the transverse component of the momentum transfer η, the
electron ejection energy ε, and the electron ejection angles θe

and φe is calculated as

d3P (η)

dε d(cos θe) dφe

=
∑

μs=± 1
2

|T μs (ε,θe,φe,η,φη)|2. (40)
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The (fully) triply differential cross section (TDCS) may be
expressed as

d3σ

dε d�e d�P
= kikf

d3P (η)

dε d(cos θe) dφe

. (41)

This is the cross section for the electron being ejected with
the energy in the range from ε to ε + dε into the solid angle
d�e, while the projectile is scattered into the solid angle d�P.
It depends on the reference frame through the initial and final
projectile momenta, since the solid angle d�P is different in
the laboratory and center-of-mass reference frames.

Integrating the TDCS over corresponding variables, one
can obtain various doubly differential cross sections (DDCS),
singly differential cross sections (SDCS), and, finally, the total
ionization cross section. From the sets of DDCS and SDCS, we
focus here only on those, in which significant disagreements
with the previously published results have been found. These
are the DDCS d2σ

dε dη
and SDCS dσ

dε
. The former is defined by

d2σ

dε dη
= η

kikf

∫ 2π

0

d2σ

dε d�P
dφP, (42)

where

d2σ

dε d�P
=

∫
d3σ

dε d�e d�P
d�e (43)

and φP is the azimuthal angle of the scattered projectile. In our
approach, it can be calculated as

d2σ

dε dη
=η

∫ 2π

0
dφη

∫ 1

−1
d(cos θe)

∫ 2π

0
dφe

d3P (η)

dε d(cos θe) dφe

.

(44)

The latter is defined as

dσ

dε
=

∫
d�e

∫
d�P

d3σ

dε d�e d�P
(45)

and can be easier calculated in the b rather than in η

representation as

dσ

dε
=

∫ ∞

0
b db

∫ 2π

0
dφb

∫ 1

−1
d(cos θe)

×
∫ 2π

0
dφe

d3P (b)

dε d(cos θe) dφe

. (46)

We note that, due to the symmetry, the fully differential
ionization probability d3P (b)

dε d(cos θe) dφe
depends on φb and φe only

through their difference, and the integration in Eq. (46) can be
simplified. Similar arguments for the d3P (η)

dε d(cos θe) dφe
allow us to

simplify the integration in Eq. (44). The SDCS calculated by
means of Eqs. (46) and (26) for positive energies εa should
be the same. This criterion can serve for checking of the
calculations involving the wave function of the ejected electron
defined by Eq. (27).

A useful check for the convergence over the basis set size
is to obtain the first-order perturbative solution of the coupled-
channel equations (9):

CB1
a (t,b) = δai − i

∫ t

−∞
dt ′ei(εa−εi )t ′ 〈ϕa|VP|ϕi〉. (47)

TABLE I. Total ionization cross sections (in units of 10−16 cm−2)
of atomic hydrogen under antiproton impact at various impact
energies. The CCC and TDCC results are from Refs. [45] and [25],
respectively.

Energy (keV) Analytical FBA Present FBA CCC TDCC Present cc

30 2.15 2.16 1.35 1.46 1.37
200 0.77 0.77 0.66 0.65 0.68
500 0.36 0.36 0.34 0.33 0.35

Cross sections calculated using this perturbative solution
should then be compared with the corresponding cross sections
in the first Born approximation (FBA). We note that, in the
FBA, the NN interaction does not contribute to the cross
sections due to orthogonality of the wave functions in the
corresponding matrix element, as in Eq. (47).

III. RESULTS

A. Details of calculations

First, we used the theory described above to calculate cross
sections for ionization in the antiproton-hydrogen collision. In
the present calculation, we did not include in the expansion (6)
negative-energy continuum states, which result from the target
Hamiltonian diagonalization. Furthermore, we omitted high-
energy states with εk > 10 a.u. With these restrictions, the
basis set consisted of 45 radial functions for each angular
symmetry. The states with the angular momentum-parity
quantum number κ = ±1, . . . , ± 8, − 9, which corresponds
to l = 0, . . . ,8, were included in the basis set. The coupled-
channel equations (13) were solved from Zmin = −60 a.u.
to Zmax = 60 a.u., where Z = vt is the Z component of the
projectile position.

B. Antiproton-impact ionization of atomic hydrogen

Let us start with presenting the total ionization cross
sections. In Table I, the present results of the full coupled-
channel (cc) as well as corresponding FBA mode calculations,
obtained by Eq. (23), are compared with the results of the
nonperturbative approaches of Refs. [25,45] and the integrated
analytical FBA results (see, e.g., Refs. [27,49]).

Comparing the second and third columns of the table, one
can see that the present FBA mode results are in excellent
agreement with the analytical ones at all antiproton impact
energies under consideration. The results of the full calculation
are also in good agreement with the previous studies of
Refs. [25,45]. However, the results of Ciappina et al. [25]
at 30 keV impact are about 7% larger than predictions of other
approaches, while at higher impact energies the agreement is
much better.

Having briefly discussed the total ionization cross sections,
we turn to the triply differential cross sections. Following
Abdurakhmanov et al. [24] and Ciappina et al. [25], we adopt
their conventions. So the direction of the scattered projectile
is fixed by the value of the momentum transfer q or by the
projectile deviation angle θP. The polar angle θe of the ejected
electron runs from −180◦ to 180◦ relative to the direction of
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FIG. 1. TDCS for antiproton-impact ionization of hydrogen at
200 keV in the scattering plane. The scattering angle of the projectile
is 0.2 mrad and the ejected electron energy is 4 eV. The results of
the QM-CCC and TDCC approaches are from Refs. [24] and [25],
respectively.

the momentum transfer. The electron emission is considered
in the scattering plane only.

Figure 1 shows the TDCS for ionization of atomic hydrogen
by impact of 200 keV antiprotons with a scattering angle of
0.2 mrad and for an ejected electron energy of 4 eV. The
results of the nonperturbative QM-CCC [24] and TDCC [25]
approaches along with the FBA analytical results and the
present FBA mode results [see Eq. (47)] are also shown. In
the figure, one can see perfect agreement between the FBA
mode results and the analytical FBA results, which in the
following will be labeled as FBA without indicating the type.
This agreement verifies the convergence of our results in the
FBA mode as well as in the full calculation. All displayed
curves demonstrate the two-peak structure with the binary peak
in the direction of the momentum transfer and the recoil peak
in the opposite direction. Note that the FBA TDCS are always
symmetric with respect to the momentum transfer direction.
Comparing to the FBA, all presented nonperturbative theories
predict the reduced binary and enhanced recoil peaks both
rotated away from the direction of the scattered antiproton.
For both peaks the expected positions agree with each other;
however, there is a noticeable discrepancy in the magnitude.
The present results being in good agreement with the QM-CCC
results lie significantly above the TDCC results. Ciappina
et al. [25] assumed that it is the nonperturbative treatment
of the higher-order electron-projectile terms of close-coupling
formalisms rather than the NN interaction effect, as it was
proposed by Abdurakhmanov et al. [24], which leads to
the shift of the binary and recoil peaks relative to the FBA
results. In our semiclassical calculations the NN interaction
is treated as the phase factor in Eq. (39), i.e., in the same
way as in the TDCC calculations of Ref. [25]. Thus we
are also able to examine the role of the NN interaction
by taking it into account or ignoring it in the performed
calculations.

In Fig. 2, we display the TDCS for the same parameters as
in Fig. 1, together with the results of the calculation neglecting
the NN interaction [δ(b) ≡ 0 in Eq. (36)]. The corresponding

FIG. 2. Same as Fig. 1, but the results of calculation neglecting
the NN interaction are also shown.

results of Ref. [25] and the FBA results are also shown. Here
we indeed see that inclusion of the NN interaction does not
affect the position of the binary peak, in accordance with
the suggestion of Ref. [25]. Moreover, in our calculation the
inclusion of the NN interaction also significantly reduces the
TDCS. However, the peak value of the present TDCS obtained
in the calculation ignoring the NN interaction is about 10%
smaller than the FBA result, whereas the peak value of the
TDCC TDCS [25] is only about 50% of the FBA result.

In Figs. 3 and 4, the TDCS for higher electron ejection
energies of 7 and 10 eV, respectively, are presented. For every
curve in these figures, the overall form is the same as for a
lower-energy ejection of 4 eV (see Fig. 1) and the positions
of the binary and recoil peaks are nearly unchanged. One
again can see good agreement between the present and QM-
CCC results of Ref. [24], which are almost indistinguishable
except for the binary-peak maximum at about 13◦ and the
minimum at about 86◦. The small differences at these regions
increase with increasing the energy of the ejected electron. The

FIG. 3. TDCS for antiproton-impact ionization of hydrogen at
200 keV in the scattering plane. The scattering angle of the projectile
is 0.2 mrad and the ejected electron energy is 7 eV. The results of
the QM-CCC and TDCC approaches are from Refs. [24] and [25],
respectively.
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FIG. 4. TDCS for antiproton-impact ionization of hydrogen at
200 keV in the scattering plane. The scattering angle of the projectile
is 0.2 mrad and the ejected electron energy is 10 eV. The results of
the QM-CCC and TDCC approaches are from Refs. [24] and [25],
respectively.

binary peak positions of the TDCC TDCS of Ref. [25] agree
with the present for both energies; however, there is again the
inconsistency in the magnitude. Moreover, the TDCC TDCS
increase with increasing the energy of the ejected electron in
contradiction with the other theories.

Next, following Refs. [24,25], we investigate the TDCS
for various projectile scattering angles. The results are shown
in Figs. 5 and 6. For all presented nonperturbative theories
the magnitude of the binary peak decreases with increasing
the projectile scattering angle, in accordance with the FBA.
The position of the binary peak shifts to its FBA position
with increasing the projectile scattering angle. Here we again
see the mismatch between the present and QM-CCC results
from the one hand and the TDCC results from the other hand.
This mismatch grows with increasing the projectile scattering
angle.

FIG. 5. TDCS for antiproton-impact ionization of hydrogen at
200 keV in the scattering plane. The scattering angle of the projectile
is 0.1 mrad and the ejected electron energy is 4 eV. The results of
the QM-CCC and TDCC approaches are from Refs. [24] and [25],
respectively.

FIG. 6. TDCS for antiproton-impact ionization of hydrogen at
200 keV in the scattering plane. The scattering angle of the projectile
is 0.3 mrad and the ejected electron energy is 4 eV. The results of
the QM-CCC and TDCC approaches are from Refs. [24] and [25],
respectively.

The TDCS at an antiproton incident energy of 500 keV
are shown in Fig. 7. Note that at such a high impact energy,
the FBA TDCS still differs from the nonperturbative ones,
while the total ionization cross sections predicted by all
approaches agree much better with each other (see Table I).
Here the results of the present approach, QM-CCC and TDCC,
agree in magnitude. However, in contrast to the previously
discussed examples for the 200 keV impact, the binary peak
of TDCC TDCS is slightly shifted to the right compared to
the present results and QM-CCC data. This may be caused by
the inconsistency in the main text and the caption of Fig. 3
in Ref. [25]. In the caption, it is stated that TDCS is plotted
for the value of the total momentum transfer q = 0.25 a.u.,
while in the main text, that for the value of the transverse
component of the momentum transfer q⊥ ≡ η = 0.25 a.u.,
which corresponds to the antiproton scattering angle θP =
0.061 mrad indicated there. The angle θf between the direction

FIG. 7. TDCS for antiproton-impact ionization of hydrogen at
500 keV in the scattering plane. The momentum transfer q is 0.25 a.u.
and the ejected electron energy is 5 eV. The results of the QM-CCC
and TDCC approaches are from Refs. [24] and [25], respectively.
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FIG. 8. DDCS as a function of the transverse component of
momentum transfer for an energy of the ejected electron of 1, 10,
and 20 eV at an antiproton incident energy of 200 keV. The results of
the TDCC approach are from Ref. [25].

of the final projectile momentum k f and the direction of the
momentum transfer q equals 52.3◦ and 58.6◦ for q = 0.25
a.u. and η = 0.25 a.u., respectively. We would like to point
out that the TDCS for this kinematical regime has been first
calculated within the CP method by McGovern et al. [22].
However, it is almost indistinguishable from the QM-CCC
results of Ref. [24].

The DDCS in energy of the ejected electron and transverse
component of the projectile momentum transfer d2σ

dε dη
for

various energies of the ejected electron as a function of the
transverse component of the projectile momentum transfer η

at an incident antiproton energy of 200 keV is presented in
Fig. 8. The results of the TDCC approach of Ref. [25] are also
shown. It is clearly seen that for all energies of the ejected
electron the present results disagree with the TDCC results
both in the magnitude and shape. For small values of η, the
present results for low energies of the ejected electron are
larger than those for high ejection energies. For large values
of η, the picture is inverted in accordance with the FBA,
which is not shown here. It means that for large values of
the momentum transfer the maximum of the DDCS is shifted
from zero emission energy. For example, for η = 1.75 a.u. this
maximum is located about ε = 25 eV in the FBA. In contrast,
the TDCC results for high energy of the ejected electron are
larger than those for low energy in the whole range of the
momentum transfer. The DDCS d2σ

dε dη
being integrated over η

gives the SDCS dσ
dε

, which in this case unexpectedly increases
with increasing the energy of the ejected electron. The TDCC
DDCS indicate also pronounced structures in the variation of
η, which are not observed in our results.

At a higher antiproton incident energy of 500 keV, Ciappina
et al. [25] found similar patterns as shown in Fig. 8 for the
200 keV impact. However, these patterns are still too far from
ours, which are very close to the FBA results and are not
shown here.

In order to explore the role of the NN interaction, it is
more useful to consider DDCS at lower projectile incident

FIG. 9. DDCS as a function of the transverse component of
momentum transfer for an ejected electron of 5 eV at an antiproton
incident energy of 30 keV.

energies. In Fig. 9, we display the DDCS d2σ
dε dη

as a function of
transverse momentum transfer η for an ejected electron energy
of 5 eV at an antiproton incident energy of 30 keV. It is obvious
that the DDCS is strongly influenced by the NN interaction
in the whole range of the momentum transfer. However, no
oscillatory structures in the variation of η are observed again.
The reason for the strong contradiction between the present
and TDCC results for DDCS is unclear to us.

Figure 10 shows the SDCS in energy of the ejected electron
dσ
dε

at an incident antiproton energy of 30 keV together with the
results of the nonperturbative approaches of Refs. [23,24,26].
The results of all approaches are in good agreement for the
electron ejection energies larger than 7 eV. However, the
low-energy behavior is different. The WP-CCC SDCS of
Abdurakhmanov et al. [26] has a maximum away from the
zero emission energy, contrary to the other results. The present
SDCS calculated using Eq. (46) is in excellent agreement with
the CP results of McGovern et al. [22], and monotonically
increases with decreasing the electron ejected energy. In

FIG. 10. SDCS at an incident antiproton energy of 30 keV. The
results of the CP, QM-CCC, and WP-CCC approaches are from
Refs. [23], [24], and [26], respectively.
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FIG. 11. Impact-parameter dependence of the total ionization
probability in the 100 MeV/u C6+-Xe53+ collision for various initial
states. The results of the calculation in the nonrelativistic limit are
also shown.

order to verify this behavior, we also calculated SDCS using
Eq. (26), which is also valid for negative energies, where it
describes the excitation rather than the ionization process. For
positive energies, the results obtained by Eq. (26) are in perfect
agreement with the results obtained by Eq. (46), and smoothly
increase with decreasing the energy below the ionization
threshold. This smooth transition between the excitation to
high-energy bound states and the ionization to low-energy
continuum states is quite reasonable from a general point of
view.

The WP-CCC method recently developed by Abdu-
rakhmanov et al. [26] is formulated in the framework of
the single-center semiclassical convergent close-coupling ap-
proach. The key feature of the method is using stationary
wave packets for discretization of the continuous spectrum of
the target. Such continuum discretization allows one to gener-
ate pseudostates with arbitrary energies and distribution. The
reason for the low-energy fall of the WP-CCC results might
be a numerical implementation of the wave packets describing
low-energy states. By construction, the wave packets form
an orthonormal basis for positive-energy states. However, a
low-energy wave packet of a fine width has a huge size in
the coordinate space. This requires the upper limit of the
integration over the radial variable in the calculation of the
matrix elements to be very large, which is hard to achieve.
Furthermore, the results of the FBA mode calculation are
determined by the matrix element involving the initial rather
localized ground state, and thus are insensitive to the shape of
the final-state wave packet at large distances. This might be a
reason for the good agreement of the WP-CCC results in the
FBA mode with the analytical FBA predictions (see Fig. 9 in
Ref. [26]).

C. C6+-impact ionization of hydrogenlike xenon ion

Finally, in order to examine relativistic effects, we have con-
sidered the 100 MeV/u C6+-Xe53+ collision. The 100 MeV/u
carbon nuclei have already been used to study the fully
differential cross sections for single ionization of helium

FIG. 12. Impact-parameter dependence of the total ionization
probability in the 100 MeV/u C6+-Xe53+ collision for various
momentum projections of the initial 2p state. The results of the
calculation in the nonrelativistic limit are also shown.

atom [3]. The impact-parameter dependencies of the total
ionization probabilities from the K and L shells have been
calculated. In order to explore the relativistic effects induced
by a large target charge, we also carried out the calculation in
the nonrelativistic limit, where the standard value of the speed
of light c was multiplied by a factor of 1000. The comparison
of the results of both calculations is shown in Fig. 11. From
the figure, one can see that the relativistic effects enhance
the total ionization probability at small impact parameters and
reduce it at large ones for all considered states. Also noticeable
is the dominance of the ionization from the 1s state at small
impact parameters. In contrast to the ionization from the 1s and
2s states, the total ionization probability from the 2p states,
averaged over the values of total angular momentum and its
projections, is convex upwards at small impact parameters.

It is also worth considering the impact-parameter depen-
dence of the total ionization probability from the 2p states with
various quantum numbers j and μ. These results together with
the results of the corresponding nonrelativistic calculation are
shown in Fig. 12. The total ionization probability does not
depend on the sign of the projections μ and m. However, for
both calculations, it significantly depends on its absolute value.
In the relativistic calculation, the total ionization probability
depends also on the total angular momentum j of the initial
2p state.

IV. CONCLUSION

In this study, we have presented the relativistic semiclassical
approach based on the Dirac equation to calculation of differ-
ential ionization cross sections in ion-atom collisions. B splines
are used to discretize the Dirac continua of the target. As the
first test, the method has been applied to calculation of various
differential cross sections for antiproton-impact ionization of
atomic hydrogen. Several discrepancies in available results of
nonperturbative approaches based on the Schrödinger equation
have been resolved. We may assume that the TDCC calcula-
tions performed by Ciappina et al. [25] have an issue at the
stage of the Fourier transform from the b to η representation of
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the ionization amplitude. We also suppose that the low-energy
behavior of the WP-CCC SDCS found by Abdurakhmanov
et al. [26] arises from the difficulty of a numerical implemen-
tation of thin wave packets with a small energy.

The method has also been applied to explore the relativistic
effects on the total ionization probability from the K and L

shells of hydrogenlike xenon ion under the impact of carbon
nuclei. The approach is also suitable for investigation of more
complicated many-electron targets.

In the future, we plan to apply the developed approach to
study ionization processes at the differential level in collisions
involving heavy targets, where the relativistic effects are
extremely important.

ACKNOWLEDGMENTS

We thank Alisher Kadyrov and Igor Bray for valuable dis-
cussions. This work was supported by RFBR (Grants No. 15-
03-07644, No. 16-02-00233, and No. 17-52-53136), by SPSU
(Grants No. 11.38.237.2015 and No. 11.65.41.2017), by DFG
(Grant No. STO 346/5-1), by the Ministry of Education and
Science of the Russian Federation (Grant No. 3.1463.2017),
and by the President of the Russian Federation (Grant No.
MK-6970.2015.2). A.I.B. acknowledges the support from the
German-Russian Interdisciplinary Science Center (G-RISC)
funded by the German Federal Foreign Office via the German
Academic Exchange Service (DAAD) and the FAIR-Russia
Research Center.

[1] R. Dörner et al., Phys. Rep. 330, 95 (2000).
[2] J. Ullrich et al., Rep. Prog. Phys. 66, 1463 (2003).
[3] M. Schulz et al., Nature (London) 422, 48 (2003).
[4] M. Foster, D. H. Madison, J. L. Peacher, and J. Ullrich, J. Phys.

B 37, 3797 (2004).
[5] H. Gassert, O. Chuluunbaatar, M. Waitz, F. Trinter, H.-K. Kim,

T. Bauer, A. Laucke, C. Muller, J. Voigtsberger, M. Weller, J.
Rist, M. Pitzer, S. Zeller, T. Jahnke, L. P. H. Schmidt, J. B.
Williams, S. A. Zaytsev, A. A. Bulychev, K. A. Kouzakov, H.
Schmidt-Böcking, R. Dörner, Y. V. Popov, and M. S. Schöffler,
Phys. Rev. Lett. 116, 073201 (2016).

[6] D. Fischer, D. Globig, J. Goullon, M. Grieser, R. Hubele, V. L. B.
de Jesus, A. Kelkar, A. LaForge, H. Lindenblatt, D. Misra, B.
Najjari, K. Schneider, M. Schulz, M. Sell, and X. Wang, Phys.
Rev. Lett. 109, 113202 (2012).

[7] R. Hubele, A. LaForge, M. Schulz, J. Goullon, X. Wang,
B. Najjari, N. Ferreira, M. Grieser, V. L. B. de Jesus, R.
Moshammer, K. Schneider, A. B. Voitkiv, and D. Fischer, Phys.
Rev. Lett. 110, 133201 (2013).

[8] U. Chowdhury, M. Schulz, and D. H. Madison, Phys. Rev. A
83, 032712 (2011).

[9] A. Hasan et al., J. Phys. B 49, 04LT01 (2016).
[10] M. McGovern, C. T. Whelan, and H. R. J. Walters, Phys. Rev.

A 82, 032702 (2010).
[11] K. A. Kouzakov, S. A. Zaytsev, Y. V. Popov, and M. Takahashi,

Phys. Rev. A 86, 032710 (2012).
[12] FAIR—An international facility for antiproton and ion research,

http://www.fair-center.eu/.
[13] M. Lestinsky et al., Eur. Phys. J. Spec. Top. 225, 797 (2016).
[14] FLAIR—Facility for Low-energy Antiproton and Ion Research,

http://www.flairatfair.eu/.
[15] E. Widmann, Phys. Scr. T166, 014074 (2015).
[16] ASACUSA—Atomic Spectroscopy And Collisions Using Slow

Antiprotons, http://asacusa.web.cern.ch/.
[17] S. Maury et al., Hyperfine Interact. 229, 105 (2014).
[18] T. Kirchner and H. Knudsen, J. Phys. B 44, 122001 (2011).
[19] J. Berakdar, J. S. Briggs, and H. Klar, J. Phys. B 26, 285 (1993).
[20] S. Jones and D. H. Madison, Phys. Rev. A 65, 052727 (2002).
[21] A. B. Voitkiv and J. Ullrich, Phys. Rev. A 67, 062703 (2003).
[22] M. McGovern, D. Assafrão, J. R. Mohallem, C. T. Whelan, and

H. R. J. Walters, Phys. Rev. A 79, 042707 (2009).

[23] M. McGovern, D. Assafrão, J. R. Mohallem, C. T. Whelan, and
H. R. J. Walters, Phys. Rev. A 81, 032708 (2010).

[24] I. B. Abdurakhmanov, A. S. Kadyrov, I. Bray, and A. T.
Stelbovics, J. Phys. B 44, 165203 (2011).

[25] M. F. Ciappina, T.-G. Lee, M. S. Pindzola, and J. Colgan, Phys.
Rev. A 88, 042714 (2013).

[26] I. B. Abdurakhmanov, A. S. Kadyrov, and I. Bray, Phys. Rev. A
94, 022703 (2016).

[27] L. Sarkadi and L. Gulyás, Phys. Rev. A 90, 022702 (2014).
[28] J. Sapirstein and W. R. Johnson, J. Phys. B 29, 5213 (1996).
[29] H. Bachau, E. Cormier, P. Decleva, J. E. Hansen, and F. Martín,

Rep. Prog. Phys. 64, 1815 (2001).
[30] J. Azuma, N. Toshima, K. Hino, and A. Igarashi, Phys. Rev. A

64, 062704 (2001).
[31] S. Sahoo, S. C. Mukherjee, and H. R. J. Walters, J. Phys. B 37,

3227 (2004).
[32] W. R. Johnson, S. A. Blundell, and J. Sapirstein, Phys. Rev. A

37, 307 (1988).
[33] A. I. Bondarev, Y. S. Kozhedub, I. I. Tupitsyn, V. M. Shabaev,

and G. Plunien, Phys. Scr. T156, 014054 (2013).
[34] M. E. Rose, Relativistic Electron Theory (Wiley, New York,

1961).
[35] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien, and

G. Soff, Phys. Rev. Lett. 93, 130405 (2004).
[36] I. I. Tupitsyn and V. M. Shabaev, Opt. Spectrosc. 105, 183

(2008).
[37] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,

Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

[38] I. I. Tupitsyn, Y. S. Kozhedub, V. M. Shabaev, G. B. Deyneka,
S. Hagmann, C. Kozhuharov, G. Plunien, and T. Stöhlker, Phys.
Rev. A 82, 042701 (2010).

[39] I. A. Maltsev et al., Phys. Scr. T156, 014056 (2013).
[40] T. J. Park and J. C. Light, J. Chem. Phys. 85, 5870 (1986).
[41] C. Leforestier et al., J. Comput. Phys. 94, 59 (1991).
[42] C. Moler and C. V. Loan, SIAM Rev. 45, 3 (2003).
[43] J. Feist, S. Nagele, R. Pazourek, E. Persson, B. I. Schneider, L. A.

Collins, and J. Burgdörfer, Phys. Rev. A 77, 043420 (2008).
[44] N. V. Golubev and A. I. Kuleff, Phys. Rev. A 91, 051401 (2015).
[45] I. B. Abdurakhmanov, A. S. Kadyrov, I. Bray, and A. T.

Stelbovics, J. Phys. B 44, 075204 (2011).

052709-10

https://doi.org/10.1016/S0370-1573(99)00109-X
https://doi.org/10.1016/S0370-1573(99)00109-X
https://doi.org/10.1016/S0370-1573(99)00109-X
https://doi.org/10.1016/S0370-1573(99)00109-X
https://doi.org/10.1088/0034-4885/66/9/203
https://doi.org/10.1088/0034-4885/66/9/203
https://doi.org/10.1088/0034-4885/66/9/203
https://doi.org/10.1088/0034-4885/66/9/203
https://doi.org/10.1038/nature01415
https://doi.org/10.1038/nature01415
https://doi.org/10.1038/nature01415
https://doi.org/10.1038/nature01415
https://doi.org/10.1088/0953-4075/37/19/002
https://doi.org/10.1088/0953-4075/37/19/002
https://doi.org/10.1088/0953-4075/37/19/002
https://doi.org/10.1088/0953-4075/37/19/002
https://doi.org/10.1103/PhysRevLett.116.073201
https://doi.org/10.1103/PhysRevLett.116.073201
https://doi.org/10.1103/PhysRevLett.116.073201
https://doi.org/10.1103/PhysRevLett.116.073201
https://doi.org/10.1103/PhysRevLett.109.113202
https://doi.org/10.1103/PhysRevLett.109.113202
https://doi.org/10.1103/PhysRevLett.109.113202
https://doi.org/10.1103/PhysRevLett.109.113202
https://doi.org/10.1103/PhysRevLett.110.133201
https://doi.org/10.1103/PhysRevLett.110.133201
https://doi.org/10.1103/PhysRevLett.110.133201
https://doi.org/10.1103/PhysRevLett.110.133201
https://doi.org/10.1103/PhysRevA.83.032712
https://doi.org/10.1103/PhysRevA.83.032712
https://doi.org/10.1103/PhysRevA.83.032712
https://doi.org/10.1103/PhysRevA.83.032712
https://doi.org/10.1088/0953-4075/49/4/04LT01
https://doi.org/10.1088/0953-4075/49/4/04LT01
https://doi.org/10.1088/0953-4075/49/4/04LT01
https://doi.org/10.1088/0953-4075/49/4/04LT01
https://doi.org/10.1103/PhysRevA.82.032702
https://doi.org/10.1103/PhysRevA.82.032702
https://doi.org/10.1103/PhysRevA.82.032702
https://doi.org/10.1103/PhysRevA.82.032702
https://doi.org/10.1103/PhysRevA.86.032710
https://doi.org/10.1103/PhysRevA.86.032710
https://doi.org/10.1103/PhysRevA.86.032710
https://doi.org/10.1103/PhysRevA.86.032710
http://www.fair-center.eu/
https://doi.org/10.1140/epjst/e2016-02643-6
https://doi.org/10.1140/epjst/e2016-02643-6
https://doi.org/10.1140/epjst/e2016-02643-6
https://doi.org/10.1140/epjst/e2016-02643-6
http://www.flairatfair.eu/
https://doi.org/10.1088/0031-8949/2015/T166/014074
https://doi.org/10.1088/0031-8949/2015/T166/014074
https://doi.org/10.1088/0031-8949/2015/T166/014074
https://doi.org/10.1088/0031-8949/2015/T166/014074
http://asacusa.web.cern.ch/
https://doi.org/10.1007/s10751-014-1067-y
https://doi.org/10.1007/s10751-014-1067-y
https://doi.org/10.1007/s10751-014-1067-y
https://doi.org/10.1007/s10751-014-1067-y
https://doi.org/10.1088/0953-4075/44/12/122001
https://doi.org/10.1088/0953-4075/44/12/122001
https://doi.org/10.1088/0953-4075/44/12/122001
https://doi.org/10.1088/0953-4075/44/12/122001
https://doi.org/10.1088/0953-4075/26/2/012
https://doi.org/10.1088/0953-4075/26/2/012
https://doi.org/10.1088/0953-4075/26/2/012
https://doi.org/10.1088/0953-4075/26/2/012
https://doi.org/10.1103/PhysRevA.65.052727
https://doi.org/10.1103/PhysRevA.65.052727
https://doi.org/10.1103/PhysRevA.65.052727
https://doi.org/10.1103/PhysRevA.65.052727
https://doi.org/10.1103/PhysRevA.67.062703
https://doi.org/10.1103/PhysRevA.67.062703
https://doi.org/10.1103/PhysRevA.67.062703
https://doi.org/10.1103/PhysRevA.67.062703
https://doi.org/10.1103/PhysRevA.79.042707
https://doi.org/10.1103/PhysRevA.79.042707
https://doi.org/10.1103/PhysRevA.79.042707
https://doi.org/10.1103/PhysRevA.79.042707
https://doi.org/10.1103/PhysRevA.81.032708
https://doi.org/10.1103/PhysRevA.81.032708
https://doi.org/10.1103/PhysRevA.81.032708
https://doi.org/10.1103/PhysRevA.81.032708
https://doi.org/10.1088/0953-4075/44/16/165203
https://doi.org/10.1088/0953-4075/44/16/165203
https://doi.org/10.1088/0953-4075/44/16/165203
https://doi.org/10.1088/0953-4075/44/16/165203
https://doi.org/10.1103/PhysRevA.88.042714
https://doi.org/10.1103/PhysRevA.88.042714
https://doi.org/10.1103/PhysRevA.88.042714
https://doi.org/10.1103/PhysRevA.88.042714
https://doi.org/10.1103/PhysRevA.94.022703
https://doi.org/10.1103/PhysRevA.94.022703
https://doi.org/10.1103/PhysRevA.94.022703
https://doi.org/10.1103/PhysRevA.94.022703
https://doi.org/10.1103/PhysRevA.90.022702
https://doi.org/10.1103/PhysRevA.90.022702
https://doi.org/10.1103/PhysRevA.90.022702
https://doi.org/10.1103/PhysRevA.90.022702
https://doi.org/10.1088/0953-4075/29/22/005
https://doi.org/10.1088/0953-4075/29/22/005
https://doi.org/10.1088/0953-4075/29/22/005
https://doi.org/10.1088/0953-4075/29/22/005
https://doi.org/10.1088/0034-4885/64/12/205
https://doi.org/10.1088/0034-4885/64/12/205
https://doi.org/10.1088/0034-4885/64/12/205
https://doi.org/10.1088/0034-4885/64/12/205
https://doi.org/10.1103/PhysRevA.64.062704
https://doi.org/10.1103/PhysRevA.64.062704
https://doi.org/10.1103/PhysRevA.64.062704
https://doi.org/10.1103/PhysRevA.64.062704
https://doi.org/10.1088/0953-4075/37/16/001
https://doi.org/10.1088/0953-4075/37/16/001
https://doi.org/10.1088/0953-4075/37/16/001
https://doi.org/10.1088/0953-4075/37/16/001
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1103/PhysRevA.37.307
https://doi.org/10.1088/0031-8949/2013/T156/014054
https://doi.org/10.1088/0031-8949/2013/T156/014054
https://doi.org/10.1088/0031-8949/2013/T156/014054
https://doi.org/10.1088/0031-8949/2013/T156/014054
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1103/PhysRevLett.93.130405
https://doi.org/10.1134/S0030400X08080043
https://doi.org/10.1134/S0030400X08080043
https://doi.org/10.1134/S0030400X08080043
https://doi.org/10.1134/S0030400X08080043
https://doi.org/10.1103/PhysRevA.82.042701
https://doi.org/10.1103/PhysRevA.82.042701
https://doi.org/10.1103/PhysRevA.82.042701
https://doi.org/10.1103/PhysRevA.82.042701
https://doi.org/10.1088/0031-8949/2013/T156/014056
https://doi.org/10.1088/0031-8949/2013/T156/014056
https://doi.org/10.1088/0031-8949/2013/T156/014056
https://doi.org/10.1088/0031-8949/2013/T156/014056
https://doi.org/10.1063/1.451548
https://doi.org/10.1063/1.451548
https://doi.org/10.1063/1.451548
https://doi.org/10.1063/1.451548
https://doi.org/10.1016/0021-9991(91)90137-A
https://doi.org/10.1016/0021-9991(91)90137-A
https://doi.org/10.1016/0021-9991(91)90137-A
https://doi.org/10.1016/0021-9991(91)90137-A
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1103/PhysRevA.77.043420
https://doi.org/10.1103/PhysRevA.77.043420
https://doi.org/10.1103/PhysRevA.77.043420
https://doi.org/10.1103/PhysRevA.77.043420
https://doi.org/10.1103/PhysRevA.91.051401
https://doi.org/10.1103/PhysRevA.91.051401
https://doi.org/10.1103/PhysRevA.91.051401
https://doi.org/10.1103/PhysRevA.91.051401
https://doi.org/10.1088/0953-4075/44/7/075204
https://doi.org/10.1088/0953-4075/44/7/075204
https://doi.org/10.1088/0953-4075/44/7/075204
https://doi.org/10.1088/0953-4075/44/7/075204


RELATIVISTIC CALCULATIONS OF DIFFERENTIAL . . . PHYSICAL REVIEW A 95, 052709 (2017)

[46] A. I. Bondarev, I. I. Tupitsyn, I. A. Maltsev, Y. S. Kozhedub,
and G. Plunien, Eur. Phys. J. D 69, 110 (2015).

[47] J. Eichler and T. Stöhlker, Phys. Rep. 439, 1 (2007).
[48] F. Salvat, J. Fernández-Varea, and W. Williamson, Jr., Comput.

Phys. Commun. 90, 151 (1995).
[49] M. McDowell and J. Coleman, Introduction to The Theory of

Ion-Atom Collisions (North-Holland, Amsterdam, 1970).

[50] J. Eichler and W. E. Meyerhof, in Relativistic Atomic Col-
lisions, edited by Elsevier (Academic Press, New York,
1995).

[51] H. R. J. Walters and C. T. Whelan, Phys. Rev. A 85, 062701
(2012).

[52] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1972).

052709-11

https://doi.org/10.1140/epjd/e2015-50783-6
https://doi.org/10.1140/epjd/e2015-50783-6
https://doi.org/10.1140/epjd/e2015-50783-6
https://doi.org/10.1140/epjd/e2015-50783-6
https://doi.org/10.1016/j.physrep.2006.11.003
https://doi.org/10.1016/j.physrep.2006.11.003
https://doi.org/10.1016/j.physrep.2006.11.003
https://doi.org/10.1016/j.physrep.2006.11.003
https://doi.org/10.1016/0010-4655(95)00039-I
https://doi.org/10.1016/0010-4655(95)00039-I
https://doi.org/10.1016/0010-4655(95)00039-I
https://doi.org/10.1016/0010-4655(95)00039-I
https://doi.org/10.1103/PhysRevA.85.062701
https://doi.org/10.1103/PhysRevA.85.062701
https://doi.org/10.1103/PhysRevA.85.062701
https://doi.org/10.1103/PhysRevA.85.062701



