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Three-dimensional modeling of resonant charge transfer between ion beams and metallic surfaces
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This study addresses the numerical modeling of resonant charge transfer (RCT) during ion-surface interactions.
In our approach we use the original ab initio three-dimensional (3D) time-dependent Schrödinger equation solver
in combination with 3D pseudopotentials, which describe the metal structure on the atomic level. Full 3D
modeling enables us to reveal such fundamental RCT aspects as anisotropy of electron propagation in the target
and electron delay during grazing scattering. We have also refined the theoretical basis for RCT experiments
calculations and achieved quantitative correspondence to a large variety of experimental data.
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I. INTRODUCTION

The investigation of resonant charge transfer (RCT), i.e.,
energy-conserving one-electron tunneling through the poten-
tial barrier between an atomic particle and a surface, is of
fundamental and practical importance in several branches of
physics and chemistry [1–3]. Note that in most cases RCT is
the dominant channel of electron exchange between an atomic
particle and bulk metal [4].

The problem of RCT between an atomic particle and
bulk metal has been intensively explored during the last two
decades. Among many interesting scientific results we should
mention are (i) RCT dependence on ion-surface distance,
and energy of the ion beam and scattering angle [5–8];
(ii) nonadiabatic effects [5,9]; (iii) parallel velocity effect
during grazing scattering [3,4,10–14]; (iv) quantum-size effect
for RCT with nanosystems [15–22]; (v) RCT dependence on
surface structure (atomic structure, adsorbates, corrugations,
etc.) [23–29]. Also, a lot of experimental data has been
accumulated. In most studies the systems with one active
electron, such as H− and metal surface or Li0 and metal
surface are concerned. This choice is stipulated not only by
simplicity of numerical description, but because the above
atomic particles allow one to investigate RCT more efficiently.
The reason is that the H− affinity level (–0.75 eV from vacuum)
is located above, and alkali-metal ionization energy (e.g.,
–5.4 eV for Li) is located very close to the Fermi energy
of many metals (from –4 to –5.5 eV). Note that affinity and
ionization levels also depend on ion-surface distance; e.g.,
near the surface hydrogen’s affinity level decreases down
to –10 –15 eV. Hence the electron transfer between the H−
alkali-metal ion and typical metal could be realized in two
directions (electron loss from atomic particle to metal and
electron capture by atomic particle). This condition is not
realized for numerous other atomic particles, e.g., the simplest
H+ ion with energy level –13.6 eV. Hereby H− and Li0/Li+
are good prototypes for investigation of electron loss and
electron capture processes. There are a number of experimental
studies, where RCT with more complicated ions, such as
O0/O−, F0/F−, or Ar+/Ar0, exhibits the same regularities as
RCT with prototype ions [4,30].

The widely used approach to RCT modeling is the
calculation of electron loss or capture on the outgoing
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trajectory after ion-level intersection with the Fermi level
of the metal. A detailed review of RCT modeling is given
in Ref. [4]. The typical RCT problem requires numerical
modeling of the three-dimensional (3D) spatial domain, about
103–104 nm3, that corresponds to the numerical grid, about
109–1010 points [31,32]. The numerical simulation of such
volumes is very resource consuming, thus initially many
studies have exploited different dimension reduction (1D and
2D) techniques, such as complex angular mode and wave-
packet propagation [12,17,18,21,33]. Thus, for the calculation
of electron transfer probability in real 3D experiments, the
rate equation is used [5,7,25], which implies that the electron
transfer rate depends only on the ion-surface distance, but not
on the ion velocity (adiabatic approximation). There are also
approaches when a 2D “X-Z” coordinate system is used and
obtained results are multiplied by some “3D factor” [24]. For
the grazing trajectories an additional translational factor and
model of “shifted Fermi spheres” are applied [4,10,34]. In
some cases such approaches give reasonable correspondence
to experimental data [3,5,11,30], but they could not account
for nonadiabatic effects in 3D geometry and the atomic
structure of the surface. For example, in Refs. [3,7,30] the
H− fraction depends on ion beam orientation relative to the
Cu(110) surface lattice; such azimuthal dependence could not
be distinguished by the existing theory. In some studies the 3D
experiments [6] were compared only with calculation results
for the “jellium” model (adiabatic approximation). In some
studies the calculations give only qualitative correspondence
to experimental data [8].

Due to the limitations of 1D and 2D techniques, the metal
surface (bulk) cannot be modeled by fair 3D pseudopotential
with periodicity on X, Y , and Z coordinates. Instead of this,
two types of 1D pseudopotentials (dependent on Z only)
are widely used. The first type is used for description of
jelliumlike metals [35], the second for the modeling of metals
with projected band gap [36]. Despite their simplicity, these
pseudopotentials successfully reproduce some RCT features.
In recent years the 2D pseudopotential for Cu(110) was
presented [37].

The first time the 3D RCT calculations were mentioned in
2000 [38], the reported system size (107 points) was too small
to solve real 3D RCT problems. Also, 3D calculations were
reported in 2005 and 2009, but their details and complexity
are omitted [8,26]. In recent years the 3D RCT calculations
were presented, which are based on numerical solving of
the time-dependent Schrödinger equation (TDSE) with the
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Anderson-Newns Hamiltonian [28,29]. They take into account
the atomic structure of the surface and show correspondence
to some experimental data, but the question of correct
(ab initio) accounting of the electron kinematic factor is
not clear. Note that these calculations show RCT azimuthal
dependence, but direct comparison to “azimuthal-dependent”
experimental data is not given.

In 2015 we introduced the 3D GPU (graphical processing
units) TDSE solver [31,32] and applied it to RCT modeling
in nanosystems [22]. The key advantage of the GPU TDSE
solver is direct TDSE solution for large spatial domains (up to
105 nm3). It was achieved due to the effective parallelization
of a simple, explicit numerical scheme on GPUs. In this
paper we combine the direct 3D calculations with ab initio
3D pseudopotentials for surface description (obtained by
means of Density Functional Theory (DFT)). The presented
technique enables direct RCT modeling, accounting for
surface structure. Also, we present refinement of theoretical
basic and calculation methodology for three-dimensional RCT
modeling. As a next step we apply them to a wide set of
RCT experiments, covering various RCT aspects, and good
quantitative correspondence was obtained. In Sec. II the
theoretical basis of RCT calculation is introduced. Section III
is devoted to 3D RCT effects. In Sec. IV we discuss the results
of 3D calculations for various RCT experiments. Section V
contains some concluding remarks.

For convenience the atomic system of units (with me =
e = h̄ = 1; 1 a.u. of distance is equal to 0.53 Å, 1 a.u. of time
is equal to 2.419 × 10−17 s, and 1 a.u. of velocity is equal to
2.188 × 108 cm/s) is used in this article (if not clearly stated
otherwise).

II. THEORETICAL BASIS OF RCT CALCULATION

A. Numerical method

The typical RCT problem during ion-surface interaction
includes (i) an atomic particle; (ii) the surface; (iii) an electron
moving in the pseudopotential of the ion and the surface. The
RCT calculation is based on the numerical solution of the
TDSE. In this research we use an original high-performance
ab initio 3D numerical TDSE solver which utilizes graphical
processing units. The details about the TDSE solver parallel
implementation, verification, performance, and scalability are
given in Refs. [31,32]. At a glance, we consider TDSE in the
form

i
dψ(�r,t)

dt
=

[
−�

2
+ U (�r,t)

]
ψ(�r,t), (1)

where U (�r,t) = Vion(�r,t) + Ve-surf(�r) is the time-dependent
potential.

To find zf (the distance, where the atomic energy level
intersects the Fermi level), one has to know the atomic particle
(ion) energy level as a function of the ion-surface distance.
In the first approximation it depends on distance as E(z) =
E(∞) ± 1/4z for positive and negative ions respectively. But
for more complicated case, e.g. surfaces with projected band
gap or adsorbates, E(z) can deviates from the above simple
law (e.g. split due to the avoided crossing [26,33]). Hence E(z)
should be defined numerically. To do this, one has to solve a set
of “static” problems, for different fixed ion-surface distances.

Then, knowing the autocorrelation function for a certain ion-
surface distance, one can find the atomic particle energy level
[22]. The RCT rate calculation is discussed in Sec. II C.

Equation (1) requires pseudopotentials for the atomic
particle and the metal surface. For the ions under study
(H0/H−, Li0/Li+, Na+, K+), the analytical pseudopotentials
are available [39,40]. For example, the pseudopotential for
the H− ion is chosen as VH− (r) = −(1 + 1/r) exp(−2r) −
(αH/r4) exp(−r2

0 /r2)(r is the radial electron-atom distance
in atomic units, αH = 2.25 and r2

0 = 2.547) [39,41]. In this
study we use 3D pseudopotentials for Cu(100), Cu(110),
and Cu(111) surfaces, which are obtained by means of DFT
calculations (see Sec. II B for details). Copper crystal is a
very common choice for the RCT modeling and experimental
measurements. Moreover, the Cu(110) surface on one side
and Cu(100) and Cu(111) surfaces on the other represent the
free-electron surface and the surface with a projected band gap,
respectively. In other cases, when the atomic structure of the
surface is not important, we use 1D analytical pseudopotentials
for RCT calculation [35,36].

Note that for modeling of a moving hydrogen anion the
electron translation factor (ETF) should be applied, which
results in multiplication of the initial electron wave function
on ETF = exp(−i�v ⊗ �r) [28].

B. Pseudopotentials calculation

For DFT calculation of the metal’s electronic structure we
use a supercell technique (QUANTUM ESPRESSO [42], VASP

[43]). For each surface two series of calculations were done:
(i) “surface” calculations; (ii) “volume” calculations. The sur-
face calculations were performed for the slab of 7 monolayers
thickness in a supercell of 14 monolayers thickness. The
volume calculations were done in the supercell of 1 monolayer
thickness, but the width and length of the supercell were chosen
equal to the surface calculations. This leads to a redundant
number of atoms for volume calculations, but enables easy
pseudopotential replication along the surface normal onto the
semi-infinite 3D TDSE domain.

The DFT calculations were done in the plane-wave basis,
with local-density approximation for exchange-correlation
potential. The integration over the Brillouin zone was per-
formed using the tetrahedron method with Blöchl corrections.
The Brillouin zone was sampled using 11 × 11 × 11 k-point
mesh in a Monkhorst-Pack grid. A cutoff energy of 1000 eV
was used. According to our measurements, the total energy
converges under the above parameters. The one-electron
pseudopotential was obtained as a sum of ionic core potential,
electron repulsion potential, and exchange-correlation poten-
tial (see [28,29] for details).

In our calculations we used fixed fcc copper crystallo-
graphic structure without surface relaxation or reconstruction.
Also, the DFT calculations were done for an isolated copper
surface, without an adjacent hydrogen atom. One could note
that for “full ab initio RCT calculations” we have to calculate
the pseudopotential for a metal surface, perturbed by the ion.
However, such an approach is not viable for direct TDSE
solution, because the DFT calculations should be performed
for each point of the ion trajectory. Instead of this we use
the approach of the full pseudopotential for RCT calculations
being a superposition of the surface pseudopotential and the
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FIG. 1. Cu(100), Cu(110), and Cu(111) pseudoponetial depen-
dence on the Z coordinate. One-dimensional pseudopotentials re-
ferred to as “Jennings et al.” and “Chulkov et al.” are taken from
Refs. [35,36], respectively.

potential of the ionic core. Therefore in the vacuum region
the obtained zero potential should be replaced by an image
charge potential such as the pseudopotentials in Refs. [35,36].
For ion-surface distances greater than 3 a.u. such approach
is reasonable and commonly used for RCT calculations [4].
Note that in most practical calculation RCT is considered
for ion-surface distances greater than 6–9 a.u., where the ion
charge state formation occurs.

A reasonable question is the comparison of obtained 3D
pseudopotentials for Cu(100), Cu(110), and Cu(111) with 1D
pseudopotentials [35,36], that were verified in manystudies.
Figure 1 shows the averaged 3D pseudopotential, its slices
along special lines, and the corresponding 1D potential. We
see that the averaged 3D potentials correspond well with the
1D potentials. In order to reproduce the potential in the vacuum
region for Cu(100) and Cu(111) the surface layer was “shifted”

FIG. 2. Comparison of electron decay for H− fixed at distance
Z in front of different surfaces (see legend for details). Upper figure
shows the energy spectra, lower, the dependence of H− occupation
on time.

into the vacuum and its potential well was decreased to fit the
image charge potential. Note that distances between the first
and second atomic layers for 3D potentials differ from those for
1D potentials, because we have used a “clear” crystallographic
structure without reconstruction and relaxation.

C. Level width and RCT rate calculation

The RCT rate (i.e., the amount of transferred electron
density per unit of time) calculation is rather important,
e.g., for usage in the rate equation (RE). In theory, the
RCT rate is determined by the width of ion state resonance
[8,25,26,44]. However, model calculations show that for RCT
rate determination it is more robust to calculate it as the decay
rate of the autocorrelation function modulus (see Ref. [4] for
details). In Fig. 2 level widths and RCT rates for different
systems are compared. For example, the level width for the
H− ion located in front of the Al(111) and Cu(110) surfaces
is approximately the same, but the RCT rate differs twice. In
the presented case, for both surfaces we have the exponential
decay of the ionic state. Note that the RCT rate (decay constant)
practically does not change in time.

A special case is RCT with projected band-gap surfaces,
when ion occupation exhibits oscillations. For example,
Fig. 2 shows energy spectra and occupation for the H−
ion located in front of the Cu(111) and Cu(110) surfaces.
We see that the decay rates at the initial time moment
are similar for both surfaces, while the width of the en-
ergy levels differs significantly. The decay rate for Cu(111)
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FIG. 3. Illustration of main RCT aspects (details are given in the
text).

obviously depends on time and even changes sign. Therefore
we use only the initial part of the autocorrelation function
(until the first minimum), to calculate the RCT rate for the
RE.

D. Physical model of RCT experiments calculation

Figure 3 illustrates the main theoretical points of RCT
between static atomic particles (ions or neutral atoms) and
metallic targets:

(1) In metal electrons energies correspond to Fermi-Dirac
distribution. This means that for room-temperature conditions
all electronic states below Fermi energy (Fermi level) are
occupied, while all electronic states above Fermi energy are
vacant. Therefore if the energy level of the atomic particle
is located above Fermi energy the only electron loss by the
atomic particle is allowed, and vice versa only electron capture
is possible for atomic particles, located below Fermi energy.

(2) Due to the interaction with image charge, the ion energy
level depends on the ion-surface distance [4]. Approximate
dependence is E(zion-surface) = E(∞) + 1/4z for positive ions
and E(zion-surface) = E(∞) − 1/4z for negative ions. Hence
the energetically allowed electron transfer direction (electron
loss or electron capture) depends on ion-surface distance. In
the first approximation the RCT direction switches (loss to
capture or vice versa) at the distance zf , where the ion energy
level crosses the Fermi level of the metallic target.

In the case of moving atomic particles we have to take into
account the following:

(3) The final charge state of the atomic particle (ion
occupation or population) is formed on the outgoing part
of the trajectory. This happens because near the surface
(z ∼ 1–3 a.u.), the ion-surface interaction is so strong that the
charge state of the atomic particle reaches its equilibrium that
does not depend on initial conditions (so-called “memory loss”
effect). This suggestion is supported by several experimental
studies [7,9,11,12,45], where the final fraction of scattered H−
and Li+ ions does not depend on the primary ion beam charge
state (negative or positive ions) and incidence angle. Moreover,
the final ion charge state formation occurs at ion-surface
distances about 6–9 a.u. [4]. For example, for the rate equation
calculations the final charge state does not depend on the
selected initial charge state [3,30].

(4) The interaction with the image charge influences the
atomic particle trajectory, but the benefit from the usage of
realistic trajectories is limited to 10% [11,24,27]. Hence in

our calculation we use classical trajectories; i.e., the atomic
particle is moving along a straight line with constant velocity.

(5) Galilean transformation from the rest frame of the
target to the frame of the moving atomic particle blurs
the effective electron energy distribution in metal. As a
result the electrons in metal conform to Doppler-Fermi-Dirac
distribution [4,34]. Therefore for moving particles concurrent
processes of electron loss and electron capture are possible at
the same time.

(6) In the case of Galilean transformation from the ion’s
frame to the target’s frame, the wave vector of the ion’s electron
is summed with its velocity. The ion’s energy level in this case
is shifted. In some studies [4,46] the shift of the energy level is
given as +v2/2, but this is correct only for the case when the
wave vector is orthogonal to the ion’s velocity �v (e.g., grazing
scattering).

Our approach to RCT calculation is based on the above
statements. The key point of the RCT physical model is deter-
mination of energetically allowed electron transfer direction
(electron loss or electron capture).

(7) We perform RCT direction analysis in k space, since
this is more informative compared to a simple energy level
comparison. Active electron distribution inside the metal in k

space is obtained by Fourier transform of the electron’s wave
function f (�k, t) = 1

2π

∫
z<0 d�r3ψ(�r, t) exp(−i�k · �r). Note that

in the case of cylindrical symmetry (e.g., the 2D wave-packet
propagation method in z-ρ coordinates), the zero-order Hankel
transform should be applied for the radial coordinate instead
of the Fourier transform.

Figure 4 shows the electron distribution in k space for
some simple systems: (i) H− near the Cu(110) surface and
(ii) Li0 near the Ag(111) surface. Despite RCT being a
dynamical process, for most ion-surface systems the electron
distribution becomes stationary after a short time of interaction
(50–100 a.u.). We see that in the first case (free-electron
surface) the electron is tunneling inside the metal along the
surface normal. In the second case (surface with projected band
gap), the electron propagates mainly parallel to the surface.
Note that the presented distributions have a simple form and a
dominant wave vector value �k can be determined. The quantity
|�k| 2/2 corresponds to the ion energy level measured from the
conduction band bottom of the target.

Since we perform ab initio 3D RCT modeling with surface
description on the atomic level, the calculations are produced
in the target’s frame, so the above shown f (�k) distributions
should be transferred to the target’s frame: f (�k′ = �k + �v) =
f (�k), where �v is ion velocity (see inset in Fig. 4).

(8) In the case of simple f (�k) distributions (single point in k

space) and relatively small ion velocities (<0.3 a.u.), i.e., when
f (�k) distribution does not change significantly, we directly
solve the TDSE to calculate one-way RCT (e.g., electron
loss by H− or electron capture by Li+) on the part of the
outgoing trajectory z > zf ; zf is calculated from the equation
Ef = I (zf ) + �E(zf ), where the ion-level energy shift is cal-
culated as �E(zion-surface) = |k′|2/2−|k|2/2 = |v|2/2 − �v · �k.
The initial charge state of the atomic particle P0 = P (zf ) is
a fitting parameter or can be calculated by means of the rate
equation. The details of theTDSE numerical solution are given
in Sec. II A.
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FIG. 4. Ions’ outer electron density distribution in 2D k space inside the target. Left: H− near Cu(110) surface. Right: Li0 near Ag(111)
surface. Ion-surface distance is 7 a.u., interaction time is 100 a.u. Inset illustrates frame transformation (details are given in the text).

(9) In the case of complex f (�k) distributions or significant
ion velocities, e.g., experiments on the parallel velocity effect
during grazing scattering, concurrent electron loss and capture
processes should be taken into account. In this case our
calculation technique is very close to Refs. [3,9,12,14,30]. The
significant advantage is that we use 3D f (�k) distributions,
which enables us to model 3D effects, including RCT
azimuthal dependence. The technique is based on rate equation
integration. For example, occupation of the negative ion is
calculated from the following equation:

dP −

dt
= −�lossP

− + �capture(1 − P −), (2)

where �loss(z) = gloss�(z)Floss, �capture(z) = gcapture�(z)
Fcapture, and �(z) is the RCT rate (see Sec. II C for details of
its calculations).

The statistical factors gcapture, gloss are equal to 1 and 0.5
for the hydrogen anion. Weights for electron loss and capture
probabilities are proportional to the part of the electron density
located outside and inside the Fermi sphere, respectively:

Floss =
∫

|�k′|>kf

d�k′3|f (�k′)|2, Fcapture =
∫

|�k′|<kf

d�k′3|f (�k′)|2.

(3)

Note that for small normal velocities, as in grazing
scattering collisions, the adiabatic approximation is viable
and RE gives very good results [3,9,12,30]. Moreover in this
case the charge state is formed on the distances z = 6–9 a.u.

[4,9,12], so the final ion occupation does not depend on the
initial chare state, e.g., P0(z = 3 a.u.) [12]. This means that
the presented RCT calculation model is parameter free, but is
limited to adiabatic conditions.

E. Adiabatic approximation and influence of ion velocity

It is known that adiabatic approximation is not appropriate
for the RCT description with projected band-gap surfaces
[5]. The main reason is that it does not take into account
the electron reflection and its tunneling back to the ion in
the case of interaction with projected band-gap surfaces.
The only exception is the case of short interaction time
(ion velocity ∼1 a.u.). Another important case of adiabatic
approximation (rate equation) usage is RCT calculation during
grazing scattering, that is characterized by small normal
velocities (∼0.02 a.u.) and long interaction times. RE gives
satisfactory results not only for jellium surfaces such as
Cu(110) or Al(111) [3,11,30], but for the surfaces with a
projected band gap, e.g., Cu(111) [3,4,30]. A possible reason
for successful RE application to RCT during grazing scattering
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FIG. 5. Ion-level occupation (population) and decay rate for
different systems (see legend for details). The projectile velocity is
0.2 a.u. (1 keV).

of H− on projected band-gap surfaces is the so-called “electron
delay” effect (see Sec. III B). If the target is described by an
ab initio 3D pseudopotential—the electron propagation ve-
locity in the target is less compared to the velocity of the
moving ion. As a result, at each moment of time the H− ion
“sees” the “clear surface” (without a tunneled electron); hence
the nonadiabatic effects caused by a projected band gap are
eliminated.

In this section we further investigate the influence of ion
velocity on the adiabatic approximation applicability to the
RCT problem modeling. The system, consisting of a neutral
hydrogen atom and hydrogen anion was selected as the model.
Note that in the selected model we consider RCT between
two hydrogen atoms; one of them is treated as a “projectile”
and the other as a “target.” Since the above system has
one active electron, both “electron loss by projectile” and
“electron capture by projectile” processes can be modeled
directly, contrary to RCT between an ion and a metallic
surface.

The velocity of the projectile was chosen as 0.2 a.u. (equal
to energy of 1 keV). Figure 5 represents different collision
cases: (i) the H− projectile approaching the H0 target; (ii) the
H0 projectile approaching the H− target; (iii) the H0 projectile
departing from the H− target.

Comparison of the H− projectile approaching the H0

target and the H0 projectile approaching the H− target shows
that ion velocity affects the RCT rate; the ion state decays
more rapidly in the case of an ion moving toward the
target. Hence the major problem of widely used adiabatic
approximation is the lack of projectile velocity influence.

Note that adiabatic approximation becomes viable for smaller
velocities (0.02 a.u.).

The comparison of the H− projectile approaching the
H0 target and the H0 projectile departing from the H−
target cases addresses the so-called “time-reversal symmetry”
which assumes that electron capture by the departing atom is
equivalent to electron loss by the approaching ion. One can see
that this approximation is not correct. The RCT rate, as well
as the final ion population, differs significantly for both cases.
The surprising fact is that the time-reversal symmetry approach
gives quantitative correspondence for some experiments on
RCT between the Ag surface and Li atom [5,32].

III. THREE-DIMENSIONAL EFFECTS OF RESONANT
CHARGE TRANSFER

In this section we describe the features arisen from the
full 3D modeling of the RCT process. In Sec. III A we show
the common picture of RCT with 3D pseudopotentials and
compare the main numerical RCT characteristics to the case of
widely used 1D pseudopotentials. Is Sec. III B we describe the
electron delay effect, which is extremely important in the case
of grazing scattering. In Sec. III C the anisotropy of electron
propagation and its influence on RCT azimuthal dependence
are discussed.

It should be mentioned that in the beginning of this research
we expected to observe the RCT dependence on the ion
beam orientation relative to 3D crystallographic axes, e.g.,
greater RCT rates for the ion approaching the surface along
the direction of dense atomic packing (by analogy of Vener
spots). But such suggestion was not supported by numerical
simulations.

A. 3D RCT illustration and influence of ion lateral position

Figure 6 shows the time evolution of electron density
for Cu(100) and Cu(110) surfaces for a fixed ion-surface
distance. We see that for both surfaces electron distribution
inside the metal reproduces its atomic structure; e.g., the
central inset shows that for Cu(110) several surface atoms
are populated during the first RCT moments. During the first
RCT stage the electron distributions inside both surfaces are
similar. Significant structural difference is observed on later
stages—for the free-electron Cu(110) surface the electron
propagates deep into the metal, while for Cu(100) with a
projected band-gap the electron is distributed within several
surface layers. On the qualitative level it corresponds to
existing experimental and theoretical knowledge.

The hydrogen ion survival probability for the 3D pseu-
dopotential demonstrates quantitative correspondence to the
1D potentials results (Fig. 7, upper part). For a free-electron
Cu(110) surface the linear ion state decay occurs, while for
Cu(100) the ion population exhibits oscillations near the 90%
level. The explanation of such difference is rather simple: For
Cu(110) the interlayer distance is 2.55 Å, while for Cu(100) it
is 3.61 Å. Therefore in the first case the eigen-wave-function
of adjacent atoms overlaps enough for the electron transport,
while in the second case the electron transport is blocked in
a certain energy interval. A qualitative difference for Cu(110)
was observed for the small ion-surface distances (∼5 a.u.):
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FIG. 6. Evolution of electron density for Cu(100), left side, and
Cu(110), right side. Ion-surface distance is 12 a.u. Figure shows
isosurfaces of electron density at sequential time moments (see figure
for details). The inset in the center shows electron density distribution
in the first surface layer of Cu(110).

FIG. 7. Upper: comparison of hydrogen anion decay for different
pseudopotentials and surfaces (see legend for details). The figure
shows H− ion population as a function of time. Ion-surface distance
is 12 a.u. Lower: surface state energy comparison for 1D and 3D
pseudopotentials (see legend for details). Ion-surface distance is
47 a.u.

The population calculated by means of the 1D potential
shows exponential decay, while it was found to oscillate in
the case of the 3D pseudopotential. This difference has an
objective character, because the 3D potential reproduces real
atomic structure of the surface, while the 1D potential for
Cu(110) is flat inside the metal. For larger ion-surface distances
this difference is not significant, because of the higher RCT
electron energy.

Another reasonable 3D pseudopotential verification is
surface state resonance, which takes place for surfaces with
a projected band gap. Figure 7 (lower) shows a comparison of
energy spectra, obtained with 1D and 3D pseudopotentials for
Cu(111). We see that the 1D pseudopotential better reproduces
the energy of the surface state for Cu(111) equal to –5.33 eV.
Note that in 1D potentials the distance between the first and
second layers differs from the interlayer distance in the bulk
(see Fig. 1). This difference numerically affects the position of
the surface state resonance. At the same time for the 3D pseu-
dopotential we use a clear crystallographic structure with con-
stant interlayer distance. An interesting fact is that simple re-
laxation of the top surface layer in 3D pseudopotential calcula-
tion does not lead to more precise surface energy value. Proba-
bly more complicated surface reconstruction is necessary. This
is an obvious way for the 3D pseudopotentials’ improvement.

The dependences of ion-level position and average decay
rate (level width) on ion-surface distance also show good
correspondence between 1D and 3D pseudopotentials.

Hereby we can conclude that the presented 3D pseudopo-
tentials demonstrate qualitative resemblance with their 1D
counterparts and they could be used for model calculations as
well as for experiment modeling. Developed 3D potentials for
Cu have given quantitative correspondence to the experimental
data (see Sec. IV).

The ion’s lateral position was found to have a small
influence on the RCT rate and character. For a static problem,
when the ion is fixed in front of a metal surface, the difference
of RCT rates for various ions’ lateral position is less than
5% when the ion-surface distance is 12 a.u., and is about
10% when the ion-surface distance is 5 a.u. Note that for the
dynamic problem, when the ion is impinging on the surface
or is moving away from the surface, the influence of the ion’s
lateral position (position of point of closest approach) was not
detected (except in the case of close to normal collisions). This
happens due to ion interactions with several adjacent surface
atoms and this interaction is averaging due to the ion movement
parallel to the surface.

B. Electron delay effect

An interesting 3D effect arises for the dynamical problem,
when the ion has a velocity component parallel to the surface.
In the case of the 1D pseudopotential (has a constant value in
XY plane) the electron tunneled into the metal preserves the
lateral velocity component, but for the real 3D pseudopotential
electron movement parallel to the surface is limited due to the
pseudopotential periodicity. Therefore the electron in the metal
is delayed compared to the moving ion (Fig. 8, upper). This
fact has a very interesting consequence for the surfaces with a
projected band gap. For example, in Fig. 8 (lower) occupation
of the H− ion moving away from the Cu(111) surface
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FIG. 8. Illustration of electron delay effect with 3D pseudopoten-
tial usage. Upper, electron density distribution at t = 150 a.u. for 3D
pseudopotential. Lower: H− population as a function of distance from
the surface for 3D and 1D pseudopotentials. The H− ion moves away
from the Cu(111) surface with Vnorm = 0.02 a.u.; initial ion-surface
distance is 5 a.u. For the upper picture Vpar = 0.5 a.u.; for the lower
picture calculations with different Vpar are presented (see “v” value in
legend). The outgoing trajectory was chosen because it is often used
for RCT experiments calculations.

exhibits oscillations in time under the 1D pseudopotential
consideration. These oscillations are caused by the reflection
of the wave function from the periodical pseudopotential. Due
to the ion state occupation oscillations the final occupation is
about 0.3 [compare to ∼0.05 for the Cu(110) surface]. For the
1D pseudopotential the oscillations do not significantly depend
on the ion’s parallel velocity. As for the 3D pseudopotential,
it also shows oscillations for zero parallel velocity. Note
that the oscillation period corresponds to the case of the
1D pseudopotential. But oscillations disappear when parallel
velocity becomes significant (>0.1 a.u.). Put in simpler words,
due to the electron delay at each moment of time the ion sees
a clear surface without a reflected wave function. As a result,
the final ion occupation is much smaller, compared to the
case of 1D pseudopotential consideration. The above feature
is especially significant for modeling of grazing scattering
experiments by means of the rate equation. The electron delay
effect is noticeable when the ion velocity component parallel

FIG. 9. Influence of ion beam energy and orientation on RCT
character. Figure shows H− ion population dependence on ion-surface
distance for different azimuthal angles [close to 〈11̄0〉 and 〈001〉
directions in the Cu(110) crystal] and ion velocities (Vpar = 0.5 a.u. vs
Vpar = 0.25 a.u.). The H− ion moves away from the Cu(110) surface
with Vnorm = 0.02 a.u.; initial ion-surface distance is 7.6 a.u.

to the surface exceeds the electron propagation speed along
that direction. In practice, the typical threshold values of the
parallel velocity component are about 0.1–0.2 a.u. for the Cu
surface (precise value depends on surface orientation and ion
beam lateral direction).

C. Anisotropy of electron propagation
and RCT azimuthal dependence

An interesting feature is the anisotropy of electron propa-
gation inside Cu(110). In Fig. 6 one can see that electron prop-
agation along the 〈001〉 direction is ∼2 times faster than along
〈11̄0〉. Such behavior looks a little bit paradoxical, especially
because the interatomic distance along the 〈001〉 direction is
3.61 Å, compared to 2.55 Å for 〈11̄0〉. Note that anisotropy of
electron propagation does not change significantly for different
lateral positions of the H− ion. Anisotropy is also preserved
for different ion-surface distances. The possible explanation
of this phenomenon is that electron tunneling from the ion
to adjacent atoms acquires a velocity component parallel to
the surface. Due to the anisotropy of the Cu(110) surface
crystallographic structure the velocity component along the
〈001〉 direction is larger than along 〈11̄0〉. This leads to
anisotropy of electron propagation. Note that for Cu(100) and
Cu(111) surfaces the anisotropy of electron propagation was
not observed. The anisotropy of electron propagation is also
expected to be found for (110) surfaces of other transition
metals, in particular for Ag and Au.

Anisotropy of electron propagation leads to RCT
dependence on the ion beam azimuthal angle. Note that this
effect has been experimentally registered for H− scattered
from the Cu(110) surface [3,4,30] and Li0 scattered from
Au(110) and Pd(100) surfaces [47]. Figure 9 demonstrates
the numerical simulation of H− population during grazing
scattering on Cu(110). We see that as population on time
(or distance to the surface) dependence as well as final ion
occupations differs for the 〈001〉 and 〈11̄0〉 directions. Hereby
we can make a conclusion about the numerical observation of
the orientation effect, i.e., the influence of the ion beam lateral
direction (azimuthal angle) on the final charge state. Also one
can see that for large velocity (Vpar = 0.5 a.u.) H− population
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exhibits exponential decay, that commonly corresponds
to adiabatic RCT character, while for smaller velocity
(Vpar = 0.25 a.u.) the RCT character depends on the ion beam
direction: For the 〈11̄0〉 direction the exponential decay takes
place, but the H− population exhibits oscillations for the 〈001〉
direction. Such oscillations are typical for the surfaces with a
projected band gap, but not for the (110) surface. We think that
anisotropy of electron propagation is the reason for such RCT
character dependence. For large ion velocity the ion always
sees the clean surface (see electron delay effect in Sec. III B);
hence the decay is exponential. For smaller velocities, due to
anisotropy of electron propagation, the ion sees a clean surface
for the 〈11̄0〉 direction and an “occupied” surface for the 〈001〉
direction. Hence the RCT exhibits oscillations in the latter
case. Note that there is no strict regularity like the “final popu-
lation along the 〈001〉 direction is always lower than along the
〈11̄0〉 direction.” Since the final population depends on initial
distance and oscillation period, different cases can be realized.

IV. RESULTS OF RCT EXPERIMENTS MODELING

In this section we present results of 3D modeling for a
dozen RCT experiments, representing such RCT aspects as
(i) different ion types (Li0 or Li+ and H0 or H−); (ii) different
targets (Ag, Al, Au, Cu) and surface electronic structures
(“free-electron” for (110) surfaces and projected band gap
for (100) or (111) surfaces); (iii) both possible directions
of the RCT process (Li0 ionization vs H− neutralization);
(iv) RCT dependence on ion energy and exit angle. The ion
energy in most of the experiments was in the range 0.1–2.5
keV, except in experiments on grazing scattering (up to 25
keV). A significant issue for RCT experiments numerical
modeling is Fermi energy (electron work function) value. In
our calculations we use the data from Refs. [48–51].

A. RCT dependence on exit angle

In this section we apply a 3D calculation technique to direct
modeling of the experiments on RCT 1D or 2D dependence on
ion exit angle. Note that due to 3D geometry, such experiments
cannot be directly modeled by means of 1D or 2D techniques.

In the first group of experiments [7], a fraction of scattered
H− ions as a function of exit angle was compared for
Ag(111) and Ag(110) surfaces. In the original paper the
calculation results were presented only for the jellium Ag(110)
surface, since the exploited “1D complex angular mode+rate
equation” method is not designed for RCT modeling with
a projected band gap (excluding the case of cylindrical
symmetry). Figure 10 shows 3D calculation results for both
surfaces.

The common regularity is that the increase of the H−
fraction with exit angle (measured from the surface) is
intuitively reasonable: For larger angles interaction time is
shorter and a smaller percentage of electron density has time
to tunnel into the target. A more interesting feature is the
intersection of H− fraction curves for Ag(110) and Ag(111)
near the angle 15°. For large angles (shorter interaction times)
a smaller H− fraction for Ag(111) is stipulated by a larger
electron decay rate. But for small angles (longer interaction
time) nonadiabatic effects become significant in the case of
Ag(111)—the electron is reflected back due to the projected

FIG. 10. Comparison of calculation results with experimental
data [7]. Figure shows H− fraction as a function of exit angle. The
axes scales are chosen according to the original experimental article.
Energy of the primary H+ ion beam is 1 keV.

band gap, and as a result, the effective electron decay rate is
smaller compared to Ag(110).

One can see that our 3D calculation technique reason-
ably well reproduces the experimental data and “feels the
difference” between adiabatic and nonadiabatic cases. The
only fitting parameter, P0, is equal to 0.09 for both cases.
Our calculations significantly underestimate the experimental
results in the case of small angles (long interaction times). In
order to increase the precision we have to calculate the initial
charge state P0 (to account for ion velocity and ion-surface
interaction time), instead of using a constant value. The
illustration of P0 calculation follows.

In Ref. [8] a series of experiments on RCT between
hydrogen and polycrystalline Cu is presented. The angular
dependence of H− formation probability was measured for
different ion beam energies. Calculations presented in the orig-
inal article give qualitative correspondence to experimental
data.

According to the original paper the dominant surface
orientation in polycrystalline Cu is (111), so we model RCT
between the hydrogen anion and Cu(111). Figure 11 shows
the outer H− electron in k space for several H− − Cu(111)
distances. One can see that this distribution is rather complex.
There are several electron localization points in (kz, kρ) space.
For their interpretation it is useful to recall the energy structure
of the H− − Cu(111) system: (i) Surface state energy Ess for
Cu(111) is –5.33 eV (measured from vacuum level); (ii) due
to pseudocrossing with Ess the ion energy level is split into
values ∼–2 and ∼–5 eV; (iii) the conduction band bottom
Eb is –12 eV. According to the above energy structure, we
interpret the observed electron localization points as follows:

(I) A pair of points (–0.75, 0) and (+0.75, 0) for z =
5 a.u. corresponds to resonant electron transition from the
lower ion level (–5 eV) into the surface state. Note that
a pair of symmetric points forms something like a stand-
ing wave and the electron does not propagate into the
metal.

(II) A pair of points (–0.75, 0.5) and (+0.75, 0.5) for
z = 7 a.u. corresponds to electron transition from the upper
ion level (–2 eV) into the surface state. The normal component,
0.75 a.u., corresponds to the energy difference (Ess–Eb), while
the lateral component, 0.5 a.u., corresponds to the energy
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FIG. 11. H− outer electron density distribution in 2D k space inside the Cu(111) for different ion-surface distances.

difference between the upper energy level and Ess. Like the
pair of (±0.75, 0) points, the (±0.75, 0.5) points also form a
standing wave along the surface normal, but in this case the
electron propagates parallel to the surface.

(III) For larger distances there is a pair of points with co-
ordinates (±0.75, ∼ 0.25). We interpret them as intermediate
between the (I) and (II) points.

(IV) For all distances a clear structure with coordinates
(–0.2, 0) is visible. We suppose that this structure is related
to some nonresonant transition, e.g., electron transition from
the surface state deep into the metal. Since such transition
is considered only for the metal (without the adjacent ion)
we exclude this structure from calculation of electron loss or
capture weight (see Sec. II D).

Figure 12 illustrates the calculation results and original
experimental data. The RCT calculation model in this case is
altered to account for the ion velocity for P0 value calculation:
The H− occupation at a distance zf is supposed to be
proportional to part of the electronic density, located inside
the Fermi sphere [see Fcapture in Eq. (2)]; zf values for given
ion energies and exit angles are in the range 3.6–3.7 a.u.

The P0 value calculation is significant for quantitative
experiment description. Without this modification the H−
fraction values are similar to experimental values, but the
P −(� = 90◦)/P −(� = 40◦) ratio is about 1.2 for all energies,

FIG. 12. Comparison of calculation results with experimental
data [8]. Figure shows H− fraction as a function of exit angle
for several different energies of the primary ion beam (see legend
for details). The axes scales are chosen according to the original
experimental article. The incidence angle of the primary H+ ion
beam is 40° to the surface.
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FIG. 13. Comparison of calculation results with experimental
data [5]. Figure shows the Li0 fraction as a function of primary ion
beam energy. The incidence angle of the primary Li+ ion beam is 45°
to the surface. Spectra of scattered Li atomic particles (Li+ and Li0)
are measured along the normal to the surface.

while in the experiment the H− fraction practically does not
depend on exit angle for low energies (0.5 keV) and changes
significantly for higher energies (2 keV). The inclusion of the
Fcapture factor improves the situation:

(I) Due to the frame transformation (see Sec. II D) the
Fcapture factor is affected by ion velocity.

(II) For 0.5 keV the shift in k space is relatively small
(∼0.14 a.u.); hence the Fcapture factor does not change signifi-
cantly.

(III) For 2 keV the energy shift in k space is about 0.28 a.u.;
hence the influence of the exit angle (velocity direction) is
stronger.

(IV) for � = 90◦ velocity is directed along the normal, so
the Fcapture factor increase is larger comparing to � = 40◦.

Note that our calculations do not reproduce experimentally
observed nonmonotonous dependence of ionization probabil-
ity on ion energy [in the original work P −(E = 2 keV) >

P −(E = 2.5 keV) ].

B. RCT dependence on ion energy

The next group of experiments was done by Esaulov and
co-workers [5,6]. The fraction of scattered neutral Li0 atoms
was measured as a function of primary Li+ beam energy. Note
that the ionization energy of alkali-metal ions is close to the
typical metal work function, hence alkali-metal ions are widely
used for surface diagnostics by means of ion beams.

Figure 13 contains the comparison of our calculation results
with experimental data [5], for Li interacting with the Ag(100)
surface. In the original paper calculation results are also
presented that show good quantitative correspondence to ex-
perimental data. The common problem for Li+ neutralization
modeling is that neither the 2D wave-packet propagation
method, nor the 3D GPU TDSE solver is designed for ab
initio electron capture calculation.

In the original paper the authors use the time-reversal
symmetry assumption, which does not take into account the
impact of the ion velocity direction (see Sec. II E for details).
The widely used rate equation approach also does not take into
account the impact of the ion velocity, since electron capture
or loss rates do not depend on the projectiles’ velocity. This

FIG. 14. Comparison of calculation results with experimental
data [6]. Figure shows the Li0 fraction as a function of primary ion
beam energy for different surfaces (see legend). The incidence angle
of the primary Li+ ion beam is 45° to the surface. Spectra of scattered
Li atomic particles (Li+ and Li0) are measured along the normal to
the surface.

is a reason why we try to incorporate the influence of ion
velocity by the simple suggestion that electron capture by Li+
and electron loss by Li0 rates are equal. Hence the “part of
electron” captured during Li+-surface interaction is estimated
as the part of electrons lost by Li0 during the motion along
the same trajectory. We assume that Li atoms are completely
ionized near the metallic surface (P0 = 1), so our model in this
case is parameter free and gives quantitative correspondence to
the experiment (Fig. 13). A qualitative description of the Li0

fraction on energy dependence is rather simple: Interaction
time is sufficiently large for small energies, and the Li+
ion becomes fully neutralized; for larger energies (smaller
interaction times) only partial neutralization occurs. Note that
despite quantitative correspondence to experimental data, the
suggestion of equal electron capture or loss rates for Li could
not be automatically applied to other projectiles.

More interesting experimental data [6] are presented in
Fig. 14: Unlike Ag(100) and Ag(111) surfaces, the Li0 fraction
during RCT with Cu(111) and Au(111) is a nonmonotone
function of ion beam energy (interaction time). In the original
paper the calculations only for the jellium Ag surface are
presented, and the question of nonmonotone Li0 fraction
dependence remains open.

Our parameter-free calculation model gives quantitative
correspondence with the experimental results, including
the character of Li0 fraction dependence on energy and its
absolute values for different surfaces. The explanation of
nonmonotone Li0 fraction dependence is based on different
Fermi energies and zf dependence on ion velocity. It is known
that the Li+ ion energy level depends on the ion-surface
distance as E(zion-surface) ∼ E(∞) + 1/4z; more precise de-
pendence is determined numerically (see Sec. II A). The plots
of E(z) dependence can be found elsewhere [5]. In the static
case for the Ag surface (Ef is about –4.5 eV) zf is about
6 a.u. In the case of Cu(111) and Au(111) the intersection
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distances are about 8–10 a.u., due to the lower Fermi level
(–4.94 and –5.31 eV, respectively). For the moving ion its
energy level is shifted as �E(zion-surface) = |k′|2/2−|k|2/2 =
|v|2/2 − �v · �k (see Sec. II D), which leads to zf dependence
on ion velocity. Note that electron density distribution in
3D k space corresponds to the ring (Fig. 4); hence the
above formula for the energy shift equation is valid only for
ion velocities directed along the normal to the surface. The
absolute values of ion energy level shift are about 0.05–0.2
eV and do not depend significantly on the target material,
but near the intersection point zf dependence E(z) changes
more rapidly for Ag(100) or Ag(111) than for Cu(111) and
Au(111). Therefore to compensate for the same energy level
shift fewer zf changes are necessary in the case of Ag(100) or
Ag(111). In our calculation the zf range was 5.8–6.2 a.u. for
Ag(100), 6.5–7.0 a.u. for Ag(111), 7.7–8.4 a.u. for Cu(111),
and 7.8–9.1 a.u. for Au(111).

According to the above description, the qualitative expla-
nation of nonmonotone Li0 fraction dependence is based on
a trade-off between influence of interaction time (decreases
with energy) and effective RCT rate (increases with energy,
due to decrease of zf ). For small ion energies zf changes
are negligible and the Li+ neutralization probability is defined
by interaction time. For larger ion energies zf is significantly
reduced (up to 1 a.u.), which leads to an increase of effective
RCT rate and Li+ neutralization probability.

Note that modeling of nonmonotonous dependence of
Li0 fraction on ion beam energy has been addressed in
Refs. [45,47]. Both of those works are based on the rate
equation solution and give correspondence to experimental
data. The main differences of our approach are (i) we suppose
the Li atom to be completely ionized near the surface (in
Refs. [45,47] the fraction of Li0 atoms near the surface is esti-
mated as 40%–100%); (ii) we take into account only electron
capture on the outgoing trajectory z > zf (while integration
of he rate equation supposes concurrent electron loss and
capture processes). Such significant difference in the initial
Li0 fraction estimation is stipulated by different Li energy
level dependences on atom-surface distance. In our approach it
increases monotonously with decrease of ion-surface distance
and crosses the Fermi level at distances of 6–10 a.u. (see
Ref. [5] for details), while in Ref. [45] it is significantly below
the Fermi level when Li is located near the surface.

The key advantage of our approach is the subtle accounting
of the kinematic factor (shift of electron distribution in k space
on the ion velocity value), which leads to zf dependence on
ion beam energy. Our approach gives quantitative correspon-
dence to experimental data [absolute values of neutralization
probability and P (E) minima location] for different surfaces;
this is a strong argument for the kinematic factor accounting.
At the same time, consideration of concurrent electron loss
and capture processes could further improve the calculations’
precision. Note that due to cylindrical symmetry (the Li0 atoms
are registered along the surface normal), our calculations
can be reasonably well reproduced by the 2D wave-packet
propagation technique [5,13,16].

C. Grazing scattering and RCT azimuthal dependence

In order to approbate our calculation method for grazing
scattering we have modeled the experiment on RCT between

FIG. 15. Comparison of calculation results with experimental
data [11,52]. Figure shows a fraction of H− ions, scattered from
Al(111) surface, as a function of the primary ion beam parallel
velocity value. The normal velocity of the primary H+ ion beam
is 0.02 a.u.

hydrogen and the Al(111) surface [11,52]; the results are
presented in Fig. 15. Note that for jellium surfaces, our
RCT calculation model is very similar to models described
in Refs. [3,11,30]. Therefore the calculation results are also
similar and very close to experimental data. Let usnote that
these are parameter-free calculations.

Figure 16 demonstrates calculation results for a more
complicated H− − Cu(111) interaction. As it was shown in
Sec. III A, electron distribution in k space is rather complex
in this case. The right part of Fig. 11 (z = 7 a.u.) is useful for
interpretation of results, because final charge state formation
occurs at the distances 6–9 a.u. Note that we exploit structures
with coordinates (±0.75, 0.5), (±0.75, 0.25) in (kz, kρ) space,
but exclude the structure (–0.2,0) from consideration. These
structures form rings in 3D k space. The main peak of the
H− fraction in Fig. 16 (near v = 0.5 a.u.) corresponds to the
maximal intersection between the main 3D ring (±0.75, 0.5)
and the Fermi sphere of the metal. An additional 3D ring
(±0.75, 0.25) slightly increases the H− fraction for velocities
around 0.25 a.u. Note that the maximum of the calculated

FIG. 16. Comparison of calculation results with experimental
data [3,4,30]. Figure shows a fraction of H− ions, scattered from
the Cu(111) surface, as a function of the primary ion beam parallel
velocity value. The normal velocity of the primary H+ ion beam is
0.02 a.u.
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FIG. 17. Illustration of electron propagation anisotropy influence
on RCT and H− fraction azimuthal dependence (details are given in
the text). Inset shows H− outer electron density distribution in 3D k

space inside the Cu(110).

P −(v) dependence is shifted right from the experimental
value on ∼0.1 a.u. A possible reason for this is imperfection
in the procedure of electron density calculation in k space.
For example, we have to calculate electron density not at
100 a.u., but for greater times, when relative weight for the
(±0.75, 0.25) ring is larger.

The question of interest is the difference in maximal
values of the H− fraction [ ∼0.003 for Al(111) and Cu(110)
surfaces vs ∼0.009 for the Cu(111) surface]. Such sig-
nificant difference is related to various �capture/�loss ratios
for these systems. The maximal H− fraction could be esti-
mated as occupation in the equilibrium point (see Ref. [4]
for details): dP −

dt
= −�lossP

−
eq + �capture(1 − P −

eq) = 0; P −
eq =

1
1+�loss/�capture

≈ �capture

�loss
= Fcapture

Floss
. The Fcapture/Floss ratio is de-

termined by integration in k space. In the case of jellium
metals [Al(111) and Cu(110) surfaces] it is approximately
proportional to the intersection between the 3D Fermi spheres
of hydrogen and metal, while in the case of a projected gap
[Cu(111) surface] it is proportional to the intersection between
the 2D Fermi disk of metal and the 2D ring of hydrogen (see
Fig. 11). The relative intersection is larger in the last case;
hence the Fcapture/Floss ratio and maximal H− fraction value is
larger in the case of Cu(111). It should be noted also that the
Fcapture/Floss ratio depends on the ion-surface distance.

In some studies [3,4,30] experimental results are presented
demonstrating RCT azimuthal dependence for H− grazing
scattering on the Cu(110) surface. In Sec. III C we addressed
this question numerically and observed anisotropy of electron
propagation and influence of the azimuthal angle on the
RCT rate. According to our model calculations, the maximal
difference between the RCT rate along the 〈001〉 and 〈11̄0〉
azimuthal directions for Cu(110) is about 10%. This is signif-
icantly smaller than the experimentally observed difference.
Moreover, the difference in RCT rate does not explain the
relative shift of H− fraction maxima positions.

To understand the reason for the H− fraction azimuthal
dependence let us note that electron propagation in Cu(110) is
anisotropic. Figure 17(a) shows electron density distribution
in 3D k space. Note that due to the usage of an “atomistic”
3D pseudopotential, this distribution is more complex than
in the 2D case and shows density maxima corresponding

FIG. 18. Comparison of calculation results with experimental
data [3,4,30]. Figure shows a fraction of H− ions, scattered from the
Cu(110) surface, for different parallel velocity values of the primary
ion beam. The normal velocity of the primary H+ ion beam is 0.02 a.u.
Calculations 1: data for the 〈11̄0〉 azimuthal direction; Calculations
2: data for 〈001〉.

to different reciprocal lattice vectors (electron transitions to
several nearest lattice atoms). The significant feature is the
anisotropy of electron density distribution in 3D k space,
that has influence on the Fcapture, Floss factors. The correct
Fcapture, Floss factors’ calculation using 3D electron density
distribution is the challenge for future studies. In the current
research we incorporate anisotropy of electron propagation via
modifying the 2D electron density distribution (see Fig. 4).
Originally, 2D distribution has cylindrical symmetry around
the kz axis. We artificially break this symmetry by changing
the axes scales as kx : ky : kz = 1.1 : 0.9 : 1.0 for the 〈001〉
direction and kx : ky : kz = 0.9 : 1.1 : 1.0 for 〈11̄0〉. Note that
in our calculations the ion always moves along the X axis. After
such modification the electron density projection in the X-Y
plane transforms from a circle to anellipse with approximately
the same square.

Figure 17(b) illustrates the Fcapture, Floss factors’ calculation
in the case of modified electron density distributions. For the
〈11̄0〉 direction the maximal resonance with the Fermi sphere
occurs under the lower velocities, than for the 〈001〉 direction.
Also for the 〈001〉 direction the resonance is wider (greater
range of v‖).

The second major point is the accounting of the RCT
rate anisotropy. To do this, we multiply the RCT rate �(z)
by 1.05 for 〈001〉 and 0.95 for the 〈11̄0〉 direction (the
relative difference is held at about 10%, estimated from model
calculations).

Figure 18 shows that our simple model provides excellent
correspondence to experimental data. The surprising fact is that
the H− fraction for the 〈11̄0〉 direction (smaller RCT rate) is
larger than the H− fraction for the 〈001〉 direction (greater RCT
rate). But this is the consequence of the rate equation solution
properties: (i) for greater �(z) the charge state formation occurs
on larger ion-surface distances, zc ∼ ln[α�(z)] [4]; (ii) the
Fcapture/Floss ratio determines the maximal H− fraction as a
decreasing function of ion-surface distance [at least in the
case of H− − Cu(110) interaction].

Our theoretical description of the RCT azimuthal depen-
dence in grazing scattering experiments provides a clear
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logical explanation, while 3D calculations give numerical
correspondence to experimental results.

V. CONCLUSIONS

We have developed the technique of RCT modeling
between an atomic particle and a metal surface, which accounts
for the realistic (atomic scale) structure of the surface. The
developed technique is based on the direct 3D TDSE solution
for one active electron, moving in the pseudopotential formed
by an ionic core and a metal surface. The key point is the usage
of 3D pseudopotentials, which describes the metal structure
on the atomic level. Three-dimensional pseudopotentials for
Cu(100), Cu(110), and Cu(111) surfaces have been calculated
by means of DFT, considering the known Cu crystallographic
structure. The obtained 3D pseudopotentials reproduce the
major RCT features. In particular, in the case of jellium
surfaces (110) we observe the electron tunneling along the
surface normal and its unrestricted propagation deep into the
metal. For the surfaces with a projected band gap (100), (111),
the electron motion along the surface normal is restricted.
The dependence of the RCT rate (level width) on ion-surface
distance obtained for the 3D pseudopotential corresponds to
the RCT rate obtained by means of well-known effective 1D
pseudopotentials. Also the presented 3D pseudopotential for
Cu(111) satisfactorily reproduce the energy of the surface
state.

The developed technique has been applied to several model
problems in order to investigate the RCT features, arising
from a realistic (3D) surface description. Several effects
were revealed, that should be taken into account during RCT
experiments modeling.

In the fixed-ion problem the ion’s lateral position was found
to have a small influence on the RCT rate and character. The
RCT is “averaged” due to the interaction with several neighbor
surface atoms. For the dynamical problems (nongrazing
angles) the RCT was found to be dependent mainly on the
distance of the closest approach and velocity of the ion.
The ions’ velocity orientation along the crystallographic axis
as well as the lateral shift of trajectory do not influence
significantly the final charge state of the ion. In this sense
the usage of 3D pseudopotentials does not give great benefits
compared to well-known 1D pseudopotentials.

The difference between usage of 3D and 1D pseudopo-
tentials becomes significant for the grazing ions’ trajectories,
when the normal velocity component is small. In the case
of the 1D pseudopotential (which is constant in the XY

plane) the electron tunneled into the metals preserves the
lateral velocity component, but for the real 3D pseudopotential
the electron movement parallel to the surface is limited due
to the pseudopotential periodicity. Therefore the electron
in the metal is delayed relative to the moving ion. This
fact has a very interesting consequence for the surfaces
with a projected band gap. Under the 1D pseudopotential
consideration the charge state of the ion (population) oscillates
in time due to the reflection of the wave function from
the periodical pseudopotential. These population oscillations
disappear under 3D pseudopotential consideration of grazing
scattering. Put in simpler words, due to the electron delay at

each moment of time the ion sees a clear surface without a
reflected wave function.

Another interesting 3D effect is anisotropy of the electron
propagation relative to the surface lattice. For example, for
the Cu(110) surface the electron propagation speed along
the 〈001〉 direction is ∼2 times larger than along the 〈11̄0〉
direction. Note that this effect was not observed for Cu(100)
and Cu(111) surfaces. The full 3D modeling enables us to
reveal RCT azimuthal dependence, when the RCT rate and
the final ion occupation depend on the ion velocity orientation
relative to the surface directions of dense and sparse atomic
packing. Also, we have found that during grazing scattering
the RCT character (adiabatic or nonadiabatic) depends not
only on interaction time and surface structure, but also on the
parallel velocity value and ion beam orientation.

Further we have developed a theoretical basic and cal-
culation methodology for three-dimensional RCT modeling
and successfully applied them to a variety of experimen-
tal data. The core of the calculation methodology is a
combination of a 3D TDSE solver with 3D pseudopoten-
tials, derived from ab initio DFT calculations. Such com-
bination provides ab initio RCT modeling on an atomic
level.

The key point of our approach to the RCT calculation is
determination of the energetically allowed electron transfer
direction (electron loss or electron capture). We perform RCT
direction analysis in k space and apply Galilean transformation
between frames of a moving projectile and a still target. In
the case of small velocities and simple electron distribution
in k space our approach consists in correct determination
of intersection distance between the energy level of the ion
and the Fermi energy; after that we directly solve the TDSE
on the outgoing trajectory. In the case of grazing scattering,
we account for concurrent processes of electron capture and
loss via solving the rate equation. Note that in the case of
grazing scattering the rate equation (adiabatic approximation)
is applicable even to RCT with projected band-gap surfaces
due to the so-called electron delay effect. It should be stressed
that our model includes only one fitting parameter and is
parameter free in the important cases of RCT with alkali-metal
atoms and grazing scattering.

We have considered a dozen RCT experiments, representing
such RCT aspects as (i) different ion types (Li0/Li+and
H0/H−); (ii) different targets (Ag, Al, Au, Cu) and surface
electronic structures [free-electron for (110) surfaces and
projected band gap for (100) or (111) surfaces]; (iii) both
possible directions of the RCT process (Li0 ionization vs H−
neutralization); (iv) RCT dependence on ion energy and exit
angle. The ion energy in most of the experiments was in the
range 0.1–2.5 keV, except in experiments on grazing scattering
(up to 25 keV).

In most cases our approach provides quantitative corre-
spondence with available experimental data. Note that some
of these experiments have not been modeled before due to
the absence of 3D simulation techniques. Among the pre-
sented simulations of experimental data we should emphasize
(i) explanation of nonmonotonous dependence of Li0 fraction
on ion beam energy during scattering on Au(111) and Cu(111)
surfaces; (ii) quantitative modeling of H− fraction azimuthal
dependence for hydrogen grazing scattering on Cu(110).
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Finally, we should mention that the presented technique of
3D RCT modeling is not the only one possible. For example,
the group of Thumm (Kansas State University, USA) has
presented several studies where 3D RCT was incorporated into
the Anderson-Newns model. The benefit of our approach is ab
initio direct modeling of electron loss by the ion, which directly
takes into account the ion’s movement (nonadiabatic effects)
and allows exploring the electron distribution inside the sur-
face. On the other hand, our approach is not designed for direct

modeling of electron capture by the ion, and some additional
assumptions should be used to model this branch of RCT.
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