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Universal experimental test for the role of free charge carriers in the thermal Casimir effect within a
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We propose a universal experiment to measure the differential Casimir force between a Au-coated sphere and
two halves of a structured plate covered with a P-doped Si overlayer. The concentration of free charge carriers
in the overlayer is chosen slightly below the critical one, for which the phase transition from dielectric to metal
occurs. One half of the structured plate is insulating, while the second half is made of gold. For the former
we consider two structures, one consisting of bulk high-resistivity Si and the other of a layer of SiO2 followed
by bulk high-resistivity Si. The differential Casimir force is computed within the Lifshitz theory using four
approaches that have been proposed in the literature to account for the role of free charge carriers in metallic and
dielectric materials interacting with quantum fluctuations. According to these approaches, Au at low frequencies
is described by either the Drude or the plasma model, whereas the free charge carriers in dielectric materials at
room temperature are either taken into account or disregarded. It is shown that the values of differential Casimir
forces, computed in the micrometer separation range using these four approaches, are widely distinct from each
other and can be easily discriminated experimentally. It is shown that for all approaches the thermal component
of the differential Casimir force is sufficiently large for direct observation. The possible errors and uncertainties
in the proposed experiment are estimated and its importance for the theory of quantum fluctuations is discussed.
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I. INTRODUCTION

During the last two decades the Casimir force [1] acting
between two closely spaced uncharged material surfaces has
attracted much experimental and theoretical attention due to
the diverse roles it plays in both fundamental and applied
physics (see monograph [2] and reviews [3–5]). The Casimir
effect is an entirely quantum and (at separations between
surfaces exceeding 2 or 3 nm) relativistic phenomenon. In
the nonrelativistic region the Casimir force is commonly
known as the van der Waals force [6]. The Casimir effect
is caused by zero-point and thermal fluctuations of the
electromagnetic field. Although Casimir [1] calculated the
force acting between two ideal metal planes, Lifshitz [7]
developed a general theory of van der Waals and Casimir
forces between two parallel material plates described by the
respective frequency-dependent dielectric permittivities. In
recent years this theory has been generalized to the case of
arbitrarily shaped interacting bodies [5].

In 2000 it was shown that the Lifshitz theory leads to
widely different predictions for the thermal Casimir force
between metallic test bodies depending on whether the low-
frequency dielectric response of metals is described by the
lossy Drude [8] or by the lossless plasma [9] model. Later
it was demonstrated that if the Drude model is used, the
Casimir entropy calculated within the Lifshitz theory does
not satisfy the third law of thermodynamics (the Nernst heat
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theorem) for either nonmagnetic [10–13] or magnetic [14]
metals with perfect crystal lattices. If instead the plasma
model is used, the Lifshitz theory is found to be in perfect
agreement with the Nernst theorem [10–14]. By contrast, in
the limiting case of large separations between metallic plates,
for which classical statistical physics should be applicable, a
first-principle computation based on a microscopic model was
shown in Ref. [15] to reproduce the Casimir force predicted
by the Lifshitz theory combined with the Drude model. The
Drude model was shown to satisfy the Bohr–van Leeuwen
theorem of classical statistical physics, which is, however,
violated if the plasma model is used to calculate the Casimir
force at large separations [16]. It was shown also that the
difference in theoretical predictions of the Drude versus the
plasma models could be attributed to the magnetic interaction
among fluctuating Foucault currents [17–19].

In two series of precise experiments on measuring the
Casimir interaction between metals by means of a microme-
chanical oscillator [20–23] and an atomic force microscope
[24–26], theoretical predictions of the Lifshitz theory using
the Drude model dielectric response at low frequencies have
been excluded by the measurement data at a confidence
level of up to 99%. The theoretical predictions obtained
using the plasma model turned out to be in agreement
with the data at a 90% confidence level [27]. All these
experiments were performed at separations below 1 μm,
where the difference between the theoretical predictions using
the Drude and those using the plasma models does not
exceed a few percent. The only experiment performed at
separations up to 7.3 μm was interpreted to be in agreement
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with theoretical predictions of the Lifshitz theory combined
with the Drude model [28]. It was noted, however, that in
Ref. [28] the Casimir force was extracted by means of a fitting
procedure from a measured force up to an order of magnitude
larger, supposedly originating from electrostatic patches and
influenced by imperfections, which are unavoidably present on
the surfaces of lenses with centimeter-size radii [29,30]. Thus,
the majority of experiments on measuring the Casimir force do
confirm the lossless plasma model. Since the relaxation of free
electrons in metals at low frequencies is a much studied fact,
this situation is regarded in the literature as the Casimir puzzle.

The Casimir force acting on dielectric bodies also presents a
puzzle. The problem is that the measurement data from all pre-
cise experiments with dielectric surfaces are in agreement with
theoretical predictions of the Lifshitz theory only provided
that the contribution of free charge carriers in the dielectric
response (dc conductivity) is omitted in computations [31–34].
If the dc conductivity of dielectric bodies is taken into account,
the theoretical predictions of the Lifshitz theory are excluded
by the measurement data [31–35]. Similarly to the role of re-
laxation of free charge carriers in metallic bodies, the influence
of the dc conductivity in the Casimir force on dielectric bodies
is limited to just a few percent of the measured signal. Theoret-
ically it was proven that the Lifshitz theory with the dc conduc-
tivity of dielectric materials included violates the Nernst heat
theorem, while agreement with this theorem is restored when
the dc conductivity is omitted [36–39]. This makes us again
disregard a real physical phenomenon (here, the conductivity
of a dielectric material at nonzero temperature) to achieve
agreement with both experimental data and the third law of
thermodynamics.

It is noteworthy that the impact of both relaxation phe-
nomena in metals and of the dc conductivity in dielectrics
on the Casimir force at separations below 1 μm is always
relatively small. Then one may hope that by a proper account of
some background effects due to, e.g., electrostatic patches [40]
or surface roughness [3,41], one could bring the predictions
of the literally understood Lifshitz theory in agreement with
the data. To investigate this possibility, Ref. [42] proposed
measuring the Casimir force between two aligned sinusoidally
corrugated Ni surfaces, one of which is coated with a thin
opaque Au layer having a flat surface. According to the results
obtained, the phase-dependent modulation of the Casimir force
for submicron separations, predicted by the Drude model,
is several orders of magnitude larger than that predicted by
the plasma model. An experiment based on this principle
[43] has measured the differential force between Au- or
Ni-coated spheres and Au and Ni sectors of a structured disk
covered with an Au overlayer at separations of a few hundred
nanometers. The measurement data unequivocally ruled out
the Drude model and were found to be in good agreement
with those for the plasma model [43]. This experiment is
immune to electrostatic forces caused by patch potentials
similarly to isoelectronic differential force measurements
searching for Yukawa-type corrections to Newton’s gravita-
tional law [44,45]. It is interesting to point out that the Casimir
free energies and pressures of thin metallic films computed
using the Drude and plasma models have also been found to
differ by up to a factor of several thousand [46–48]. It is found

again that the Nernst heat theorem is violated if the Drude
model is used in computations [49].

In view of the above considerations it would clearly be
desirable to perform an experimental test on the role of free
charge carriers in the Casimir force in the micrometer sepa-
ration range where thermal effects are most pronounced. Dif-
ferential force measurements of this sort have been proposed
in Refs. [50] and [51] for both nonmagnetic and magnetic
metallic test bodies. The setup considered in Refs. [50] and
[51] involved a structured plate, one half of which was made of
a metal (Au or Ni) and the other half of high-resistivity Si. The
structured plate was covered with a plane-parallel overlayer
made of a B-doped Si plate in the metallic state with a thickness
of 100 nm. This setup allows for a measurable differential force
between a metal-coated sphere and the two halves of a sample
which is of a quite different magnitude depending on whether
the metal is described by the Drude or the plasma model. The
test in Refs. [50] and [51] is not sensitive, however, to the dc
conductivity of high-resistivity Si.

In this paper, we propose a universal test for the role of
free charge carriers in the Casimir force in the micrometer
range of separations. It follows the main idea in Refs. [50] and
[51], i.e., it suggests measuring the differential Casimir force
between a Au-coated sphere and the high-resistivity Si and Au
halves of a structured plate. The main difference is, however,
that we now consider a semitransparent overlayer made of
P-doped Si with a concentration of free charge carriers which is
only slightly lower than the critical concentration at which the
dielectric-to-metal phase transition occurs. This means that the
overlayer used is in a dielectric state, although it preserves all
the experimental advantages of having a rather high electronic
conductivity.

We calculate the differential Casimir force in a configu-
ration including both metallic and dielectric materials using
the following four theoretical approaches: in the first one Au
at low frequencies is described by the plasma model and the
conductivity of Si is disregarded; in the second approach Au
at low frequencies is described by the plasma model but the
conductivity of Si is taken into account; in the third one Au
at low frequencies is described by the Drude model but the
conductivity of Si is disregarded; finally, in the fourth approach
the low-frequency dielectric response of Au is described by the
Drude model and the conductivity of Si is taken into account.
We compute the differential Casimir force using these four
approaches and show that in all of them the obtained results are
widely different in the micrometer separation range and can be
easily discriminated using the already available experimental
setup. It is shown that the proposed experiment allows for
precise measurement of the thermal effect in the Casimir force.
We also propose a modified structure of the plate by adding a
layer of SiO2, which offers some advantages in the process of
plate preparation and further increases the relative differences
between the theoretical predictions made by the four ap-
proaches. Computations of the differential Casimir forces are
performed using the tabulated optical data on all involved ma-
terials over the frequency ranges for which they are available.
The estimation of both theoretical and experimental errors
and uncertainties in the proposed experiment demonstrates its
feasibility.
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FIG. 1. Experimental configuration of a Au sphere moving back
and forth above a structured plate covered with a P-doped Si overlayer
in the dielectric state. The measured quantity is the differential
Casimir force Fdiff between the Au sphere and the two halves of
the plate when the sphere bottom is far away from their boundaries.
The figure displays the two extreme positions of the sphere during its
motion. The size of the sphere is not shown to scale.

The structure of the paper is as follows. In Sec. II the
principle scheme of the proposed experiment is outlined and
the general formalism is presented. Section III reports the
results of numerical computations of the differential Casimir
force within the four theoretical approaches. Section IV
presents the modified experimental scheme and more detailed
computational results for the differential force. In Sec. V all
errors and uncertainties are estimated. In Sec. VI the reader
will find our discussion and conclusions.

II. PRINCIPAL EXPERIMENTAL SCHEME AND
GENERAL FORMALISM

We consider the configuration of a Au-coated sapphire
sphere with radius R = 150 μm in vacuum, at a separation
a from a structured plate at room temperature T = 300 K.
The thickness of the Au coating is assumed to exceed 100
nm, in such a way that it is legitimate to consider the sphere
to be made entirely of gold, for the sake of computing the
Casimir force. The structured plate consists of an overlayer
made of P-doped Si of thickness d = 100 nm covering two
sections, one of which is made of high-resistivity Si and
the other of Au (see Fig. 1). The thickness of both sections
is large enough to consider them as two semispaces. We
consider an overlayer with a rather high electronic conductivity
which corresponds to the density of free charge carriers
n = 3.5 × 1018 cm−3. This density is, however, slightly lower
than the critical density ncr = 3.84 × 1018 cm−3 at which the
dielectric-to-metal phase transition occurs [52]. Thus, both
the overlayer and the underlying left section of the plate are
made of dielectric materials, although with quite different free
charge carrier densities.

We denote the materials of the sphere, of the overlayer, and
of the left section of the plate 1, 2, and 3, respectively. Then the
material of the right section of the plate is also denoted 1. We
denote the vacuum gap material 0. The respective dielectric
permittivities at the pure imaginary Matsubara frequencies are

εk(iξl) = εk

(
i
cζl

2a

)
≡ εk,l . (1)

Here, k = 0, 1, 2, 3, ξl = 2πkBT l/h̄ with l = 0, 1, 2, . . . and
kB being the Boltzmann constant are the Matsubara frequen-
cies, and ζl are the dimensionless Matsubara frequencies. For
a vacuum gap we have ε0,l = 1.

In the proposed experiment the sphere moves back and
forth at a sufficiently high frequency at some fixed separation a

from the plate. In this case not the Casimir forces FSi(a,T ) and
FAu(a,T ) among the Au sphere and the left and right sections
of the plate but only the difference Fdiff(a,T ) between them is
measured [43–45]:

Fdiff(a,T ) = FSi(a,T ) − FAu(a,T ). (2)

This measurement should be repeated at different separations.
Note that FSi(a,T ) and FAu(a,T ) are the forces acting when
the sphere bottom is above some points deep in the left and
right halves of the plate, respectively. Because of this, one can
neglect the effect of the sharp boundary between the left and
the right halves of the plate and consider each of them to be
infinitely large [51].

Using the proximity force approximation [2], which was
recently shown to be sufficiently exact under the condition
a � R [53–55], and the Lifshitz formula [2,7], the differential
force, (2), can be calculated by the equation

Fdiff(a,T ) = kBT R

4a2

∞∑
l=0

′ ∫ ∞

ζl

ydy

×
∑

α

ln
1 − r (0,1)

α (iζl,y)R(0,2,3)
α (iζl,y)e−y

1 − r
(0,1)
α (iζl,y)R(0,2,1)

α (iζl,y)e−y
,

(3)

where the prime on the summation sign denotes that the l = 0
term is taken with weight 1/2. Here, y is the dimensionless
variable connected with the projection of the wave vector onto
the plane of the plate, k⊥, by

y = 2a

√
k2

⊥ + ξ 2
l

c2
. (4)

The summation in α is made over the two independent
polarizations of the electromagnetic field, transverse magnetic
(α = TM) and transverse electric (α = TE). The reflection
coefficients on the structured plate covered with the overlayer
are expressed as

R(0,2,j )
α (iζl,y)

= r (0,2)
α (iζl,y) + r

(2,j )
α (iζl,y)e−d

√
y2+(ε2,l−1)ζ 2

l /a

1 + r
(0,2)
α (iζl,y)r (2,j )

α (iζl,y)e−d
√

y2+(ε2,l−1)ζ 2
l /a

, (5)

where j = 1, 3. Finally, the reflection coefficients on the
boundary surfaces between two different materials are given by
the familiar Fresnel formulas taken at the imaginary Matsubara
frequencies:

r
(k,j )
TM (iζl,y)

=
εj,l

√
y2 + (εk,l − 1)ζ 2

l − εk,l

√
y2 + (εj,l − 1)ζ 2

l

εj,l

√
y2 + (εk,l − 1)ζ 2

l + εk,l

√
y2 + (εj,l − 1)ζ 2

l

,
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r
(k,j )
TE (iζl,y)

=
√

y2 + (εk,l − 1)ζ 2
l −

√
y2 + (εj,l − 1)ζ 2

l√
y2 + (εk,l − 1)ζ 2

l +
√

y2 + (εj,l − 1)ζ 2
l

, (6)

where (k,j ) = (0,1), (0,2), (2,1), and (2,3).
The contribution to Eq. (3) at zero Matsubara frequency

requires special attention because the problems discussed in
Sec. I are connected with different treatments of this contribu-
tion. The point is that the optical data for the complex index
of refraction of all materials are available only for sufficiently
high frequencies. Therefore, at low frequencies the available
data should be supplemented with some theoretical model.
Taking into account the relaxation properties of electrons in
metals, the dielectric permittivities of our material 1 (Au) at
the Matsubara frequencies can be represented in the form

εD
1,l = ω̃2

p,1

ζl(ζl + γ̃1)
+ εcor

1,l . (7)

Here, ω̃p,1 and γ̃1 are, respectively, the dimensionless plasma
frequency and relaxation parameter of Au, connected with the
dimensional ones by

ω̃p,1 = 2aωp,1

c
, γ̃1 = 2aγ1

c
, (8)

and εcor
1,l is a contribution of the core (bound) electrons to

the dielectric permittivity determined by the optical data. The
upper index D is used to emphasize that the permittivity, (7),
has the Drude form. Note that the relaxation parameter γ̃1

depends on the temperature and goes to 0 with vanishing T by
a power law. For metals with disregarded relaxation properties
of free electrons the dielectric permittivity takes the plasma
form

ε
p

1,l = ω̃2
p,1

ζ 2
l

+ εcor
1,l . (9)

The plasma model is usually used in the region of infrared
optics where γ1 � ξl .

For dielectric materials (k = 2, 3) with free charge carriers
taken into account the dielectric permittivity at the Matsubara
frequencies takes the form

εk,l = 4πσ̃k,l

ζl

+ εcor
k,l , (10)

where the dimensionless conductivity σ̃k,l is connected with
the dimensional one by

σ̃k,l = 2aσk,l

c
. (11)

The conductivity of dielectrics is temperature dependent.
It vanishes exponentially rapidly when T goes to 0. At
room temperature it is customary to represent the frequency
dependence of σ̃k,l in terms of conventional Drude parameters,
i.e., as

σ̃k,l = ω̃2
p,k

4π (ζl + γ̃k)
. (12)

If the free charge carriers in dielectric materials are
disregarded, it holds that

εk,l = εcor
k,l , k = 2, 3. (13)

For our dielectric materials with k = 2 (P-doped Si) and k = 3
(high-resistivity Si)

εcor
2,l = εcor

3,l , (14)

although σ̃2,l and σ̃3,l are significantly different. Note also that
for both metals and dielectrics εcor

k,l → 1 when ζl → ∞.
First, we assume that the free charge carriers in both

dielectric materials (i.e., in the overlayer made of doped Si
and in the plate section of high-resistivity Si) are disregarded.
Then, at l = 0 Eqs. (13) and (14) hold. In this case, from the
first line of Eq. (6) one obtains r

(2,3)
TM (0,y) = 0 and from Eq. (5)

we have

R
(0,2,3)
TM (0,y) = r

(0,2)
TM,0 = εcor

2,0 − 1

εcor
2,0 + 1

. (15)

Now, from the first line of Eq. (6), one can see that r (2,1)
TM (0,y) =

1 independently of whether Au is described by the Drude
model of Eq. (7) or by the plasma model of Eq. (9). Then
Eq. (5) leads to

R
(0,2,1)
TM (0,y) = r

(0,2)
TM,0 + e−dy/a

1 + r
(0,2)
TM,0e

−dy/a
, (16)

where r
(0,2)
TM,0 is given by Eq. (15).

From the second line of Eq. (6) we have

r
(0,2)
TE (0,y) = r

(2,3)
TE (0,y) = 0. (17)

Then, from Eq. (5) one obtains

R
(0,2,3)
TE (0,y) = 0. (18)

As for the reflection coefficient R
(0,2,1)
TE (0,y), its value

depends on whether Au is described by the Drude or the
plasma model. If the Drude model, (7), is used, the second
line of Eq. (6) leads to r

(2,1)
TE,D(0,y) = 0 and Eq. (5) results in

R
(0,2,1)
TE,D (0,y) = 0, (19)

similarly to Eq. (18). If, however, the plasma model, (9), is
used for Au, the second line of Eq. (6) leads to

r
(2,1)
TE,p(0,y) =

y −
√

y2 + ω̃2
p,1

y +
√

y2 + ω̃2
p,1

, (20)

and from Eq. (5) one obtains

R
(0,2,1)
TE,p (0,y) =

y −
√

y2 + ω̃2
p,1

y +
√

y2 + ω̃2
p,1

e−dy/a. (21)

Next, we make the alternative assumption that the free
charge carriers in dielectric materials are taken into account
by Eq. (10). In this case r

(0.2)
TM (0,y) = 1 and from Eq. (5) we

have

R
(0,2,3)
TM (0,y) = R

(0,2,1)
TM (0,y) = 1. (22)
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Note that the latter equation is valid irrespective of whether
Au is described by the Drude or the plasma models. For the
TE mode Eq. (17) is still valid, leading to

R
(0,2,3)
TE (0,y) = 0. (23)

The value of the coefficient R
(0,2,1)
TE (0,y) depends on the

model used for a description of Au. If the Drude model is
used,

r
(2,1)
TE,D(0,y) = R

(0,2,1)
TE,D (0,y) = 0. (24)

If, however, Au is described by the plasma model, one returns
to Eqs. (20) and (21), which preserve their validity when
the free charge carriers in dielectric materials are taken into
account.

From the above one can see that at zero Matsubara
frequency the coinciding reflection coefficients R

(0,2,j )
TE with

j = 1, 3 are obtained in cases where the free charge carriers of
the dielectric materials 2 and 3 are either disregarded or taken
into account. In each case, however, the results for R

(0,2,1)
TE

depend on the model used for a description of Au. Just the
opposite situation holds for the coefficients R

(0,2,j )
TM calculated

at ζ0 = 0. Here, the results do not depend on the model of a
metal but differ depending on whether or not the free charge
carriers of dielectric materials are taken into account.

III. DISCRIMINATION BETWEEN DIFFERENT
THEORETICAL APPROACHES

Now we perform numerical computations of the differential
Casimir force, (2), in the configuration in Sec. II by using
Eqs. (3)–(5) and the explicit expressions for the reflection
coefficients at zero Matsubara frequency provided in Eqs. (15),
(16), (18), (19), and (21)–(24), obtained in the framework of
different theoretical approaches. The dielectric permittivities
εcor
k,l of Au and Si at the Matsubara frequencies were obtained

using the tabulated optical data for the complex index of
refraction [56,57] and the Kramers-Kronig relation following
Refs. [2] and [3]. For Au the values of the plasma frequency
ωp,1 ≈ 9 eV = 1.37 × 1016 rad/s and the relaxation parame-
ter γ1 ≈ 35 meV = 5.3 × 1013 rad/s have been used.

For P-doped Si the chosen concentration of free electrons
(n = 3.5 × 1018 cm−3) corresponds to the plasma frequency

ωp,2 = e

√
4πn

m∗ ≈ 2.1 × 1014 rad/s, (25)

where the effective electron mass is m∗ = 0.26me. The
chosen value of n corresponds also to the resistivity ρ2 =
(1.4 ± 0.1) × 10−2 � cm [58], i.e., ρ2 ≈ 1.55 × 10−14 s and
the conductivity σ2 ≈ 0.64 × 1014 s−1. If one models the
conductivity of P-doped Si at a fixed T = 300 K by means
of the Drude model, this value of conductivity leads to the
following relaxation parameter [59]:

γ2 = ω2
p,2

4πσ2
= 1

4π
ρ2ω

2
p,2 ≈ 5.5 × 1013 rad/s. (26)

Now we consider material 3, i.e., high-resistivity Si, whose
conductivity is lower than that of our P-doped Si by about
five orders of magnitude. If the free charge carriers in Si are
disregarded, materials 2 and 3 become identical and their
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FIG. 2. Differential Casimir forces computed at T = 300 K for
the configuration in Fig. 1 using the plasma model for Au with
free charge carriers in dielectric materials disregarded and taken into
account [top (red) pair of solid and dashed lines, respectively] and
using the Drude model for Au with free charge carriers in dielectrics
disregarded and included [bottom (blue) pair of solid and dashed
lines, respectively] are shown as functions of the separation. Inset:
Region of larger distances.

common dielectric permittivity is given by εcor
2,l . Note that

for Si εcor
2,0 ≈ 11.67. The inclusion of free charge carriers

for high-resistivity Si affects the dielectric permittivity only
at the zero Matsubara frequency and results in nonzero dc
conductivity. Now we take into account that according to
Eqs. (18) and (23) the reflection coefficient R

(0,2,3)
TE (0,y) takes

the same value irrespective of whether one includes or neglects
the contribution to the permittivity of free charge carriers in Si.
On the contrary, the value of the coefficient R

(0,2,3)
TM (0,y) does

depend on whether or not one includes the contribution of free
charge carriers in the P-doped Si overlayer [see Eqs. (15) and
(22)]. However, even in this case it does not depend on the
conductivity properties of high-resistivity Si.

The results of the computations for the differential Casimir
force, (2), at T = 300 K are presented in Fig. 2 as functions
of the separation in the range from 0.5 to 3 μm and, on an
enlarged scale, in the inset in the range from 3 to 5 μm. The top
pair of lines (solid and dashed) is computed using the plasma
model, (9), for Au. The free charge carriers in both the P-doped
and the high-resistivity Si are either disregarded according to
Eq. (13) (solid line) or taken into account according to Eq. (10)
(dashed line). In a similar way, the bottom pair of solid and
dashed lines is computed using the Drude model, (7), for Au.
Here, the solid line is again computed by disregarding the free
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FIG. 3. Differential Casimir forces computed at T = 300 K in the
configuration in Fig. 1 using the plasma model for Au with free charge
carriers in dielectric materials disregarded and taken into account [top
(red) pair of solid and dashed lines, respectively] and using the Drude
model for Au with free charge carriers in dielectrics disregarded and
included [bottom (blue) pair of solid and dashed lines, respectively]
are shown as functions of the overlayer thickness at a = 1 μm.

charge carriers in dielectric materials and the dashed line takes
these charge carriers into account.

As shown in Fig. 2, the four theoretical approaches
discussed in Sec. I lead to widely different predictions for
the differential Casimir force. They can be easily discrim-
inated experimentally keeping in mind that the sensitivity
of difference force measurements of this type is equal to
1 fN [43] or even a fraction of 1 fN [45]. Thus, for a =
1 μm use of the plasma model for Au results in F

p

diff ≈
138.54 fN and F

p,dc
diff ≈ 120.66 fN with free charge carriers

disregarded and included, respectively, in both the P-doped Si
overlayer and the high-resistivity Si (top pair of lines). If Au
is described by the Drude model and the free charge carriers
are either disregarded or included, one has FD

diff ≈ 66.37 fN
or F

D,dc
diff ≈ 48.50 fN, respectively (bottom pair of lines). It is

shown that the four theoretical predictions are approximately
18, 54, and 18 fN apart, i.e., the force intervals between them
far exceed the experimental sensitivity. Even for a = 2 μm we
have F

p

diff ≈ 28.07 fN and F
p,dc
diff ≈ 23.63 fN with free charge

carriers in Si materials disregarded and taken into account,
respectively, and FD

diff ≈ 7.71 fN and F
D,dc
diff ≈ 3.26 fN under

the same assumptions about the free charge carriers. Here, the
theoretical predictions are approximately 5, 16, and 4 fN apart,
i.e., again can be experimentally discriminated (see Sec. V for
additional information about errors and uncertainties in this
experiment).

In the above computations, a P-doped Si overlayer of d =
100 nm thickness has been used. It is interesting to determine
the dependence of Fdiff on d. In Fig. 3 the computational results
for the differential Casimir force at a = 1 μm, T = 300 K are
presented as a function of the overlayer thickness using the
four theoretical approaches described above (the top pair of
solid and dashed lines is computed using the plasma model for
Au with free charge carriers in Si disregarded and included,
respectively; the bottom pair of solid and dashed lines is
computed using the Drude model with free charge carriers
in Si either disregarded or included). As shown in Fig. 3,
the differential Casimir force decreases monotonously with

1 1.5 2 2.5 3 3.5 4. 4.5
0.0

0.5

1.0

1.5

2.0

2.5

a (µm)

lo
g 1

0
[F

d
iff

(f
N

)]

FIG. 4. Logarithm of the differential Casimir forces computed
at T = 300 K using the plasma and the Drude models for Au with
free charge carriers in dielectric materials disregarded is shown as
functions of the separation by the top (red) and bottom (blue) lines,
respectively. The middle (green) line shows common computational
results for the differential Casimir force at zero temperature.

increasing d, while the discrepancies between the theoretical
predictions of the different models are almost independent
of the thickness. This feature of the force makes a thicker
overlayer (for instance, d = 200 nm; see Sec. IV) preferable
because in this case the relative error in the determination of
d becomes negligibly small and therefore it does not influence
the value of Fdiff . A more detailed analysis of theoretical errors
is given in Sec. V.

Now we show that the proposed experiment not only
allows for an easy discrimination between the four theoretical
approaches described above, but can be used to measure the
thermal effect on Fdiff as well. First, we illustrate this statement
for the case of Au described by either the Drude or the plasma
model with free charge carriers in Si disregarded. In Fig. 4
the bottom (Drude model) and the top (plasma model) solid
lines are reproduced from Fig. 2 using a logarithmic scale
along the axis of Fdiff . The middle line in Fig. 4 shows
the computational results for Fdiff obtained at T = 0 K. For
perfect crystal lattices the relaxation parameter γ (T = 0) = 0,
so that the theoretical results obtained using the Drude and
plasma models coincide. For real metals, however, there is
some small residual relaxation γres(T = 0) �= 0. We have used
γres,1 = 1.2 × 10−6 eV for Au and obtained the same middle
line in Fig. 4 as given by the plasma model. Numerically, the
computational results turned out to be very close. For example,
at a = 0.5, 1.0 and 1.5 μm the differential Casimir forces
computed at T = 0 using the Drude and the plasma models
are equal to 643.11 and 643.86, 124.96 and 125.19, and 43.64
and 43.76 fN, respectively.

As shown in Fig. 4, at separations a = 0.5, 1.0, 1.5, 2.0,
and 2.5 μm the thermal correction in Fdiff ,

�T Fdiff(a,T ) = Fdiff(a,T ) − Fdiff(a,0), (27)

computed using the Drude model (i.e., the difference between
the bottom and the middle lines) is equal to −213.28,
−58.59, −24.50, −12.34, and −6.5 fN, respectively. Note
that the quantity Fdiff(a,0) in Eq. (27) is computed by the
zero-temperature Lifshitz formula [2,7], where one makes an
integration over the continuous frequency ζ instead of a sum-
mation over the discrete Matsubara frequencies ζl and uses the
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FIG. 5. Thermal corrections to the differential Casimir forces at
T = 300 K computed using the plasma model for Au with free charge
carriers in dielectric materials disregarded and taken into account [top
(red) pair of solid and dashed lines, respectively] and using the Drude
model for Au with free charge carriers in dielectrics disregarded and
included [bottom (blue) pair of solid and dashed lines, respectively]
are shown as functions of the separation. Inset: Region of larger
distances.

zero-temperature values of all involved dielectric permittivi-
ties. The thermal correction in Fdiff computed using the plasma
model (i.e., the difference between the top and the middle lines)
is equal to 18.3, 13.35, 10.11, 7.95, and 6.42 fN. In all these
cases the magnitudes of the thermal effect are far greater than
the experimental sensitivity.

In Fig. 5 we present the computational results for the
thermal correction, (27), as functions of separation at T =
300 K using the four theoretical approaches described above.
The top pair of solid and dashed lines is computed using the
plasma model for Au with free charge carriers of dielectrics
omitted and included, respectively. The bottom pair of solid
and dashed lines is also computed by disregarding and
including the free charge carriers in dielectrics, but describing
Au with the Drude model. The thermal corrections presented
by the top and bottom solid lines (the plasma and Drude models
for Au with omitted charge carriers in dielectrics) have been
discussed above on the basis of Fig. 4. The thermal correction
shown by the bottom dashed line (the Drude model for Au
with free charge carriers in dielectrics included) can be easily
observed over the separation range from 0.5 to 2.5 μm and
discriminated from the bottom solid line. As for the thermal
correction shown by the top dashed line (the plasma model for
Au with free charge carriers in dielectrics included), it can be
observed within the separation range from 0.5 to 0.9 μm.

It is instructive to separate the thermal correction to the
differential force, (27), into two parts:

�T Fdiff(a,T ) = �
(1)
T Fdiff(a,T ) + �

(2)
T Fdiff(a,T ). (28)

Here, we have introduced the notations

�
(1)
T Fdiff(a,T ) = F̃diff(a,T ) − Fdiff(a,0),

�
(2)
T Fdiff(a,T ) = Fdiff(a,T ) − F̃diff(a,T ), (29)

where F̃diff(a,T ) is calculated by Eq. (3) at T = 300 K, but
with the zero-temperature values of all dielectric permittivities.
From Eq. (29) it is clear that �

(1)
T Fdiff represents the contribu-

tion to the thermal correction caused by a summation over the
discrete Matsubara frequencies, whereas �

(2)
T Fdiff originates

from the explicit dependence of dielectric permittivities on the
temperature as a parameter.

At the end of this section, we briefly discuss the role of each
of the two contributions to the thermal correction in the four
theoretical models. If Au is described by the plasma model
and free charge carriers in dielectrics are disregarded, it holds
that

�T F
p

diff(a,T ) = �
(1)
T F

p

diff(a,T ) > 0 (30)

because in this case all dielectric permittivities are temperature
independent.

If Au is described by the plasma model and free charge
carriers in dielectrics are taken into account, we have

�
(1)
T F

p,dc
diff (a,T ) = �T F

p

diff(a,T ),

�
(2)
T F

p,dc
diff (a,T ) < 0. (31)

Note that the correction �
(2)
T F

p,dc
diff is given by the difference

between the top dashed and the top solid lines in Fig. 5. For
example, at separations of 0.5 and 1 μm �

(2)
T F

p,dc
diff is equal to

–64.1 and –17.1 fN, respectively.
If Au is desctibed by the Drude model and the free

charge carriers in dielectrics are disregarded, the dominant
contribution to �T FD

diff is given by

�
(1)
T FD

diff(a,T ) < 0. (32)

The much smaller thermal correction �
(2)
T FD

diff originates from
the difference in the values of the relaxation parameter
of Au at T = 0 vs T = 300 K. As an example, one has
�

(1)
T FD

diff = −207.0 fN, �
(2)
T FD

diff = −7.0 fN at a = 0.5 μm
and �

(1)
T FD

diff = −58.0 fN, �
(2)
T FD

diff = −0.8 fN at a = 1 μm.
Finally, if Au is described by the Drude model and the

free charge carriers in dielectrics are taken into account, one
obtains

�
(1)
T F

D,dc
diff (a,T ) = �

(1)
T FD

diff(a,T ),

�
(2)
T F

p,dc
diff (a,T ) < 0. (33)

The latter correction contributes significantly to the total ther-
mal correction. For example, at a = 0.5 and 1 μm �

(2)
T F

D,dc
diff

is equal to –71.1 and –18.0 fN.

IV. EXPERIMENTAL TEST WITH AN ADDITIONAL
SILICA LAYER

The experimental scheme discussed above (see Fig. 1)
allows for good discrimination between the four theoretical
approaches and for measurement of the thermal effect in the
differential Casimir force. However, a practical drawback of
this scheme is that it is not easy to produce the structured
plate considered in this experiment. Specifically, even a small
step between the plate sections made of high-resistivity Si
and Au leads to considerable uncertainties in the theoretical
predictions [50]. To avoid this problem and simultaneously
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SiO2

Si
(high-resistivity)

Au

FIG. 6. The experimental configuration of a Au sphere moving
back and forth above a structured plate with an additional SiO2 layer.
The P-doped Si overlayer is in the dielectric state. The measured
quantity is the differential Casimir force Fdiff between the Au sphere
and the two halves of the plate when the sphere bottom is far away
from their boundaries. The figure displays the two extreme positions
of the sphere during its motion. The size of the sphere is not shown
to scale.

increase the relative difference between the different theoret-
ical predictions, we consider a slightly different experimental
scheme. In the modified setup, the left section of the structured
plate below the overlayer contains an additional layer made
of SiO2 (later denoted material 4) of thickness D followed
by bulk high-resistivity Si (previously denoted material 3).
The modified experimental scheme is shown in Fig. 6. An
advantage of the modified structured plate is that it can be
manufactured from a commercial wafer of Si grown on an
insulator (SiO2), i.e., a Si plate with a buried SiO2 layer,
following the procedure described in Refs. [2] and [32].

The Lifshitz-type formula, (3), for the differential Casimir
force preserves its validity with the replacement

R(0,2,3)
α (iζl,y) → R(0,2,4,3)

α (iζl,y), (34)

where R(0,2,4,3)
α (iζl,y) denotes the reflection coefficient of the

modified left half of the plate in Fig. 6, which now consists of
the Si overlayer, covering the plate sections made of SiO2 and
high-resistivity Si:

R(0,2,4,3)
α (iζl,y)

= r (0,2)
α (iζl,y) + R(2,4,3)

α (iζl,y)e−d
√

y2+(ε2,l−1)ζ 2
l /a

1 + r
(0,2)
α (iζl,y)R(2,4,3)

α (iζl,y)e−d
√

y2+(ε2,l−1)ζ 2
l /a

.

(35)

Here, the reflection coefficient R(2,4,3)
α (iζl,y) of the SiO2 and

Si sections of the plate is given by

R(2,4,3)
α (iζl,y)

= r (2,4)
α (iζl,y) + r (4,3)

α (iζl,y)e−D
√

y2+(ε4,l−1)ζ 2
l /a

1 + r
(2,4)
α (iζl,y)r (4,3)

α (iζl,y)e−D
√

y2+(ε4,l−1)ζ 2
l /a

.

(36)

Note that the coefficients r
(k,j )
α are defined by Eq. (6) with the

appropriately chosen upper indices.
Now we consider the behavior of the reflection coefficient,

(35), at zero Matsubara frequency. It is easily seen that,

irrespective of how one models the free charge carriers in
the dielectric materials, it holds that

R
(0,2,4,3)
TE (0,y) = 0. (37)

If the free charge carriers in the dielectric materials are
taken into account, one obtains

R
(0,2,4,3)
TM (0,y) = 1. (38)

The case of the TM reflection coefficient with free charge car-
riers in dielectric materials disregarded is the most interesting.
In this case from Eq. (35) one arrives at

R
(0,2,4,3)
TM (0,y) = r

(0,2)
TM,0 + R

(2,4,2)
TM (0,y)e−dy/a

1 + r
(0,2)
TM,0R

(2,4,2)
TM (0,y)e−dy/a

, (39)

where r
(0,2)
TM,0 is defined in Eq. (15). The reflection coefficient

R
(2,4,2)
TM (0,y) is given by

R
(2,4,2)
TM (0,y) = r

(2,4)
TM,0

1 − e−Dy/a

1 − r
(2,4)
TM,0

2
e−Dy/a

, (40)

where

r
(2,4)
TM,0 = εcor

4,0 − εcor
2,0

εcor
4,0 + εcor

2,0

, (41)

and we have used the obvious identity

r
(4,2)
TM,0 = −r

(2,4)
TM,0. (42)

Numerical computations of the differential Casimir force
were made using Eqs. (3) and (34)–(41). The dielectric
permittivity of SiO2 with disregarded free charge carriers,
εcor

4,l , is approximated to a high accuracy by the Ninham-
Parsegian representation, which takes into account the effects
of electronic and ionic polarization [60,61]. The oscillator
parameters have been determined from a fit to optical data.
The static dielectric permittivity of SiO2 is εcor

4,0 ≈ 3.81.
Similarly to the case of high-resistivity Si, accounting for
free charge carriers in SiO2 affects the dielectric permittivity
only at the zero Matsubara frequency and results in some dc
conductivity. Taking into consideration that due to Eq. (37)
the coefficient R

(0,2,4,3)
TE (0,y) does not depend on the inclusion

or neglect of free charge carriers, their impact is determined
by the coefficient R

(0,2,4,3)
TM (0,y) in accordance with Eqs. (38)

and (39).
Computations have been performed at T = 300 K taking

the value of d = 200 nm for the thickness of the P-doped
overlayer and the value of D = 400 nm for the thickness of
the SiO2 layer. The computational results for the differential
Casimir force are presented in Fig. 7 as functions of the
separation by the four lines, corresponding to the four
theoretical approaches (the top pair of solid and dashed lines
is computed using the plasma model for Au with free charge
carriers in all dielectric materials disregarded and taken into
account, respectively, whereas the bottom pair of lines is
obtained using the Drude model for Au and the same options
for free charges in dielectrics).

As shown in Fig. 7, all four theoretical approaches lead
to widely distinct differential Casimir forces, which can
be discriminated experimentally with certainty within the
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FIG. 7. Differential Casimir forces computed at T = 300 K in
the configuration with an additional SiO2 layer (Fig. 6) using the
plasma model for Au with free charge carriers in dielectric materials
disregarded and taken into account [top (red) pair of solid and dashed
lines, respectively] and using the Drude model for Au with free charge
carriers in dielectrics disregarded and included [bottom (blue) pair of
solid and dashed lines, respectively] are shown as functions of the
separation.

separation region from 0.5 to 2 μm. The computational results
for the differential Casimir forces computed using the four
theoretical approaches over the separation region from 0.5
to 3 μm are listed in Table I. The first column contains the
separation value. The second and third columns list the values
of F

p

diff and F
p,dc
diff computed using the plasma model for Au

with free charge carriers of dielectric materials disregarded and
taken into account, respectively. The fourth and fifth columns
present the values of FD

diff and F
D,dc
diff obtained using the Drude

model for Au with free charge carriers of dielectric materials
disregarded and taken into account, respectively.

According to Table I, at a = 0.5 μm the differences
between the predicted values F

p

diff and F
p,dc
diff , between F

p,dc
diff

and FD
diff , and between FD

diff and F
D,dc
diff are equal to 80.22, 92.06,

and 80.17 fN, respectively. At a = 1.0 and 1.6 μm the same
differences are equal to 21.98, 38.86, and 21.98 and to 8.49,
19.06, and 8.48 fN, respectively. All these values are far in
excess of the experimental sensitivity.

If the plasma model for Au is used in computations, the
relative deviation of the differential Casimir force obtained
with free charge carriers in dielectrics disregarded from that
found with taken free charge carriers into account is

δF
p

diff ≡ F
p

diff − F
p,dc
diff

F
p,dc
diff

. (43)

From Table I one obtains that δF
p

diff = 20.3%, 22.8%, and
24.7% at separations a = 0.5, 1.0, and 1.6 μm, respectively.
The analogous deviation between the next two theoretical

TABLE I. Values of the differential Casimir force computed at
T = 300 K in the configuration with an additional SiO2 section using
the plasma model for Au with free charge carriers in dielectric
materials disregarded and taken into account (columns 2 and 3,
respectively) and using the Drude model for Au with free charge
carriers in dielectrics disregarded and included (columns 4 and 5,
respectively) are listed at different separations (column 1).

a (μm) F
p

diff (fN) F
p,dc
diff (fN) F D

diff (fN) F
D,dc
diff (fN)

0.5 474.57 394.35 302.29 222.12
0.6 336.31 278.28 202.96 144.96
0.7 248.13 204.43 141.86 98.18
0.8 189.07 155.13 102.39 68.46
0.9 147.94 120.90 75.88 48.86
1.0 118.36 96.38 57.52 35.54
1.2 80.00 64.72 34.94 19.67
1.4 57.27 46.10 22.56 11.40
1.6 42.87 34.38 15.32 6.84
1.8 33.26 26.61 10.86 4.21
2.0 26.56 21.22 7.98 2.64
2.2 21.72 17.34 6.07 1.68
2.4 18.11 14.46 4.74 1.09
2.6 15.36 12.26 3.80 0.71
2.8 13.20 10.55 3.12 0.46
3.0 11.48 9.19 2.61 0.31

approaches, defined as

δF
p,dc;D
diff ≡ F

p,dc
diff − FD

diff

FD
diff

, (44)

is equal to 30.4%, 67.6%, and 124.4% at the same respective
separations. Finally, the relative deviation of FD

diff from F
D,dc
diff

is given by

δFD
diff ≡ FD

diff − F
D,dc
diff

F
D,dc
diff

. (45)

At separation distances a = 0.5, 1.0, and 1.6 μm one
obtains from Table I δFD

diff = 36.1%, 61.8%, and 124.0%,
respectively. As for the relative deviation between the extreme
two approaches, namely, the one which disregards both the
relaxation properties of electrons in metals and the free charge
carriers in dielectrics and the other which, instead, takes both
into account, it is defined as

δF
p;D,dc
diff ≡ F

p

diff − F
D,dc
diff

F
D,dc
diff

. (46)

From Table I one obtains that δF
p;D,dc
diff = 113.6%, 233%,

and 526.8% at the same respective separations. One can con-
clude that all the above relative deviations are sufficiently large
for experimental discrimination between different theoretical
approaches and all of them quickly increase with increasing
separation.

We have also computed the thermal correction, (27), in
the differential Casimir force in the configuration in Fig. 6 in
the framework of the four theoretical approaches described
above. The computational results at T = 300 K are shown in
Fig. 8 as functions of the separation. The top pair of solid
and dashed lines is obtained by using the plasma model for
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FIG. 8. Thermal corrections to the differential Casimir forces
computed at T = 300 K in the configuration with an additional SiO2

layer using the plasma model for Au with free charge carriers in
dielectric materials disregarded and taken into account [top (red) pair
of solid and dashed lines, respectively] and using the Drude model for
Au with free charge carriers in dielectrics disregarded and included
[bottom (blue) pair of solid and dashed lines, respectively] are shown
as functions of the separation.

Au with free charge carriers in dielectrics disregarded and
taken into account, respectively. The bottom pair of solid
and dashed lines is computed by means of the Drude model
for Au with respective neglect and inclusion of free charge
carriers in dielectric materials. As can be seen in Fig. 8,
over the separation range from 0.5 to 2 μm the thermal
corrections predicted by the four theoretical approaches are
significantly different and can be easily discriminated from
each other taking into account the experimental sensitivity.
Thus, at separations a = 0.5, 1.0, 1.5, and 2.0 μm the thermal
correction using the plasma model with omitted conductivity
of dielectrics, �T F

p

diff , is equal to 16.0, 12.1, 9.4, and
7.6 fN, respectively. In a similar way, for the remaining three
theoretical approaches one has

�T F
p,dc
diff = −64.9, − 10.0, − 0.3, 2.2 fN,

�T FD
diff = −156.3, − 48.8, − 21.4, − 11.0 fN, (47)

�T F
D,dc
diff = −237.2, − 70.8, − 31.1, − 16.4 fN

at the same respective separations.

V. ESTIMATION OF THEORETICAL ERRORS

Here, we present an estimation of errors inherent to the
above computations. As mentioned in Sec. III, a conservative
estimation of the minimum detectable force in experiments of
this type is �F

expt
diff = 1 fN. The total theoretical error in the

determination of Fdiff is contributed by several independent
components and depends on the separation.

We begin with a possible error in the concentration of free
charge carriers in the P-doped overlayer δn = 5% (see Fig. 6).
This error does not influence the computed values of FD

diff and
F

p

diff when the free charge carriers in dielectric materials are

disregarded but leads to the following errors if the free charge
carriers are taken into account:

δnF
D,dc
diff (a1) ≈ 0.14%, δnF

D,dc
diff (a2) ≈ 0.15%,

δnF
p,dc
diff (a1) ≈ 0.08%, δnF

p,dc
diff (a2) ≈ 0.02%, (48)

where we present the values of errors at a1 = 0.5 μm and
a2 = 2 μm. These results were obtained by repeating the
computations in Sec. IV with ñ = n ± 0.05n.

The second error source in theoretical values of the
differential Casimir force is uncertainty in the thickness of the
SiO2 layer. For a commercial Si wafer �D = 2 nm, leading
to δD = 0.5% in our case. This leads to the following relative
errors in our computational results:

δDFD
diff(a1) ≈ 0.05%, δDFD

diff(a2) ≈ 0.075%,

δDF
p

diff(a1) ≈ 0.03%, δDF
p

diff(a2) ≈ 0.05%, (49)

δDF
D,dc
diff (a1) ≈ 0.04%, δDF

D,dc
diff (a2) ≈ 0.06%,

δDF
p,dc
diff (a1) ≈ 0.02%, δDF

p,dc
diff (a2) ≈ 0.008%.

The third source of theoretical errors is the error in the
thickness of the Si overlayer δd = 2 nm, i.e., δd = 1%,
resulting in

δdF
D
diff(a1) ≈ 1.3%, δdF

D
diff(a2) ≈ 0.5%,

δdF
p

diff(a1) ≈ 1.05%, δdF
p

diff(a2) ≈ 0.5%, (50)

δdF
D,dc
diff (a1) ≈ 1.6%, δdF

D,dc
diff (a2) ≈ 1.1%,

δdF
p,dc
diff (a1) ≈ 1.1%, δdF

p,dc
diff (a2) ≈ 0.3%.

All these errors are random quantities characterized by a
uniform distribution. In this case the total relative error is
obtained by a summation of the respective errors, (48)–(50)
[2,62]:

δtotF
D
diff(a1) ≈ 1.4%, δtotF

D
diff(a2) ≈ 0.6%,

δtotF
p

diff(a1) ≈ 1.1%, δtotF
p

diff(a2) ≈ 0.6%, (51)

δtotF
D,dc
diff (a1) ≈ 1.8%, δtotF

D,dc
diff (a2) ≈ 1.3%,

δtotF
p,dc
diff (a1) ≈ 1.2%, δtotF

p,dc
diff (a2) ≈ 0.3%,

There is one more theoretical uncertainty originating from
errors in the dielectric permittivities. At separations in the
micrometer range, errors in the optical data do not lead to
noticeable errors in the differential Casimir force. However,
depending on the properties of a specific Au sample and
its preparation process, the minimum possible value of the
plasma frequency of Au was found to be ωmin

p,1 ≈ 6.8 eV
[63,64]. The corresponding value of the relaxation parameter is
γ min

1 ≈ 0.02 eV. In fact, different values of ωp,1 in the interval
from 6.8 to 9.0 eV cannot be considered as random values
of the measured quantity because they correspond to different
samples. It would be preferable to determine the value of ωp

for the specific sample used in measurements of the Casimir
force as done in Refs. [22] and [23]. However, for illustrative
purposes, here we present the relative deviations of the value
of Fdiff which would be obtained upon using for the plasma
frequency the value ωmin

p,1 instead of the value ωp,1 = 9.0 eV
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that was used above:

δωp
FD

diff(a1) ≈ −0.7%, δωp
FD

diff(a2) ≈ −0.03%,

δωp
F

p

diff(a1) ≈ −1.5%, δωp
F

p

diff(a2) ≈ −0.6%,

δωp
F

D,dc
diff (a1) ≈ −1.3%, δωp

F
D,dc
diff (a2) ≈ −0.8%,

δωp
F

p,dc
diff (a1) ≈ −0.6%, δωp

F
p,dc
diff (a2) ≈ −0.85%. (52)

Some other effects which may influence the value of the
differential force are the surface roughness and electrostatic
patches. However, as noted in Refs. [40,42,50,51,65], the
effect of patches is strongly suppressed in the differential force,
whereas the effect of roughness is negligible in the micrometer
separation range [2,3,41]. Note that in comparisons between
the measurement data and theory in the proposed experiment
one should correct the theoretical values in Table I for
deviations from the proximity force approximation used in
Eq. (3). This correction can be estimated as about –0.2% of
Fdiff [24,53–55].

From Eqs. (51) and (52) it is seen that even taking into
account all possible errors and uncertainties the theoretical
predictions of the four approaches discussed above differ
considerably and can be easily discriminated by performing
the proposed experiment.

VI. DISCUSSION AND CONCLUSIONS

In the foregoing, we have suggested a universal setup
allowing us to directly measure the thermal effect in the
Casimir force and to determine the role of free charge carriers
in both metallic and dielectric materials, in a single experiment.
According to our results, these aims can be achieved by
measuring the differential Casimir force between a Au-coated
sphere moving back and forth above a structured plate covered
with a conductive overlayer. One half of the plate is made
of high-resistivity dielectric materials, while the other half is
made of Au. The main novel feature of this setup is that the con-
ductive overlayer is made of a doped semiconductor (P-doped
Si in our case) whose concentration of free charge carriers
is only slightly below the critical one, where the dielectric-
to-metal phase transition occurs. Thus, the overlayer is made
of a dielectric material possessing a rather high conductivity
at room temperature, allowing for the electrostatic calibration
required in precise measurements of the Casimir force.

We have considered two versions of the structured plate
where the dielectric section is made either of bulk high-
resistivity Si or of a layer of SiO2 followed by bulk high-
resistivity Si. In both cases the differential Casimir force
was calculated over the separation region from 0.5 μm to
a few micrometers, i.e., in the domain where thermal effects
determined by the zero-frequency term in the Lifshitz formula
contribute considerably.

Computations have been performed within the four
theoretical approaches discussed in the literature, i.e., Au at

low frequencies is described by the plasma model and the
free charge carriers in all dielectric materials (including the
P-doped Si) are either disregarded or taken into account or Au
at low frequencies is described by the Drude model and the
free charge carriers in all dielectric materials are again either
disregarded or taken into account. We have also calculated
the dependence of all differential forces on the thickness of
the P-doped Si overlayer, determined the thermal contribution
to the differential Casimir force at different separations, and
estimated all related errors and uncertainties.

The obtained results allow us to conclude that all four
theoretical approaches lead to significantly different values
of the differential Casimir force in the micrometer separation
range, which are many times larger than both the experimental
and the theoretical errors. Thus, the proposed experiment is
capable of providing an unequivocal confirmation of one of
the above theoretical models and rule out the other three.
Our calculation results show that the thermal effect in the
differential Casimir force is up to two and one orders of
magnitude larger than the minimum detectable signal when the
Drude and plasma models are used, respectively. Because of
this, the proposed experiment not only can lead to confirmation
of one of the models, but also allows reliable measurement of
the thermal contribution to the observed signal.

One may guess which of the four above theoretical
approaches has the best chances of being confirmed. As
discussed in Sec. I, previous experiments with metallic test
bodies [20–26,43] are in agreement with the plasma model and
exclude the Drude model, whereas only the experiment [28]
leads to the opposite conclusion. Concurrently, several other
experiments performed with dielectric test bodies [31–35] are
in agreement with theory disregarding the free charge carriers
and exclude theory taking the free charge carriers into account.
On this basis, it is reasonable to expect that the proposed
universal experiment may confirm the theoretical prediction
F

p

diff obtained using the plasma model at low frequencies for
Au with free charge carriers in dielectric materials disregarded.
It should be emphasized, however, that almost all of the
above-mentioned experiments (with the exception of only
Refs. [28] and [31]) are most precise at separations below
0.5 μm and use quite distinct experimental setups. This allows
us to conclude that the proposed universal experiment, which
is capable of determining the role of free charge carriers
in the Casimir force between any materials and measuring
the thermal effect in the micrometer separation range, will
bring challenging results for the theory of electromagnetic
fluctuations.
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