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Full self-consistency in the Fermi-orbital self-interaction correction
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The Perdew-Zunger self-interaction correction cures many common problems associated with semilocal density
functionals, but suffers from a size-extensivity problem when Kohn-Sham orbitals are used in the correction.
Fermi-Löwdin-orbital self-interaction correction (FLOSIC) solves the size-extensivity problem, allowing its use
in periodic systems and resulting in better accuracy in finite systems. Although the previously published FLOSIC
algorithm Pederson et al., J. Chem. Phys. 140, 121103 (2014). appears to work well in many cases, it is not
fully self-consistent. This would be particularly problematic for systems where the occupied manifold is strongly
changed by the correction. In this paper, we demonstrate a different algorithm for FLOSIC to achieve full
self-consistency with only marginal increase of computational cost. The resulting total energies are found to be
lower than previously reported non-self-consistent results.
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I. INTRODUCTION

The Kohn-Sham [1] (KS) density-functional theory [1–3]
(DFT) is a widely used computational method in physics
and chemistry. To perform a DFT calculation, one needs to
approximate the so-called exchange-correlation (XC) energy, a
functional of the electronic density. Most of the available
approximations are semilocal approximations, where the XC
energy density at a certain point only depends on the density
and derivatives of the density at that point. These approxima-
tions have been extensively used thanks to their computational
efficiency and they generally work well, but they all contain
the self-interaction error (SIE), which means that the sum
of the Hartree interaction energy and the approximated XC
energy does not properly vanish for all one-electron systems.
SIE causes a wide range of problems, such as the XC
potential decaying too fast asymptotically, the orbital energies
of occupied orbitals lying too high in a nonsystematic way, and
the total energy varying in a strongly nonlinear way between
adjacent integer electron numbers. These problems show up
in DFT calculations as missing Rydberg states, misordering
of states for some systems, incorrect description of stretched
bonds, problems with band gaps, unstable anions, and similar
uncertainties in modeling processes that depend upon such
phenomena.

The self-interaction correction [4] (SIC), proposed by
Perdew and Zunger (PZ), cures these problems by introducing
orbital-dependent corrections to the XC energy functional,

ESIC
XC [n↑,n↓] = EXC[n↑,n↓] −

∑
σ

Nσ∑
i

{U [niσ ] + EXC[niσ ,0]},
(1)

where σ is the spin index, Nσ is the number of occupied
orbitals of spin σ , and niσ = |ψiσ |2 is the orbital density of
the KS orbital ψiσ . Equation (1) can be directly applied to
any XC energy functional and, in principle, an approximated
density functional could be developed within a systematic
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self-interaction-corrected formalism. The correction vanishes
when EXC is the exact XC functional. Equation (1) corrects
the SIE, but it can also deviate from the KS scheme of
DFT, which only allows a local multiplicative potential for
the system. While through the optimized effective potential
(OEP) [5,6] technique the SIC calculation can be done within
the KS scheme [7], the cost of doing so can outweigh the
benefit. Also, a recent study [8] supports the conclusion that
properties such as the band gap are inherently inaccurate
in the KS scheme, so there is less reason to use the OEP
procedure in practical calculations. The commonly used SIC
functional is thus defined in the generalized KS scheme [9].
The computational cost of PZSIC is higher than that of regular
DFT since the problem has yet to be reduced to a simple
eigenvalue problem.

PZSIC works well for small molecules, but there is a flaw
that the correction for extended systems can vanish in the
bulk limit [4] if the SIC energy is evaluated naively with KS
orbitals. The reason is easy to see. For periodic systems, the
KS orbitals all contain a normalization constant of 1/

√
Vcrystal.

When using KS orbitals in Eq. (1), the magnitude of the
correction per electron decreases as the size of the crystal
increases, and eventually vanishes in the limit of an infinitely
large crystal. The problem also shows up in stretched bonds
and other situations [10]. This is the so-called size-extensivity
problem, in which the energy of separated fragments does
not equal the sum of energies of the fragments as it should.
For this reason, Perdew and Zunger suggested that the SIC
functional could be constructed in terms of a set of possibly
localized orbitals that minimize the SIC energy. However, this
only solves the problem when each SIC term in the energy
is negative [4] after localization. This is a problem with the
original PZSIC formulation.

The total energy of a regular DFT calculation is invariant
with respect to unitary rotations of KS orbitals, but this is
no longer the case for SIC calculations since the SIC term
depends explicitly on orbitals. By applying a unitary rotation
that transforms occupied KS orbitals to localized orbitals, one
can often lower the energy and achieve a finite correction in
periodic systems. Localization schemes have been explored
thoroughly by the Lin group [11–14], where the localized
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orbitals that minimize the energy are obtained by solving the
following localization equation [12,13]:

〈φjσ |V SIC
jσ − V SIC

iσ |φiσ 〉 = 0, (2)

together with the KS-SIC equation of localized orbitals,

(
Ĥ KS

σ + V SIC
iσ

)
φiσ =

Nσ∑
j

λjiσ φjσ , (3)

where φ denotes a localized orbital, σ is the spin index,
V SIC

iσ (r) = −δ{U [n] + EXC[n,0]}/δn(r)|n(r)=|φiσ (r)|2 for occu-
pied orbitals, and V SIC

iσ (r) = 0 for virtual orbitals. We denote
the canonical orbitals as ψ , which diagonalize the Lagrange
multiplier matrix λσ (the diagonal elements are orbital energies
in SIC) and are the analog of KS orbitals in SIC. The sets of
ψ and φ are related to each other by a unitary transformation.
Equation (3) can also be formulated in terms of canonical
orbitals, but it is computationally preferable to solve for the
localized orbitals directly instead of calculating the canonical
orbitals first. The set of localized orbitals that satisfies Eqs. (2)
and (3) is not unique, and in practice one has to be careful
in choosing the initial guess when solving these equations
to avoid converging to a local minimum. The localization
equation method works generally well, but the computation
cost is prohibitively high, as it scales as O(N6) in the small-N
limit [15]. As a comparison, the coupled cluster singles doubles
(CCSD) [16] method has a similar scaling, but it is typically
more accurate than DFT methods. Therefore, the localization
equation method has only been applied to small systems and
it has little advantage compared to methods of similar scaling.

The Fermi-Löwdin-orbital (FLO) SIC [15] is a recently
proposed localization scheme, which circumvents the need for
solving Eq. (2). Instead of searching over all possible unitary
transformations to minimize the energy, FLOSIC restricts the
transformation to a very specific form, where the localized
orbitals are derived directly from the so-called Fermi orbitals,

φFO
iσ (r) = nσ (aiσ ,r)√

nσ (aiσ )
, (4)

where nσ (aiσ ,r) = ∑Nσ

j ψ∗
jσ (aiσ )ψjσ (r) is the single-particle

density matrix of the KS system, and aiσ is the Fermi
orbital descriptor (FOD). The localized orbitals {φiσ } are
the Löwdin-orthogonalized [13,17] Fermi orbitals {φFO

iσ }.
The unitary transformation between canonical orbitals and
localized orbitals is determined with only Nσ parameters (aiσ )
instead of N2

σ parameters (the unitary transformation matrix).
The FODs can be seen as quasiclassical electron positions and
they usually can be reliably guessed based on physical and
symmetry arguments. Therefore, even though the set of FODs
that minimizes the energy can also be nonunique, the situation
is much better than in the localization equation method.

Motivated by earlier work [11], the FLOSIC calculation in
its original paper (Ref. [15]) is realized by adding an extra
matrix to the Kohn-Sham Hamiltonian Ĥ KS

σ and diagonalizing
the resulting matrix Ĥσ :

Ĥσ = Ĥ KS
σ +

Nσ∑
ij

V
(iσ )
ij + V

(jσ )
ij

2
|φiσ 〉〈φjσ |, (5)

where V
(iσ )
ij = 〈φiσ |V SIC

iσ |φjσ 〉. This physically motivated Her-
mitian Hamiltonian contains most of the effects due to the
self-interaction-corrected functional and has been shown to
yield canonical-orbital eigenvalues that are not too different
from the exact canonical-orbital eigenvalues used in earlier
versions of SIC, but it is an approximation [13,14]. This algo-
rithm has the advantage of its simplicity for implementation
since the problem remains an eigenvalue problem. However,
transforming the orbital-dependent SIC to a regular eigenvalue
problem introduces non-self-consistency, which is evident
from Eq. (5): the canonical orbitals obtained from solving
Eq. (5) are restricted inside the occupied Hilbert space of the
previous self-consistent-field (SCF) iteration. Even though the
orbitals can still drift away from the initially occupied space
since Ĥ KS

σ changes between SCF iterations due to density
change, the algorithm is not fully self-consistent (SC).

While non-SC FLOSIC energies, including cohesive en-
ergies, are often quite accurate if wave functions from a
nearly identical functional are used, SC FLOSIC is needed
to make sure that the results are reliable in difficult cases
such as molecular magnets [18], and to have a Hellmann-
Feynman theorem which allows for the efficient optimization
of molecular and unit-cell geometries.

The noninteracting spin-density matrix nσ (r′,r) is the
matrix in the position representation of the projection operator
onto the space or manifold of the occupied orbitals of
spin σ . Thus it is invariant under unitary transformation
of those orbitals. We can calculate the total energy from
nσ (r′,r), and we can also find the electron spin density
nσ (r) = nσ (r,r) from its diagonal. We will exploit these facts
here to find the optimized FLOs for a given set of FODs
directly. Before the first iteration, we will have approximate
canonical occupied orbitals, which generate a set of initial
FLOs, and canonical unoccupied orbitals. Then we will mix
the occupied and unoccupied orbitals to lower the SIC energy,
with a reconstruction of localized FLOs after each iteration.
We will not need to generate canonical occupied orbitals after
the iteration begins, but they can be obtained easily if needed.

II. ALGORITHM

In this work, we set out to find the SC solution of Eq. (3),
where the localized orbitals are constrained to be symmetri-
cally orthogonalized Fermi orbitals, which are referred to as
Fermi-Löwdin orbitals (FLOs). Both the localized orbitals and
the Lagrange multiplier matrices need to be determined. Since
the Lagrange multiplier matrices are, in principle, different
for Hamiltonians defined by different orbitals, solving Eq. (3)
directly would mean determining N3

σ variables for a given
set of FODs. Even though we only need to determine Nσ

parameters in the FLOSIC method instead of N2
σ parameters

in the localization equation method, the computational cost is
still very high. Instead of trying to solve Eq. (3) directly, we
develop a Jacobi-like method for solving Eq. (3) iteratively.
Even though we employ several approximations to reduce the
computational cost, the final result obtained from the iterative
procedure remains an exact solution of Eq. (3) within the
chosen basis set.

In the following, we represent all matrices in the basis
set formed by the FLOs (indexed 1 to Nσ ) and the virtual
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Initial guess for FODs

Calculate FODs

Calculate FOs and orthogonalize

Calculate H̃

Rotate the orbitals ac-
cording to Eq. (11) and
(12)

Eq. (8) sat-
isfied?

Density con-
verged?

Calculate forces on FODs

Force converged?

Finish

no

(1)

yes

no

(2)

yes

no

(3)

yes

FIG. 1. Flowchart of the SC-FLOSIC algorithm presented in this
work. Loop (1) solves for the localized orbitals. Loop (2) is the regular
SCF loop. Loop (3) minimizes the total energy with respect to the
FODs.

KS orbitals (indexed Nσ + 1 to M , with M being the size of
the basis set) of the previous SCF iteration, all of which are
denoted as φiσ . Note that all φiσ ’s are orthogonal to each other.
The FLOs are calculated with predetermined FODs, which are
fixed during the SCF loop (refer to Fig. 1). The Hamiltonian
matrix of occupied orbital iσ in this representation would be

H (iσ )
mn = 〈φmσ |H KS

σ + V SIC
iσ |φnσ 〉. (6)

To reduce the amount of calculations needed, instead of
calculating Eq. (6) exactly, we construct a matrix for the
operator H̃σ ,

H̃mnσ = 〈φmσ |H KS
σ + V SIC

mσ |φnσ 〉, (7)

so that the ith row of H̃σ is the same as the ith row of H (iσ ).
According to Eq. (3), the upper-left Nσ × Nσ corner of H̃σ is
the transpose of the Lagrange multiplier matrix λσ .

We have the following relations if the group of φiσ solves
Eq. (3):

H̃i�Nσ ,j>Nσ ,σ = 0, (8)

H̃i>Nσ ,j>Nσ ,σ = εiδij . (9)

Equation (8) holds since the Hilbert spaces spanned by the
occupied and virtual orbitals are orthogonal, and Eq. (9) holds
since V SIC

iσ = 0 for virtual orbitals.
Equation (8) only holds when the group of φiσ solves

Eq. (3). Consider the case where trial functions φ̂i�Nσ ,σ are

unitarily transformed φiσ ,

φ̂iσ =
Nσ∑
j

Cijφjσ , i � Nσ . (10)

Unless Cij = δij , applying Ĥ KS
σ + V SIC

iσ on φ̂iσ will generally
yield

∑Nσ

j λ̂jiσ φjσ + �i , where the residue �i belongs to the
virtual Hilbert space. Therefore, instead of trying to solve
Eq. (3) directly, we can solve Eq. (3) by requiring that Eqs. (8)
and (9) be satisfied. This is done by finding a set of φ′

iσ that
makes the upper-right (M − Nσ ) × Nσ corner of H̃ vanish in
the matrix representation where the group of φ′

iσ forms the
basis set. We achieve this by pairwise mixing the FLOs with
the virtual KS orbitals. For every pair of FLO φi�Nσ ,σ and
virtual orbital φj>Nσ ,σ , we define φ′

iσ and φ′
jσ as a rotation of

the original pair,

φ′
iσ = cos t φiσ + sin t φjσ ,

φ′
jσ = − sin t φiσ + cos t φjσ . (11)

We then require that 〈φ′
iσ |H KS

σ + V SIC
iσ |φ′

jσ 〉 = 0 and obtain
the equation for the rotation angle t ,

t = 1

2
arctan

(
2H̃ijσ

H̃iiσ − 〈φjσ |H KS
σ + V SIC

iσ |φjσ 〉
)

. (12)

The angle t being in the correct direction is more important
than its actual value. Not using its exact value only impacts the
speed of convergence. We also found that at times, convergence
can be hastened by stepping a shorter distance than determined
from Eq. (12). Such rotations are done for all FO-virtual orbital
pairs. After each rotation, we replace φiσ and φjσ with φ′

iσ and
φ′

jσ , so that the later rotations will take the earlier rotations
into account. Convergence is checked after all pairs of orbitals
are rotated, and it is reached when the biggest matrix element
in the upper-right corner of H̃ is smaller than a predetermined
criterion. The rotation procedure is repeated until convergence
is reached. We find that the updated occupied orbitals are still
primarily localized to their original regions and the updated
virtual orbitals are still primarily delocalized.

This Jacobi-like method for zeroing out the upper-right
corner of H̃ shows strong dependence on the initial set of
φiσ . For some starting points, more than 1000 iterations are
needed for convergence. To accelerate the convergence, we
precondition the starting orbitals by diagonalizing the averaged
matrix (H̃ + H̃ T )/2, which yields a unitary transformation
between approximate canonical orbitals of the current iteration
and the occupied FLO and unoccupied delocalized orbitals
(UDO) of the previous iteration. We then transform back to an
FLO/UDO representation before performing the Jacobi-like
iterative update. This method for preconditioning always
converges within 20 iterations for all systems checked. This
can be seen as an equivalent to applying a preconditioner
to H̃ . The upper-left corner of the resulting H̃ matrix (the
updated Lagrange multiplier matrix λσ ) is also found to be
almost diagonal, meaning that the group of φ after rotation
is very close to canonical orbitals. As discussed in greater
detail below, this preconditioning approach can be and, for
the results here, has been used to converge to approximate
canonical orbitals or exact FLO depending on whether a back
transformation scheme is used after the exact diagonalization.
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Working within the FLO representation will most likely be
more efficient with respect to the use of order-N methods and
has definite advantages for applications of SIC to metastable
donor-acceptor complexes, as demonstrated for LiF in the
applications section.

Though the SIC equation only applies to occupied orbitals,
it is possible to introduce orbital-dependent potentials for
virtual orbitals [19–24]. This would not change the complexity
of the method, but it can affect the convergence speed. Since the
relative mixing of the virtual orbitals with the occupied orbitals
changes as the process iterates to self-consistency, the energy
gap between the occupied and unoccupied orbitals affects the
rate of self-consistency. In an early paper, Harrison et al. [19]
suggested that the unoccupied orbitals should move in a poten-
tial that resembles the SIC potential of the lowest unoccupied
localized orbital since that potential is similar to the potential
that would arise if the particle-hole interaction is included.
This method is similar to the improved-virtual-orbital (IVO)
method of Schneider and Collins [21] and a recent rendition
by Pederson and Baruah [22]. Approaches such as these
lead to more meaningful estimates of localized excitation
energies (such as excitons) and allow for a prescreening of
electronically interesting geometries. They will likely decrease
the number of self-consistent iterations when the gap is small,
but may increase the number of self-consistent iterations when
the gap is big. Early efforts to use IVO-like approaches to
simultaneously determine the ground-state and excited-state
energies in defects include work by Jackson and Lin [23] and
Pederson and Klein [24].

The method can be modified to produce a group of φiσ

that is close to FLOs instead of canonical orbitals, which can
be useful for ensuring consistent convergence to the same
ground state in stretched bonds (Fig. 5 is an example) and
other difficult cases. In the previously mentioned trick, the
starting orbitals are the eigenvectors of (H̃ + H̃ T )/2 and we
denote them as ψ̃iσ . We construct auxiliary orbitals φ̃iσ by
projection into the occupied and virtual spaces of the previous
SCF iteration,

φ̃iσ =
{∑Nσ

j=1〈φjσ |ψ̃iσ 〉|φjσ 〉, i � Nσ ,∑M
j=Nσ +1〈φjσ |ψ̃iσ 〉|φjσ 〉, i > Nσ .

(13)

The new starting orbitals for the Jacobi-like method are
obtained by applying the Löwdin symmetric orthogonal-
ization [13,17] separately to {φ̃i�Nσ ,σ } and {φ̃i>Nσ ,σ }. By
truncating the part of ψ̃iσ that does not lie within the occupied
space of the previous iteration when i � Nσ , we make the
starting orbitals as close to the FLOs of the previous iteration
as possible, and we find the results after the rotations are
close to the exact FLOs. With this choice of starting orbitals,
the diagonal elements of the Lagrange multiplier matrix are
no longer approximations to orbital energies, as the Lagrange
multiplier matrix is no longer near diagonal. However, the total
energy does not depend on the choice of the starting orbitals
of the Jacobi-like method.

The algorithm described above only comprises a complete
calculation when optimal FODs are known. The optimal FODs
can be guessed in very simple systems based on symmetry
arguments (such as in H2), but for most of the systems they have
to be optimized to ensure that the total energy is at the lowest

point. The initial FODs need to be guessed before the first
SCF step. Since it is found that FODs often represent chemical
bonds and lone pairs [15,25], making the initial guess is usually
simple in first- and second-row elements. We calculate the
forces on the FODs after the SCF loop for electronic structures
as described in Ref. [26]. These forces are then used as input of
the conjugate-gradient method to generate new FODs, which
are used in the next SCF step. This optimization of the FODs
is repeated until the forces converge.

Symmetry can be used in the optimization of the FODs
to simplify the process and to improve the stability of the
optimization. Although this is not a general fact, the optimal
FODs for all the systems we tested transform according to a
subgroup of the molecular point group. One can easily guess
the point group of the FODs for simple systems such as the
ones in Table I, but currently there does not exist a completely
systematic way of determining the symmetry of FODs for
more complex systems before the calculation.

In regular KS calculations, the KS potential is usually mixed
with that of the previous iteration for numerical stability. The
non-SC FLOSIC implementation [15] employs the potential
mixing as well, but it was not applied to the SIC potentials.
We extend the mixing to the SIC part in this work in order to
improve the robustness of the algorithm. Instead of potential
mixing, we choose to apply the Broyden mixing [27] to the H̃

matrix directly for its simplicity. We obtain similar results and
number of SCF iterations for both the potential mixing and the
Hamiltonian mixing methods.

III. RESULTS

All of the calculations present in this paper are done with
a modified version of NRLMOL [28–30], which is an electronic
structure code based on Gaussian-type basis sets. We use the
local spin density approximation (LSDA) [1,31] for exchange
and correlation because of its simplicity, but there is no
difficulty in using other energy functionals together with SC-
FLOSIC. The forces on the FODs are converged to 0.001 a.u.

To demonstrate the effect of self-consistency, we apply
SC-FLOSIC to the 11 small molecules that were calculated
using non-SC-FLOSIC in Ref. [15] plus CH3OH. The results
are listed in Table I. FODs in Ref. [15] are determined manually
and not fully optimized, so some of the non-SC-FLOSIC
results listed in Table I are different from those in Ref. [15].

The self-consistency lowers the total energies systemati-
cally as expected. The effect of the self-consistency is small
for the small molecules in Table I. SC-FLOSIC does not
further improve the atomization energies over those of non-
SC-FLOSIC. To obtain more accurate atomization energies,
one has to use more sophisticated energy functionals than the
LSDA.

Spin-polarized calculations are needed for O2 and all the
atoms in the molecules of Table I. The FODs for spin-polarized
calculations are more difficult to guess, and a poor initial
choice usually leads to numerical instabilities. Figures 2(a)
and 2(b) shows the the FODs for N2 and O2 molecules.
For the closed-shell N2, the FODs and the shapes of the
corresponding FLOs in Fig. 3 have clear chemical importance,
as they correspond to the 1s electrons, the lone pairs, and the
triple N-N bond. As pointed out in Ref. [15], the FLOs can be
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TABLE I. Total energies and atomization energies of 12 molecules calculated with SC-FLOSIC and non-SC-FLOSIC. We use the
experimental geometries in all calculations. The experimental atomization energies are obtained from Ref. [32]. Zero-point vibrational energies
have been removed from the experimental values. The mean absolute error (MAE) and the mean absolute relative error (MARE) for the
atomization energies are also listed.

Total (Hartree) Atomization (eV)

Mol. LSDA non-SC SC LSDA non-SC SC Expt.

N2 −108.692 −109.842 −109.856 11.53 10.22 10.19 9.76
O2 −149.332 −150.736 −150.757 7.48 5.10 5.14 5.12
CO −112.471 −113.635 −113.648 12.91 11.18 11.10 11.11
CO2 −187.273 −189.096 −189.121 20.37 16.27 16.24 16.56
C2H2 −76.625 −77.594 −77.607 19.91 18.97 18.92 16.86
LiF −106.702 −107.716 −107.734 6.75 5.64 5.72 5.97
H2 −1.1251 −1.1745 −1.1758 4.57 4.81 4.79 4.48
Li2 −14.724 −15.050 −15.053 1.02 1.02 0.96 1.04
CH4 −40.109 −40.667 −40.676 19.77 19.64 19.62 17.02
NH3 −56.107 −56.761 −56.772 14.60 14.45 14.45 12.00
H2O −75.909 −76.665 −76.677 11.53 10.69 10.69 9.51
CH3OH −114.84 −116.13 −116.15 25.30 24.85 24.83 20.85
MAE 2.13 1.16 1.14
MARE 18% 8.5% 8.7%

seen as linear combinations of molecular orbitals. For example,
the banana orbitals corresponding to the triple bond are linear
combinations of the σg , πx , and πy molecular orbitals. For
open-shell systems such as O2, the link between FODs and the
chemical bonds is more elusive. The FODs shown in Fig. 2(b)
do not appear to have clear chemical importance. Most of the
spin-up and spin-down FODs are not paired as they are in the
spin-unpolarized cases, and the FLOs of different spin in Fig. 4
have very different shapes from each other.

For atoms of the first three rows of the periodic table,
the FODs are connected to the hybridization of the s−pn

orbitals with n = 1,2, or 3, depending upon p filling [14].
As for the case of most generalized-gradient approximations,
FLOSIC as well as the versions of the PZ functional which
account for unitary transformations [7,10–14,33–43] favor
integer occupied p valences over perfectly spherical atoms
with fractionally occupied p valences. However, especially
when starting new calculations, it is necessary to account for
the fact that starting points derived from spherical potentials
will always provide fractionally occupied starting orbitals in
open-shell systems. To address this issue, we use starting
configurations with nonspherical symmetry in calculations.
As in the case of antiferromagnetic starting potentials, which
are commonly used in molecular magnet calculations and
molecular bond-breaking calculations, symmetric solutions
would still emerge if they are indeed the lowest-energy
solution. Figure 2(c) shows the FODs of the F atom. The three
spin-up p orbitals are fully occupied, and the spin-up FODs
form a tetrahedron according to the sp3 hybridization. Two
spin-down p orbitals are occupied, and the spin-down FODs
form a triangle according to the sp2 hybridization. The shapes
of the corresponding localized orbitals also resemble sp3 and
sp2 hybridized orbitals, respectively.

For the systems in Table I, the optimal FODs of the SC
calculation and the non-SC calculation have the same general
spatial distribution. The FODs corresponding to core electrons
and chemical bonds do not change much from the SC

optimal positions in the non-SC calculation, but the FODs
corresponding to lone pairs for N2 and CO are strongly
affected by self-consistency. For the CO molecule, the distance
between the non-SC FOD and the SC FOD corresponding to
the lone pair on the O atom can be as long as 0.68Å, and the
corresponding non-SC and SC FLOs have visible differences.

The geometry optimization with SC FLOSIC is possible,
but deriving and implementing the correct Hellmann-Feynman
forces on atomic positions has not yet been completed. Never-
theless, we tested geometry optimization using LSDA forces
while using the SC FLOSIC total energy to check convergence.
We have limited success for very simple molecules such as H2

and Li2, since the LSDA forces coincide with FLOSIC forces
in these simple systems. The correct FLOSIC forces are needed
for more general cases. We also find that the optimization
of FODs can be merged with the geometry optimization to
be more efficient. The initial FODs have to be close to the
correct positions in such a combined optimization or it may
not converge.

The SC FLOSIC dissociation curve of the LiF molecule
is plotted in Fig. 5. Within most approximations of density
functional theory, it is generally a challenge to calculate
the charge-transfer energy between two fragments without
introducing a constraint. For example, constrained orthogo-
nality calculations have been introduced by Baruah and Ped-
erson [22] and by Ziegler and collaborators [44] which allow
one to calculate an excited charge-transfer state, provided that
the ground state of the system within the approximation to
DFT is qualitatively correct. However, in many cases, systems
composed of two fragments are found to be electronically
unstable for either two neutral separated fragments or two
oppositely charged cation-anion fragment pairs [45–50], and
rare cases where this is not a qualitative problem have been
demonstrated in Ref. [51]. The LiF molecular potential-energy
curve provides a good example of this problem [51–53]. In
this case, LSDA total energies as functions of charge on the
separated systems predict that the ground state of a separate Li
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FIG. 2. FODs for (a) N2, (b) O2, and (c) F atom. Green
transparent spheres represent atoms, brown spheres represent the
FODs in the spin-unpolarized case and of spin-up electrons, and
cyan spheres represent the FODs of spin-down electrons. Dashed
lines are visual aids showing the relative positions of the FODs.
The labels on the FODs are those of the FLOs plotted in Figs. 3
and 4.

FIG. 3. The FLOs of N2 corresponding to (a) the lone pairs and
(b) the triple bond. Isosurfaces of ±0.08 (atomic units) are plotted.
The FODs of the plotted FLOs are shown in Fig. 2(a). The FLOs
corresponding to the 1s electrons have similar shapes as atomic 1s

orbitals and are not plotted. Other FLOs are related to the plotted
ones by symmetry. The atomic positions and FODs are also plotted
as a visual aid.

and separated F has approximately 2.3 units of charge on the
Li and 9.7 units of charge on the F (this result depends slightly
on choice of functional). Here we address the calculation of the
full charge-transfer state of LiF (cation-anion pair) which can
be automatically determined within FLOSIC. In conjunction
with this method and the constrained charge-transfer method
of Baruah and Pederson [22], it then becomes possible to
calculate the lower-energy neutral state as well.

It was difficult to generate the curve in Fig. 5 in non-SC
FLOSIC since the calculation can converge to either the neutral
Li and F atoms, or to Li+ and F− ions, and making sure the
ground states at all separations are consistent is hard. This
problem is alleviated in SC FLOSIC since we are able to solve

FIG. 4. The FLOs of O2. (a),(b) Spin-up FLOs. (c),(d) Spin-down
FLOs. Isosurfaces of ±0.08 (atomic units) are plotted. The FODs of
the plotted FLOs are shown in Fig. 2(b). The FLOs corresponding to
the 1s electrons have similar shapes as atomic 1s orbitals and are not
plotted. Other FLOs are related to the plotted ones by symmetry. The
atomic positions and FODs are also plotted as a visual aid.
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FIG. 5. SC FLOSIC dissociation curve of the LiF molecule for
dissociation into Li+ and F− ions. We use the inverse of the distance
(1/R) as the horizontal axis to show the −1/R long-range behavior
of the curve.

for localized orbitals directly, so that it is easy to check the
charged state of the atoms in each iteration.

IV. CONCLUSION

SIC is a straightforward way to fix many of the flaws of
semilocal XC energy functionals. Localized orbitals are a
must to properly carry out SIC calculations. The localization
equation (2) is the most general way of determining the
localized orbitals, but it requires an overwhelming amount
of calculation. FLOSIC simplifies the problem by reducing
the number of parameters by an order of magnitude. Despite
this simplification, the computational cost of FLOSIC is still
high if one needs to solve Eq. (3) directly since the Lagrange
multiplier matrix λσ is no longer diagonal, as in KS equations,
and the Hamiltonian for each orbital is different. Refer-
ence [15] circumvents this problem by effectively converting
the problem to a regular eigenvalue problem, but the results
obtained this way are not fully self-consistent.

In this work, we solve (3) with a Jacobi-like numerically
exact iterative algorithm, and the results do not suffer from
the non-self-consistent problem associated with the method

of Ref. [15]. The algorithm developed here only requires
Nσ × M extra calculations of matrix elements compared with
the KS equation, instead of Nσ × M2 as suggested in Eq. (3).
Compared with the Nσ × Nσ extra matrix elements used in
non-SC FLOSIC, we managed to include self-consistency with
marginal increase in the computation cost.

The effect of the self-consistency is small for the total
energies of the simple molecules tested in this work, and the
accuracy of the FLOSIC method is confirmed. The changes in
the SIC total energy from the non-SC values is about 1−2%,
and the changes in the atomization energies are smaller. The
FODs mostly retain their positions as in the non-SC FLOSIC,
but in some cases they show significant changes, indicating
that properties depending on the density matrix may also
have changed significantly. The atomization energies for both
the non-SC and SC FLOSIC show vast improvement due to
the removal of self-interaction, and higher accuracy can be
expected from semilocal energy functionals specifically de-
signed for SIC or perhaps from strongly constrained semilocal
functionals such as SCAN [54].

This paper has developed a self-consistent approach for
solving the FLOSIC equations in the representation of the
FLO. We assumed the existence of canonical orbitals through-
out the paper, but we must point out that as discussed in
Ref. [55], a rigorous derivation of the Kohn-Sham-like Hamil-
tonian for the canonical orbitals of the FLOSIC formulation
is still needed. By observation, we find that Eq. (7) appears to
be a good approximation to this Hamiltonian, but we also find
that the magnitude of its eigenvalue for the highest occupied
orbital overestimates the experimental ionization potential.
This might be due to the approximation to the Hamiltonian,
but it can also be due to the approximated energy functional.
Further study is needed to solve this problem.
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