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We present a general methodology to evaluate matrix elements of the effective core potentials (ECPs) within
a one-electron basis set of Slater-type orbitals (STOs). The scheme is based on translation of individual STO
distributions in the framework of the Barnett-Coulson method. We discuss different types of integrals which
naturally appear and reduce them to a few basic quantities which can be calculated recursively or purely
numerically. Additionally, we consider evaluation of the STOs matrix elements involving the core polarization
potentials and effective spin-orbit potentials. Construction of the STOs basis sets designed specifically for use
with ECPs is discussed and differences in comparison with all-electron basis sets are briefly summarized. We
verify the validity of the present approach by calculating excitation energies, static dipole polarizabilities, and
valence orbital energies for the alkaline-earth metals (Ca, Sr, and Ba). Finally, we evaluate interaction energies,
permanent dipole moments, and ionization energies for barium and strontium hydrides, and compare them with
the best available experimental and theoretical data.
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I. INTRODUCTION

In the past 40 years, Gaussian-type orbitals [1,2] (GTOs)
have undeniably taken the role of the routine one-electron
basis set for ab initio calculations in molecular physics and
quantum chemistry. Nonetheless, a considerable interest has
remained in the field of Slater-type orbitals (STOs) [3,4] or
more general exponential-type orbitals (ETOs) [5,6]. This is
motivated mainly by the superior analytical properties of STOs
(i.e., fulfillment of the nuclear cusp condition [7] and correct
long-range decay [8,9]) and their formal simplicity.

The biggest obstacle connected with use of STOs is
calculation of many-center two-electron integrals which are
unavoidable in any molecular study. Interestingly enough,
there has been a significant progress on this issue in recent
years. In fact, looking at only the past 15 years, there are
many notable works of Bouferguene et al. [10–13], Rico et al.
[14–24], Hoggan et al. [25–30], Pachucki [31–35], and others
[36–52]. In particular, for the diatomic systems STOs can now
be used routinely [51].

State-of-the-art ab initio electronic structure calculations
are important for the new field at the border of chemistry
and physics—studies of ultracold molecules. Experimental
advances in laser cooling and trapping of neutral atoms
have opened a door for the formation of ultracold diatomic
molecules by photoassociation [53], magnetoassociation [54],
and vibrational cooling [55] techniques. To interpret the ex-
perimental observations, ab initio calculations of the potential-
energy curves and coupling matrix elements between the
electronic states are crucial. Somewhat surprisingly, spectro-
scopic and collisional studies of ultracold molecules mostly
involve molecules with heavy atoms. See, for instance, Refs.
[56–61] for joint experimental and theoretical studies of new
spectroscopic features of the strontium molecule. Electronic
structure calculations can also be used to predict new schemes
for the formation of ultracold diatomic molecules [62–67].
Accurate interatomic interaction potentials are also of great
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importance in the search for a new physics; see, e.g., the work
on the YbF molecule which is used in measurements of the
permanent electric dipole moment (EDM) of the electron [68],
and determination of the proton-electron mass ratio time vari-
ation [69]. One can also point out the work of Schwerdtfeger
et al. [70] on the Sr2 molecule where time dependence of
the fine-structure constant is considered. Other examples of
physically important diatoms include RbYb molecule [71–73]
(a promising candidate for quantum computing), BaH [74–76]
(preparation of ultracold hydrogen atoms), and others.

It must be stressed that in a majority of the studies
mentioned above, accurate first principles calculations were
fundamental in understanding and interpretation of the experi-
mental data. In particular, computations of the potential-energy
surfaces and the corresponding coupling matrix elements
appear to be of prime importance. This is also the area where
the Slater-type orbitals are the most advantageous.

Unfortunately, in accurate ab initio calculations for heavy
elements one typically encounters two additional major
problems. First, the number of occupied orbitals becomes
fairly substantial. This, by necessity, calls for extended basis
sets with high angular momenta, increasing the overall cost
of correlated electronic structure calculations. The second
obstacle is the relative importance of the relativistic effects;
for heavier elements they are of a similar magnitude (or larger)
as the electron correlation contribution [77,78]. Moreover,
additivity of the latter two effects for heavy atoms is at best
questionable [77,78].

There are several approaches available in the literature to
handle the aforementioned problems and most of them are
based on the Dirac-Coulomb(-Breit) equations [79,80]. This
is done, e.g., by constructing an approximate four-component
spinor expanded in a kinetically balanced basis set [81–84],
or by decoupling the small and large components of the
spinor, so that the equations take a familiar two-component
form [85–92]. Another idea developed independently relies
on the so-called regular approximations [93,94]. In this paper
we consider the effective core potential (ECP) approach [95]
which may be viewed as a slightly less rigorous method than
the former ones. However, little accuracy is typically sacrificed
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(especially for weakly bound systems) and the calculations
simplify to a great extent.

The fundamental idea behind ECPs is that the inner core
orbitals of heavy elements are inert and do not change
significantly in different chemical environments. Therefore,
their influence on the valence space can be modeled with
a proper pseudopotential (PP) [96] which is, by definition,
universal for a given element. This leads to an approximate
two-component valence relativistic wave function, obtained
as an eigenfunction of the valence only Hamiltonian. This
approach has two unquestionable advantages. First, the inner
core orbitals are removed from explicit consideration, so that
the size of the one-electron basis set is considerably reduced.
Second, the scalar relativistic effects can be straightforwardly
included in the pseudopotential (by a proper parametrization).

The main goal of this work is to combine the methodology
of effective core potentials with the one-electron basis set
of Slater-type orbitals. We propose a general method to
evaluate all necessary matrix elements by using analytical
or seminumerical techniques. Efficiency of the proposed
algorithm is sufficient to perform general large-scale calcu-
lations. Further in the paper, we consider the so-called core
polarization potentials [97–99] which rely on the assumption
that the core is additionally polarizable. This captures the
first-order effects of the implicit core-valence correlations
and significantly improves the description when the large-core
pseudopotentials are used. We also briefly consider effective
spin-orbit pseudopotentials [100–102] which allow for an
approximate computation of the spin-orbit splittings and
couplings. Finally, we present results of test calculations for
alkaline-earth metals (Ca, Sr, and Ba) and predict properties
of the corresponding hydrides.

In the paper we rely on the known special functions to
simplify the derivations and the final formulas. Our convention
for all special functions appearing below is the same as in
Ref. [103].

II. THEORY

In this section we introduce some important formulas which
are used further in the paper. This is necessary to introduce the
notation and specify precise meaning of several quantities.
This short mathematical preface may be useful for readers
who are not entirely familiar with employed concepts.

A. Slater-type orbitals and spatial translations

Slater-type orbitals (STOs) [3,4] have the following general
form:

χnlm(r; β) = rn−1e−βr Ylm(θ,φ), (1)

where Ylm are the spherical harmonics defined according
to the Condon-Shortley phase, n, l are nonnegative integers
satisfying n > l, and β > 0 is a real parameter. The orbitals
defined above are not normalized; we find this convention to
be more robust for the purposes of the paper. In order to restore
the proper unity normalization Eq. (1) has to be multiplied by
Sn(β) = (2β)n+1/2/

√
(2n)!.

Throughout the paper we shall extensively use the transla-
tion method for STOs in order to shift them to a convenient

point in space. This is achieved with help of the famous
Barnett-Coulson ζ -function method [104–106]. Translation of
the ns STOs is given by the following two-range formula:

rn−1
b e−βrb =

∞∑
m=0

2k + 1

2
Pm(cos θa) ζnm(β,ra; R), (2)

where Pm are the ordinary Legendre polynomials, R is the
distance between centers a and b, and ζnm are given by the
integral representation

ζnm(β,ra; R) =
∫ π

0
dθa sin θa Pm(cos θa) rn−1

b e−βrb . (3)

From now on, we drop the parentheses from the definition
of the ζ function, i.e., it is assumed that ζnm := ζnm(β,ra; R)
unless explicitly stated otherwise.

The above formal definitions are not particularly useful in
actual applications. Instead, the following recursive relations
provide a starting point for further developments:

ζn+2,m = (
r2
a + R2

)
ζnm − 2 ra R

2m + 1

× [m ζn,m−1 + (m + 1) ζn,m+1] (4)

and

ζ1m = β ra R

2m + 1
[ζ0,m−1 − ζ0,m+1]. (5)

The last formula is not valid for m = 0 and the explicit
expression should be used instead,

ζ10 = β ra R[ζ00 − ζ01] + e−β(ra+R). (6)

To initiate the recursive process one requires the following
starting values:

ζ0m = 2β

π
im(β r<) km(β r>), (7)

where im and km are the modified spherical Bessel functions
of the first and second kind [103], respectively, and r< =
min(ra,R), r> = max(ra,R). For convenience of the reader,
we gathered all properties of the modified spherical Bessel
functions which are important here in the Supplemental
Material [107]. Equations in the Supplemental Material are
referenced with prefix “S”, e.g., the sixth equation in the
Supplemental Material is referenced as Eq. (S6).

In order to spatially shift STOs of the form (1) one needs to
combine Eq. (2) with the well-known translation formula for
the regular solid harmonics, Ref. [108], pp. 797. This leads to

1√
π

rn−1
b e−βrb Ylm(θb,φb)

= (−1)l−m (2l + 1)
l∑

λ=0

rλ
a√

2λ + 1
Yλm(θa,φa) (−R)l−λ

×
(

λ l − λ λ

m 0 −m

)(
2l

2λ

)1/2

×
∞∑

k=0

√
2k + 1 Yk0(θa,φa) ζn−l,k(β,ra; R), (8)
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with the usual notation for the Wigner 3J symbols, Ref. [108],
pp. 270.

A short comment on the nature of the above expression is
necessary. It is well known that the strongest drawback of the
Barnett-Coulson method is that it leads, in general, to infinite
series. Worse than that, these series tend to converge extremely
slowly; in some cases a logarithmic convergence pattern has
been observed [109,110]. This limits the applicability of
the method significantly and forced some authors to apply
convergence acceleration techniques [111,112]. Fortunately,
this issue is absent in all final formulas derived in this paper.
In most cases, the sum over k truncates as a result of the triangle
conditions for the Wigner 3J symbols; see Ref. [108], pp. 803.

Before the end of the present section we would like to point
out that there exist some other methods for translation of STOs,
including one-range and two-range formulas, Refs. [113–123],
yet we have not found these alternative formulations to be
particularly advantageous in the present case compared to the
standard Barnett-Coulson scheme, Eq. (8). General theory of
addition theorems was given in a pedagogical way by Weniger
[38,39]. Note that mathematical correctness (and usefulness)
of some formulations of the addition theorems is still subject
to a debate [40].

B. Pseudopotentials parametrization

As already mentioned in the Introduction, in calculations
involving ECPs one considers the following valence-only
Hamiltonian [95]:

Ĥv =
nv∑
i

[
−1

2
∇2

i +
∑

a

[
−Qa

ria

+ Û a
PP(ria)

]]

+
nv∑

i<j

1

rij

+
∑
ab

QaQb

rab

+ ÛCPP, (9)

where i,j, . . . denote the electrons, a,b, . . . denote the nuclei,
Û a

PP is the pseudopotential of the core a with charge Qa , and
nv is the number of valence electrons. The term arising from
the core polarization potential (ÛCPP) will be specified further
in the text.

Let us briefly discuss the construction of the effective
core potentials. They are divided into the spin-averaged and
spin-dependent terms, Ua

PP = Ua
PP,av + Ua

PP,so. Typically, the
first term is included explicitly in the electronic structure
calculations while the second is treated perturbatively. Both
of these potentials are represented in a semilocal form

Û a
PP,av(ria) = Ua

L(ria) +
L−1∑
l=0

+l∑
m=−l

|lm〉a

× [
Ua

l (ria) − Ua
L(ria)

]
a〈lm| (10)

and

Û a
PP,so(ria) =

L−1∑
l=0

+l∑
m=−l

2 	Ua
l (ria)

2l + 1
|lm〉a lia · si a〈lm|, (11)

where L is the highest angular momentum of the orbitals in
the core a, lia is the (orbital) angular momentum operator
corresponding to the center a and the electron i, si is the

spin operator of the electron i, and 〈lm|a are projection
operators on the spherical harmonics Ylm placed at the center
a. Presence of the projection operators assures that orbital
components of different angular momenta connect with proper
radial functions. Parenthetically, it is observed that Ua

l (ria) are
nearly identical for l > L which justifies the rearrangements
in Eqs. (10) and (11).

To specify a family of pseudopotentials a precise form of the
radial components, Ua

l (r), must be given. It is very common to
use a short linear combination of the radial Gaussian functions
[95]

r2 Ua
l (r) =

∑
k

Aa
kl r

nkl e−Ba
kl r

2
, (12)

where nkl, Aa
kl , and Ba

kl are adjustable parameters. Their
determination for a given atom is far from trivial and strategies
of the so-called energy-consistent [124–127], shape-consistent
[128–131], and other [95] pseudopotentials were developed.

C. Effects of the core polarization

The so-called core polarization potentials [97–99] (CPP)
constitute a method to improve upon the approximations
underlying the ordinary ECPs. The core is allowed to be po-
larizable, i.e., reorientation of valence electrons in a molecular
environment creates an induced dipole moment of the core.
By simple electrostatic arguments, the value of this dipole
moment is assumed to be proportional to the strength of the
electric field at the core. This gives rise to the total potential
ÛCPP = ∑

a Û a
CPP in the form

Û a
CPP = Û

[0],a
CPP + Û

[1],a
CPP + Û

[2],a
CPP , (13)

Û [0],a
cpp = −1

2
αa

∑
b,c �=a

QbQc

Rab · Rac

R3
abR

3
ac

, (14)

Û [1],a
cpp = − 1

2
αa

∑
i

1

r4
ia

C2(ria,δa)

+ αa

∑
i

∑
b �=a

Qb

ria · Rab

r3
iaR

3
ab

C(ria,δa), (15)

Û [2],a
cpp = −αa

∑
j<i

ria · rja

r3
iar

3
ja

C(ria,δa) C(rja,δa), (16)

where the consecutive terms are the scalar, one-, and two-
electron components. In the above expression αa is the polar-
izability of the core a, determined from separate theoretical
calculations or by semiempirical adjustment; C(ria,δa) is the
cutoff function assuring that the potential is regular when
electron i is at the core a. The form of the cutoff function
as well as the value of the cutoff parameter δa are arbitrary.
The following expression is frequently used:

C(r,δ) = (1 − e−δr2
)n̄, (17)

where n̄ is either 1 (Stoll and Fuentealba [97]) or 2 (Müller
and Meyer [98,99]). The optimal values of δa are determined
by numerical experimentation for each atom separately.
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D. Basic integrals

Further in the text we show that all matrix elements
involving averaged and spin-orbit pseudopotentials can be
expressed through the following family of one-dimensional
integrals:

F 0
n (x,y) =

∫ ∞

0
dr rn e−xr−yr2

, (18)

F >
n (x,y) =

∫ ∞

1
dr rn e−xr−yr2

, (19)

F <
n (x,y) =

∫ 1

0
dr rn e−xr−yr2

. (20)

For evaluation of the core polarization potentials matrix
elements one additionally requires integrals with a logarithmic
(albeit integrable) singularity, e.g.,

G 0
n (x,y) =

∫ ∞

0
dr ln r rn e−xr−yr2

, (21)

and similarly for G >
n and G <

n .
The issue of calculation of the above integrals is fairly tech-

nical and marred with numerical problems. For completeness,
in the Supplemental Material [107] we present an exhaustive
description of the methods we recommend for calculation of
these basic quantities. Additionally, a special case of these
integrals was considered in Ref. [132]. Note that Eqs. (18) and
(20) are well defined only for n � 0; this restriction does not
hold for Eq. (19).

III. SPIN-AVERAGED AND SPIN-ORBIT
MATRIX ELEMENTS

In the remainder of the paper we consider calculation of
ECPs matrix elements for diatomic systems only. This is
mainly because the issue of exact calculation of the two-
electron integrals for polyatomic molecules has not been fully
resolved yet. Consequently, we adopt a coordinate system
where both atoms are located on the z axis and separated
by a distance R.

For calculations on general polyatomic systems one needs
the following matrix elements involving the spin-averaged
potentials:

Ibca = 〈
χnblbmb

(rb; βb)
∣∣ Û c

PP,av(rc)
∣∣χnalama

(ra; βa)
〉
. (22)

By using Eq. (10) and after simple manipulations one can
rewrite the above expression as

Ibca = I loc
bca + I nloc

bca , (23)

where

I loc
bca = 〈

χnblbmb
(rb; βb)

∣∣Uc
L(rc)

∣∣χnalama
(ra; βa)

〉
(24)

and

I nloc
bca =

L−1∑
KM

∫ ∞

0
drc r2

c

〈
χnblbmb

(rb; βb)|KM
〉
c

× [
Uc

K (rc) − Uc
L(rc)

]
c

〈
KM|χnalama

(ra; βa)
〉
. (25)

The approach adopted here depends on the relative location of
the centers.

The main difficulty connected with the calculation of the
pseudopotentials matrix elements is the presence of the pro-
jection operators if the orbitals are placed on different centers.
Additionally, pseudopotentials are typically parametrized in
terms of the Gaussian-type expansions, Eq. (12), which leads
to mixed Slater-Gaussian type basic integrals. The latter are
usually not easily expressible through the standard elementary
and special functions, and new techniques need to be developed
to handle them.

A. Spin-averaged potentials, Iaaa type

Let us first consider the atomic case, a = b = c. Due to
orthogonality of the spherical harmonics the matrix element
simplifies to

Iaaa = I loc
aaa + I nloc

aaa

=
{〈

χn′
a l

′
am

(ra; β ′
a)

∣∣Ua
L(ra)

∣∣χnalam(ra; βa)
〉
, la � L,〈

χn′
a l

′
am

(ra; β ′
a)

∣∣Ua
la

(ra)
∣∣χnalam(ra; βa)

〉
, la < L,

(26)

provided that la = l′a and ma = m′
a = m. Otherwise, the result

vanishes due to the spherical symmetry of the integrand.
Evaluation of the remaining integrals is now elementary;
making use of Eqs. (1) and (12),

Iaaa =
∑

k

Aa
kl F 0

na+n′
a+nkl−2

(
βa + β ′

a,B
a
kl

)
, (27)

where F 0
n (x,y) is defined by Eq. (18).

B. Spin-averaged potentials, Ibaa type

Let us now consider the first of the two-center matrix
elements, Ibaa. One can easily see that they obey formally
the same expression as (26), but la and lb do not need to
be equal. However, the requirement ma = mb still holds as a
consequence of the axial symmetry. Translating STO from the
center b to the point a

(−1)lb√
2la + 1

〈χnblbm(rb; βb)| Ua
L(ra) |χnalam(ra; βa)〉

= 2lb + 1

2

lb∑
λ=0

(
2lb

2λ

)1/2(λ lb − λ lb

m 0 −m

)
(−R)lb−λAλ,

(28)

where

Aλ =
∑

k

(2k + 1)

(
λ k la
0 0 0

)(
λ k la
m 0 −m

)
×

∑
m

Aa
mL Wλ+na+nmL−1,nb−lb,k(βa,βb,BmL; R). (29)

The remaining one-dimensional integration is confined to the
following formula:

Wlmn(α,β,γ ; R) =
∫ ∞

0
dr rl ζmn(β,r; R) e−αr−γ r2

. (30)
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A straightforward approach to Eq. (30) is to use a quadrature
of some sort and treat the integrals in a purely numerical
fashion. However, the integrand possesses a derivative dis-
continuity (i.e., a cusp) at r = R. This makes integration
with standard Gaussian quadratures difficult. For a reasonable
performance one would need to divide the integration range
into two subintervals, [0,R] and [R,∞], and treat each of them
separately, possibly with different integration rules. This, in
turn, increases the computational costs as the integration needs
to be performed for a large set of parameters l, m, n.

An alternative approach which we propose here relies on
the recursive relations (4) and (5). By inserting them into the
definition (30) one arrives at

Wl,m+2,n = Wl+2,mn + R2 Wlmn − 2R

2n + 1

× [nWl+1,m,n−1 + (n + 1)Wl+1,m,n+1], (31)

Wl1n = βR

2n + 1
[Wl+1,0,n−1 − Wl+1,0,n+1], (32)

and

Wl10 = βR[Wl+1,00 − Wl+1,01] + e−βRF 0
l (α + β,γ ). (33)

To initiate the above recursions one needs Wl0n, which can be
expressed with help of Eq. (7) as

Wl0n = 2β

π
Rl+1[kn(βR) Iln(αR,βR,γR)

+ in(βR)Kln(αR,βR,γR)], (34)

where

Iln(α,β,γ ) =
∫ 1

0
dx xl in(βx) e−αx−γ x2

, (35)

Kln(α,β,γ ) =
∫ ∞

1
dx xl kn(βx) e−αx−γ x2

. (36)

The latter two integrals can be integrated numerically to
a very good precision. This approach is reasonable if one
does not care about the timings of the calculations (e.g., for
benchmark purposes). However, to reach a computational cost
comparable with GTOs and use ECPs efficiently for large
systems better procedures are required, preferably recursive.
They are described in detail in the next paragraphs.

Let us begin with the first class of integrals, Iln (we drop
the parentheses from now on). By using the relation (S5) one
arrives at

Il,n−1 = 2n + 1

β
Il−1,n + Il,n+1. (37)

This recursion needs to be carried out in the direction of
decreasing n in order to maintain the numerical stability. To
start the process (37) one requires IlN for two neighboring
(large) N and I0n. We propose to evaluate both of them by
inserting the power-series expansion of in(x) around the origin
into the definition (35)

Iln = βn

∞∑
k=0

(
1
2β2

)k

k! (2n + 2k + 1)!!
F <

n+l+2k(α,γ ). (38)

Since the above summation is infinite and for practical reasons
needs to be truncated, it is helpful to estimate in advance how
many terms are required to achieve convergence.

We first note that the rate of convergence of Eq. (38) is not
significantly affected by a change of values l, α, and γ , the only
important variables being β, n. The sum (38) converges faster
when β decreases or n increases. Therefore, we can consider
the worst-case scenario of I00 as a function of β. Making use
of the relationship F <

n (α,γ ) � 1
n+1 , one arrives at the formal

upper bound

I00 �
∞∑

k=0

β2k

(2k)!(2k + 1)2
. (39)

One can assume that the convergence pattern of the above
series is very similar to the original I00. The number of
terms necessary to achieve convergence for a given β can
be estimated by solving the equality β2k = ε (2k)! (2k + 1)2

and rounding up to the closest integer value (ε is the prescribed
accuracy goal). We obtained numerical solutions of Eq. (39)
for a finite set of β and fitted them with a linear function,
giving nterms = 0.68β + 29.5. This estimation is reliable for
all β, but it tends to overshoot nterms slightly, especially for
smaller β.

The method based on the infinite summation is quite
successful for small and moderate β but becomes tedious
when the values of β get large. It typically occurs for stretched
molecules or for extended basis sets with high exponents. To
avoid laborious summations in such situations we present
a large β asymptotic expansion of the functions Iln. The
derivation begins by rewriting Eq. (35) as a difference of
two integrals over the intervals [0,∞] and [1,∞]. In the
first integral one needs to exchange the variables to βx and
subsequently expand the Gaussian function under the integral
sign in power series. The remaining integral can be recognized
as the Legendre function of the second kind Qn by means of
the analytic continuation. This finally leads to the asymptotic
formula for the first part

∫ ∞

0
xl in(βx) e−αx−γ x2 ∼ 1

βl+1

∞∑
k=0

(
γ

β2

)k

Q(l)
n

(
α

β

)
, (40)

where the subscript in Qn denotes differentiation with respect
to the main argument. Calculation of the Legendre functions
and their derivatives is a standard task as has been discussed
many times in the literature [133–135]. Let us pass to the
second part, i.e., the integral over [1,∞]. Note that in this
integral (contrary to the former) the argument of the Bessel
function is always large for large β. Therefore, we can
use the large-argument expansion of the Bessel function
given by Eq. (S7) in Supplemental Material [107]. This
straightforwardly leads to the formula

∫ ∞

1
xl in(βx) e−αx−γ x2 ∼ 1

2

∞∑
k=0

akn

βk+1
F >

l−k−1(α,γ ). (41)

By combining Eqs. (40) and (41) one obtains the final
large-β asymptotic expansion of the integrals (35). Explicit
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expressions for the coefficients in the above expression are
given in Supplemental Material [107].

Passing to the second class of integrals, Kln, and inserting
the explicit formula for kn(z), Eq. (S3), leads to

Kln = π

2β

n∑
k=0

(n + k)!

(2β)k k! (n − k)!
F >

l−k−1(α + β,γ ), (42)

which makes the evaluation elementary. Note that all terms in
the above sum are strictly positive, so that no cancellations are
possible and the final result acquires the same accuracy as the
supplied values of F >

l .

C. Spin-averaged potentials, Ibab type

In the case of Ibab configuration there are no simplifications
analogous as in Eq. (26) and we must use Eqs. (24) and (25)
as they stand. Therefore, the local and nonlocal parts need
to be treated separately in this case. Considering the local
part, note that in Eq. (24) both STOs occupy the same center.
Therefore, one can expand the product of two STOs into a
linear combination of STOs by using standard relations for
coupling of the angular momenta. As a result, the integrals
I loc

bab can easily be expressed in terms of∫
dr r

nab−1
b e−βabrb Ylab,0(θb,φb) Ua

L(ra)

= (−1)lab
2lab + 1√

π

lab∑
λ

(
λ lab − λ lab

0 0 0

)(
2lab

2λ

)1/2

× (−R)lab−λ
∑

k

Aa
kl Wλ+nkl ,nab−λ,λ

(
0,βab,B

a
kl ; R

)
, (43)

where we have made use of Eq. (8) and integrated over the
angles. In the above expression a handful of quantities has
been introduced, i.e., nab = na + nb − 1, βab = βa + βb, and
|la − lb| � lab � la + lb (note that nab > lab).

The remaining one-dimensional integrals in Eq. (43) are
of the same class as defined by Eq. (30) but with α = 0.
Theoretically, this brings a degree of simplification and
allows for a more robust scheme. However, we found that
it is not worth increasing the size and complexity of the
code by including separate routines for the case α = 0.
Therefore, we recommend that the case α = 0 is treated
with general techniques described above. There are no sin-
gularities or numerical instabilities in these expressions as
α approaches zero, so that the codes can be reused with
no changes.

Let us now consider the calculation of the nonlocal term,
I nloc

bab . This case is much more troublesome due to the fact that
the coupling of the angular momenta cannot be used before
the translation of the orbitals. Therefore, both STOs need to be
shifted independently from the center b to the center a. After
some algebra one finds

I nloc
bab = (−1)la+lb

(2la + 1)(2lb + 1)

4

L−1∑
K=0

(2K + 1)AK, (44)

where

AK =
la∑
λa

(−R)la−λa

(
λa la − λa la
m 0 −m

)(
2la

2λa

) 1
2

×
∑
ka

(2ka+1)

(
K ka λa

0 0 0

)(
K ka λa

−m 0 m

)
Blama

(45)

and, analogously,

Blama
=

lb∑
λb

(−R)lb−λb

(
λb lb − λb lb
m 0 −m

)(
2lb

2λb

) 1
2

×
∑
kb

(2kb + 1)

(
K kb λb

0 0 0

)(
K kb λb

−m 0 m

)
×

∑
p

Aa
pL U

na−la ,nb−lb
λa+λb+npL,ka,kb

(
βb,β

′
b,B

a
pL; R

)
. (46)

Finally, the innermost integral can be expressed as

U
m1m2
l n1n2

(β1,β2,γ ; R)

=
∫ ∞

0
dr rl ζm1n1 (β1,r; R) ζm2n2 (β2,r; R)e−γ r2

, (47)

reducing all matrix elements to a definite one-dimensional
integration. Let us note at this point that the integrals
Eq. (47) are invariant with respect to permutation 1 ↔ 2
of all indices (including the nonlinear parameters), i.e.,
U

m1m2
l n1n2

(β1,β2,γ ; R) = U
m2m1
l n2n1

(β2,β1,γ ; R).
Clearly, the integrals U

m1m2
l n1n2

are the most complicated quan-
tities appearing in the theory. Since they are five-index objects,
any numerical integration is expected to be prohibitively
expensive. Therefore, the recursive techniques are preferred
despite the necessity to operate in many dimensions. Deriva-
tion of the recursive formulas for the basic integrals U

m1m2
l n1n2

follows along a line similar as in the previous subsection. Let
us insert Eqs. (4) and (5) into the definition of U

m1m2
l n1n2

. After
some rearrangements one obtains

U
m1+2,m2
l n1n2

= U
m1m2
l+2,n1n2

+ R2 U
m1m2
l n1n2

− 2R

2n1 + 1

× [
n1 U

m1m2
l n1−1,n2

+ (n1 + 1) U
m1m2
l n1+1,n2

]
(48)

and

U
1,m2
l n1n2

= β1R

2n1 + 1

[
U

0,m2
l+1,n1−1,n2

− U
0,m2
l+1,n1+1,n2

]
. (49)

The exceptions from the above relation are the integrals with
n1 = 0 which have to be calculated according to Eq. (6)
instead:

U
1,m2
l 0,n2

= β1R
[
U

0,m2
l+1,0,n2

− U
0,m2
l+1,1,n2

]
+ e−β1R Wl,m2,n2 (β1,β2,γ ; R). (50)

The recursion relations which allow one to increase the second
pair of indices can be obtained by using the aforementioned
symmetry property.

The above relations allow one to calculate U
m1m2
l n1n2

with
nonzero m1,m2 starting solely with the integrals U 00

l n1n2
. The
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latter obey the relationship

U 00
l n1n2

= 4β1β2

π2
Rl+1

× [
kn1 (β1R) kn2 (β2R) J l

n1n2
(β1R,β2R,γR2)

+ in1 (β1R) in2 (β2R) Ml
n1n2

(β1R,β2R,γR2)
]
, (51)

where

J l
n1n2

(β1,β2,γ ) =
∫ 1

0
dx xl in1 (β1x) in2 (β2x) e−γ x2

, (52)

Kl
n1n2

(β1,β2,γ ) =
∫ ∞

1
dx xl kn1 (β1x) kn2 (β2x) e−γ x2

, (53)

which results directly from Eqs. (4)–(7). Let us note that
some of the indices of U

m1m2
l n1n2

must be increased only a few
times at most. In fact, the maximal value of 6 for the indices
n1, n2 is sufficient to cover the whole known Periodic Table.
Moreover, in accurate calculations with Slater-type orbitals for
light systems [51] one typically uses even-tempered sequences
of functions with n = l + 1. This reduces the necessary values
of n1, n2 to 1. A similar observation is valid for the Wlmn

integrals defined in the previous section, Eq. (30).
Evaluation of the integrals (52) and (53) follows a very

similar strategy as adopted previously. By using the power-
series expansion of in(z) one easily arrives at

J l
n1n2

= β
n1
1

∞∑
k=0

(
β2

1/2
)k

k! (2n1 + 2k + 1)!!
I2k+l+n1,n2 (0,β2,γ ).

(54)

The corresponding expression involving the second pair
of indices is obtained by using the symmetry relation
J l

n1n2
(β1,β2,γ ) = J l

n2n1
(β2,β1,γ ). Both these formulas are

useful for small or moderate β1 or β2, but fail otherwise due to
slow convergence of the infinite series. In this case one needs
the large β1 or β2 asymptotic expansion which can be derived
analogously as Eqs. (40) and (41).

Finally, evaluation of the second class of integrals Kl
n1n2

relies on the explicit expression for the modified Bessel
functions, Eq. (S3). By inserting it twice into the definition
(53) and rearranging one obtains

Kl
n1n2

= π2

4β1β2

n1∑
k1=0

n2∑
k2=0

(n1 + k1)!

(2β1)k1 k1! (n1 − k1)!

× (n2 + k2)!

(2β2)k2 k2! (n2 − k2)!
F >

l−k1−k2−2(β1 + β2,γ ).

(55)

D. Spin-orbit potentials

The effective spin-orbit potentials are of very similar form
as the scalar pseudopotentials. In fact, they differ only due
to presence of the angular momentum and spin operators,
Eq. (11). Additionally, there is no local part in the spin-orbit
pseudopotentials. After some manipulations one can show that
the necessary matrix elements,

I so
bca = 〈

χnblbmb
(rb; βb)

∣∣ Û c
PP,so(rc)

∣∣χnalama
(ra; βa)

〉
, (56)

can be rewritten without a loss of generality as

I so
bca =

L−1∑
l=0

+l∑
mm′=−l

2 ı̇−1

2l + 1

∫ ∞

0
drc r2

c 	Uc
l (rc)

× 〈
χnblbmb

(rb; βb)|lm〉
c
· c〈lm| lc · s |lm′〉c

× c

〈
lm′|χnalama

(ra; βa)
〉
. (57)

To derive this expression one uses the fact that the projection
operators c〈lm| are idempotent and that they commute with
the spin-orbit operator. The imaginary unit has been added to
make all matrix elements real as the orbital angular momentum
operator is, in general, complex valued. The only new objects
present in Eq. (57) are matrix elements of the angular
momentum operator, 〈lm| l · s |lm′〉. Explicit expressions for
these integrals can be derived with standard algebra of the
angular momentum (see Ref. [108], pp. 793).

Standard quantum chemistry packages compute all basic
matrix elements over spatial orbitals and the spin component
is added later by proper construction of an approximate wave
function. This is the approach we adopt here. The integrals (56)
and (57) are evaluated for all Cartesian components separately
and stored for further manipulations.

IV. CORE POLARIZATION MATRIX ELEMENTS

In order to evaluate the core polarization correction to the
Hamiltonian, Eqs. (13)–(16), only two distinct matrix elements
are necessary. They read

I
CPP(i)
bca = 〈

χnblbmb
(rb; βb)

∣∣ V̂ (i)
CPP(rc)

∣∣χnalama
(ra; βa)

〉
, (58)

with i = 1,2, and

V̂
(1)

CPP(r) =
√

4π

3

Y1M (r̂)

r2
(1 − e−δr2

)n, (59)

V̂
(2)

CPP(r) = 1

r4
(1 − e−δr2

)2n. (60)

The Gaussian factors in these definitions come from the
adopted cutoff function, Eq. (17). Note that instead of Carte-
sian coordinates in Eq. (59) we use pure spherical components
corresponding to M = −1,0,+1. The total contribution to the
Hamiltonian can be assembled by combining these matrix
elements with geometric and molecular data according to
Eqs. (13)–(16).

Starting with the atomic-type integrals, one can straight-
forwardly integrate over the angles in the spherical coordinate
system, giving after some rearrangements

ICPP(1)
aaa = (−1)m

′
a

√
(2la + 1)(2l′a + 1)

(
l′a 1 la
0 0 0

)
×

(
l′a 1 la

−m′
a M ma

)

×
n∑

k=0

(
n

k

)
(−1)k F 0

na+n′
a−2(βa + β ′

a,δ), (61)

provided that m′
a = ma + M (otherwise the result vanishes).

The form of the expression for the matrix element involving
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V̂
(2)

CPP(r) depends on the value of na + n′
a . It reads

ICPP(2)
aaa =

2n∑
k=0

(
2n

k

)
(−1)k F 0

na+n′
a−4(βa + β ′

a,kδ), (62)

for na + n′
a � 4,

ICPP(2)
aaa = (βa + β ′

a)
2n∑

k=0

(
2n

k

)
(−1)k G 0

0 (βa + β ′
a,kδ)

+ 4δn

2n−1∑
k=1

(
2n − 1

k − 1

)
(−1)k G 0

1 (βa + β ′
a,kδ), (63)

ICPP(2)
aaa = − (βa + β ′

a) × the above

− 4δn

2n∑
k=1

(
2n − 1

k − 1

)
(−1)k F 0

0 (βa + β ′
a,kδ), (64)

for na + n′
a = 3 and na + n′

a = 2, respectively. Let us recall
that the above matrix elements are nonzero if and only if la = l′a
and ma = m′

a .
Passing to the two-center matrix elements, we first note that

calculation of I
CPP(1)
baa and I

CPP(1)
bab is almost exactly the same

as for the local components of the spin-averaged potentials
described in Secs. III B and III C. Thus there is no need to
repeat the details of the derivation and we provide only a short
sketch for convenience of the reader. Considering I

CPP(1)
baa , the

major difference as compared with the derivation given in
Sec. III B is that two spherical harmonics placed on the center
a need to be coupled first. Next, translation of the STO from
the center b to the center a enables one to integrate over the
angles and the Jacobian cancels the apparent 1/r2 singularity
introduced by the potential (59). This allows one to expand the
Gaussian damping function with help of the binomial theorem
and the final result is written as a linear combination of the
Wlmn integrals defined by Eq. (30). A similar conclusion is
found for the I

CPP(1)
bab integrals class. Two STOs present on

the center a need to be expanded into a linear combination
of STOs giving an analog of Eq. (43). Once we translate the
distribution from center b to center a and integrate over the
angles, the singularity vanishes and the rest of the derivation
is straightforward. The final result can also be written in terms
of the integrals (30).

Unfortunately, calculation of the matrix elements involving
the potential V̂

(2)
CPP(r) is more involved. This is due to the fact

that the apparent singularity is not automatically canceled by
the Jacobian and thus the damping factor in Eq. (60) cannot
be expanded that easily. As a result, in addition to the ordinary
integrals introduced in Secs. III B and III C one requires

Ĩp

ln(α,β,δ) =
∫ 1

0
dx xl in(βx) e−αx (1 − e−γ x2

)p, (65)

K̃p

ln(α,β,δ) =
∫ ∞

1
dx xl kn(βx) e−αx (1 − e−γ x2

)p, (66)

where the analogy with Eqs. (35) and (36) is obvious. However,
the values of l are not restricted to nonnegative integers here
since l = −1,−2 are also necessary. For the integrals K̃p

ln this
is not problematic because of the integration range. Only the

integrals Ĩp

−1,n and Ĩp

−2,n are troublesome. To bring them into
a closed form we introduce the following quantities:

Mln(α,β,γ ) =
∫ 1

0
dx xl ln x in(βx) e−αx−γ x2

, (67)

so that Ĩp

−1,n and Ĩp

−2,n can now be simplified by integration
by parts. This gives

Ĩp

−1,n(α,β,δ)

= − nβ

2n + 1

p∑
k=0

(
p

k

)
(−1)kM0,n−1(α,β,kδ)

− β(n + 1)

2n + 1

p∑
k=0

(
p

k

)
(−1)kM0,n+1(α,β,kδ)

+ α

p∑
k=0

(
p

k

)
(−1)kM0,n(α,β,kδ)

+ 4pδ

p∑
k=1

(
p − 1

k − 1

)
(−1)kM1,n(α,β,kδ) (68)

and

Ĩp

−2,n = βn

2n + 1
Ĩp

−1,n−1 + β(n + 1)

2n + 1
Ĩp

−1,n+1

− α Ĩp

−1,n − 4pδ Ĩp

0,n + 4pδ Ĩp−1
0,n , (69)

where the notation for the nonlinear parameters (α,β,γ ) has
been suppressed when it is clear from the context. Finally,
calculation of the integrals Mln is reminiscent of the methods
introduced in Sec. III B. For example, for small and moderate β

Mln(α,β,γ ) = βn

∞∑
k=0

(
1
2β2

)k

k! (2n + 2k + 1)!!
G <

n+l+2k(α,γ ).

(70)

This finalizes the present section of the paper.

V. NUMERICAL EXAMPLES

Throughout the paper we use atomic units for calculated
quantities unless explicitly stated otherwise. The approximate
conversion factors are 1a0 = 0.52 917 Å for lengths (Bohr
radius), 1 a.u. = 219 474.63 cm−1 for energies, and 1 a.u. =
2.54 158 Debye (D) for dipole moments.

A. Basis set optimization

While there are many families of pseudopotentials available
in the literature, the same cannot be said about the relevant
Slater-type basis sets. Therefore, we performed optimization
of the valence STOs basis sets for three elements—calcium,
strontium, and barium (Ca, Sr, and Ba). The last known element
of the rare-earth metals (radium, Ra) is not considered here
because it is highly radioactive and thus not enough confirmed
experimental data is available to constitute a comprehensive
test case. For all elements we adopted the Stuttgart-Dresden
family of energy consistent pseudopotentials. The so-called
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small-core pseudopotentials (10 valence electrons) are de-
scribed in Ref. [136], whilst the large-core counterparts (two
valence electrons) are given in Ref. [137].

In general, construction of the STOs basis sets for pseu-
dopotential calculations is similar as in the recent paper
concerning the beryllium dimer [51]. Therefore, we shall
not repeat the minutiae of the procedure and illuminate only
the most important differences. First, instead of the con-
ventional even-tempered stencil for the nonlinear parameters
(exponents) of each angular momentum we use the following
extended scheme (well tempering):

ζil = αl · β
i (1+γl i+δl i

2)
l , (71)

where i = 0, . . . ,nl, l is the angular momentum, and
αl, βl, γl, δl are variational parameters optimized for each l.
For l > 2 we set δl = 0 to reduce the number of parameters.
The second difference is the choice of the target function—
total atomic valence correlation energy, i.e., we do not
freeze any additional orbitals in the valence space. Let us
mention that there are many similarities between the basis
set optimization procedures in the all-electron systems and
for the valence-only pseudopotential. However, the latter case
is much more technically challenging. This is mainly due
to occurrence of numerous local minima and problematic
behavior of the pseudo-orbitals near the nucleus causing the
linear dependencies problem.

The basis sets optimized in the course of the present
work are constructed according to the correlation consistency
principle [138]. They are abbreviated wtcc-l (well-tempered
correlation-consistent), where l is the highest angular momen-
tum present in the basis set. For example, for the valence-only
ten electron systems (small-core pseudpotentials) the smallest
basis set (wtcc-2) has composition 10s8p3d and the largest
(wtcc-5) has 13s11p7d5f 4g2h. This includes two sets of
additional diffuse functions which were trained to maximize
the atomic polarizability calculated at the closed-shell Hartree-
Fock level. All basis sets used in this work can be obtained
from the authors upon request.

B. Test results

In order to check the accuracy of the new basis sets
and correctness of the procedures given in this work we
performed extensive numerical tests. For each atom (Ca, Sr,
and Ba) we evaluated the first three excitation energies and
the first ionization potential (IP). The results are given in
Tables I–III. Additionally, in Tables IV and V we provide
ground-state dipole polarizabilities (static) and outermost
ns valence orbitals Hartree-Fock energies, respectively. All
calculations were performed both with large- and small-core
pseudopotentials (2 and 10 valence electrons, respectively). In
the case of the large-core pseudopotentials the corresponding
core polarization potential was included by default. All valence
two-electron calculations were performed with the CCSD
method [145] and its variants for the excited and ionized states
(EOM, IP-EOM [146–148]).

For the 10 electron systems (small-core pseudopotentials)
the calculations are slightly more involved. For the excited
states we used the EOM-CC3 method [149] as implemented
in the code for excited-state properties of Tucholska et al.

TABLE I. Results of the calculations for the calcium atom (see
the main text for technical details). The abbreviation IP stands for
first ionization potential of the system. Small-core PP subtracts
10 electrons from the system (ECP10MDF) while large-core PP
subtracts 18 electrons (ECP18SDF). All values are given in wave
numbers, cm−1.

Large-core PP Small-core PP

State CCSD CCSD CC3 Expt.a

3P 15097.0 15173.2 15195.3 15263.1
3D 20941.1 20856.1 21299.6 20356.6
1D 22216.8 22878.6 22859.0 21849.6
1P 23429.8 24845.8 23879.6 23652.3
3S 31651.2 31828.7 31545.5 31539.5
1S 33411.0 33890.9 33336.9 33317.3
IP 49405.2 49821.9 49305.9

aExperimental values taken from Refs. [139,140]; the experimental
values for the triplet states deduced from the Landé rule.

[150,151] with all orbitals active. For the ionized states we
used the IP-EOM2 method [152], and the polarizabilities were
evaluated at the CCSD and CCSD(T) [153] levels by using
a two-point finite difference method with displacement of
10−4 a.u. All calculations were performed with the help
of locally modified versions of the GAMESS [154,155] and
ACESII [156] program packages, with an exception of the
computations at the CC3 level of theory where we used a
program written by one of us (A.M.T.). In all calculations
presented in this section the largest basis sets available in each
case are used—wtcc-5 for the small-core pseudopotentials and
wtcc-3 for the large-core counterparts.

Let us begin the analysis with the atomic excitation spectra
and consider the strontium atom as an example. The overall
picture is more or less the same for the remaining atoms and we
shall comment on the differences further in the text. One can
see that both the small-core and large-core pseudopotentials
give a very good agreement with the experimental data.
However, the small-core pseudopotential combined with the

TABLE II. Results of the calculations for the strontium atom
(see the main text for technical details). The abbreviation IP stands
for first ionization potential of the system. Small-core PP subtracts
28 electrons from the system (ECP28MDF) while large-core PP
subtracts 36 electrons (ECP36SDF). All values are given in wave
numbers, cm−1.

Large-core PP Small-core PP

State CCSD CCSD CC3 Expt.a

3P 14579.9 14546.3 14597.2 14702.9
3D 18442.2 18155.0 18393.7 18253.8
1D 20380.4 20584.7 20411.1 20149.7
1P 21451.1 22701.9 21797.5 21698.5
3S 29201.4 29189.7 28939.3 29038.8
1S 30634.4 31063.1 30508.6 30591.8
IP 46006.2 46284.4 45932.2

aExperimental values taken from Refs. [141,142]; the experimental
values for the triplet states deduced from the Landé rule.
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TABLE III. Results of the calculations for the barium atom (see
the main text for technical details). The abbreviation IP stands for
first ionization potential of the system. Small-core PP subtracts
46 electrons from the system (ECP46MDF) while large-core PP
subtracts 54 electrons (ECP54SDF). All values are given in wave
numbers, cm−1.

Large-core PP Small-core PP
State CCSD CCSD CC3 Expt.a

3D 9419.4 8923.7 9178.1 9357.8
1D 11609.6 11653.5 11391.4 11395.5
3P 12986.2 12823.6 12925.9 13085.5
1P 17578.9 19527.3 18284.6 18060.3
3S 26281.3 26269.3 26141.9 26160.3
1S 27275.0 b b 26757.3
IP 42156.4 42245.8 42034.9

aExperimental values taken from Refs. [143,144]; the experimental
values for the triplet states deduced from the Landé rule.
bEOM iterations failed to converge.

CC3 method performs better, as could have been expected. The
average deviation from the experimental data is around 0.6%
for the small-core and 0.9% for the large-core potentials. One
can safely say that the ECP-MDF/CC3 level of theory is very
reliable. On average, excitation energies are expected to be less
than 1% away from the experimental data. Additionally, no
significant increase of the error is observed for any particular
spatial symmetry or spin state. This suggests that the new
basis sets have no inherent bias, which is a desirable feature in
a molecular work.

Excitation energies for barium are in only slightly worse
agreement with the experiment than in the case of strontium.
The average error is around 0.9% for the small-core and 1.7%
for the large-core pseudopotentials. Unfortunately, we observe
a significant error for the 3D and 1D states of calcium with
both pseudopotentials. This behavior is surprising because the
remaining excitation energies are in good agreement with the
experiment. Therefore, our first suspicion was that 3D and 1D
states are highly diffused and the basis set is not saturated well
enough. However, we found that further extension of the basis

TABLE IV. Dipole polarizabilities of the ground state of the
calcium, strontium, and barium atoms. All values are given in the
atomic units.

Atom Theory Large-core PP Small-core PP Expt.

HF 164.50 181.60
Ca CCSD 170.38 159.14 169 ± 17a

CCSD(T) 156.12
HF 205.14 231.94

Sr CCSD 221.48 203.16 186 ± 15b

CCSD(T) 198.52
HF 280.36 327.48

Ba CCSD 323.48 284.70 268 ± 22c

CCSD(T) 276.62

aReferences [157,158].
bReference [159].
cReference [157].

TABLE V. Outermost valence orbital energies calculated with
the pseudopotentials compared with the reference all-electron Dirac
Hartree Fock (DHF). All values have their signs reversed and are
given in the atomic units.

Atom Shell Large-core PP Small-core PP All-electron DHFa

Ca 4s 0.2064 0.1967 0.1963
Sr 5s 0.1930 0.1813 0.1813
Ba 6s 0.1760 0.1630 0.1632

aTaken from Ref. [136].

set changed the results by less that 100 cm−1, which is not
enough to explain the discrepancy. As a result, we presume
that this increase in the error is an inherent problem of the
given pseudopotentials. We note that in the original papers
describing the pseudopotentials [136,137] errors obtained for
Ca were in fact significantly larger than for the other elements.

Let us also compare our results for the strontium atom
with the values obtained by Skomorowski et al. [57]. In this
work the same pseudopotential (ECP28MDF) was used in
combination with a custom-made GTOs basis set and the
EOM-CC3 method. Both basis sets are roughly of the same
size, so a fair comparison is possible. Skomorowski et al. [57]
give 14570.8 cm−1 and 21764.3 cm−1 for the nonrelativistic
3P and 1P states, respectively. These results are very similar
to the values given in Table II; any differences are probably
accidental, suggesting that both basis sets are of a similar
quality for the P states. However, the situation is different for
the D states. The authors of Ref. [57] report 18668.8 cm−1 for
the 3D state and 20650.3 cm−1 for the 1D state. Clearly, errors
with respect to the experimental values are much larger than
for the P states, and also by few hundreds cm−1 larger than
calculated with our basis sets (cf. Table II).

Next, we would like to check the quality of the basis
sets for properties different than the atomic spectra. First,
let us consider the static dipole polarizabilities calculated
with both families of pseudopotentials. The results are given
in Table IV. The large-core pseudopotentials underperform
considerably—the calculated values differ by more than 10%
from the experimentally determined ones (and lie outside the
corresponding error bars). The only exception is the calcium
atom, but this agreement is probably accidental. A completely
different picture is found for the small-core pseudopotentials.
Here, calculated values are reasonably close to the experiment
and lie within the given error bars. We estimate the basis
set error to be smaller than 1 a.u. by observing the effect of
additional diffuse functions. Omission of the higher cluster
operators brings an uncertainty of 1–2 a.u. assuming that
the results converge geometrically with the excitation level.
Therefore, one can expect that the theoretical limits are 2–3 a.u.
below the values given in Table IV. This is still slightly above
the experiment for Sr and Ba and somewhat below for Ca. The
remaining discrepancy might be a result of an inherent pseu-
dopotential error or a systematic error in the experimental data.

Lastly, we would like to consider the outermost valence ns

orbital energies calculated with the pseudopotentials and com-
pare them with all-electron Dirac-Hartree-Fock (DHF) values
which we treat as a reference. Note that this quantity is very
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important for chemical bonding phenomena and it is connected
with some important descriptors such as the electronegativity,
etc. The results are given in Table V. Remarkably, the small
core pseudopotentials reproduce 3–4 significant digits for all
atoms. The large-core counterparts are not that accurate and
overestimate the energy by 5%–10%. This alone allows one
to predict that small-core pseudopotentials are expected to be
much more reliable in molecular studies.

C. Results for diatomic systems

To keep the length of the paper within reasonable limits we
concentrate here on two molecules—strontium hydride and
barium hydride (SrH and BaH). Both of them have attracted
significant attention recently [74,161–164]. We present results
obtained with the more reliable small-core pseudopotentials
only. Analogous results for the large-core effective potentials
can be obtained from the authors upon request.

For each of the molecules we evaluate the interaction
energy (De) of the ground X 2�+ state at the experimentally
determined geometry. We set the interatomic distance to
R = 2.1461 and R = 2.2319 for SrH and BaH, respectively,
in accordance with the most recent experimental studies
[165,166]. Additionally, we evaluate the permanent dipole
moment of both molecules and their vertical ionization energy.

The procedure for evaluation of the aforementioned quanti-
ties is as follows. The interaction energy (i.e., the well depth) is
evaluated at the all-electron CCSD(T) level of theory by using
the new basis sets, wtcc-l, with l = 2,3,4,5. Next, valence full
triples correction is added, obtained at a difference between
the frozen-core full CI (FCI) and frozen-core CCSD(T) values.
All results are extrapolated towards the complete basis set
by using the ordinary L−3 formula. The ionization energy is
evaluated as a difference between the extrapolated CCSD(T)
energies of the molecule and the corresponding ion at a fixed
geometry. Permanent dipole moments of the molecules are
evaluated with the finite field method by using displaced
CCSD(T) energies. In contrast to the other quantities, basis
set convergence pattern for the dipole moment is not entirely
regular. Thus the extrapolation to the complete basis set has
not been attempted and we simply give values calculated with
the largest available basis sets.

Let us begin the analysis with the interaction energy of
the barium hydride. This quantity is interesting because of a
controversy connected with interpretation of the experimental
data. The original experimental work of Kopp et al. [160]
gives the value De < 16350.0 cm−1. However, in a recent
paper of Moore et al. [74] a significantly larger value has been
obtained from ab initio calculations, De = 16895.12 cm−1.
The discrepancy can be explained by assuming that the
asymptote of one of the electronic states has been incorrectly
identified. By selecting the correct Ba(3D3) asymptote instead
of Ba(3D1), a revised experimental value is obtained, De <

16910.6 cm−1. Our ab initio results are given in Table VI and
the final value, De = 16901.5 cm−1, supports the revision of
the experimental data. The difference between the theoretical
value and the original experimental result (≈550 cm−1) is
too large to be explained by the basis set error or the
pseudopotential error. Moreover, the agreement between our
result and the value of Moore et al. [74] is striking. Note that

TABLE VI. Dissociation energy of the barium hydride (see
the main text for technical details) calculated with small-core
pseudopotential (ECP46MDF). The abbreviations “ae” and “fc” stand
for all electron and frozen core, respectively. The quantity in the last
column (	fci) is the difference between the dissociation energies
calculated at the frozen-core FCI and CCSD(T) levels. The row
denoted ∞ lists values extrapolated to the complete basis set. All
values are given in wave numbers, cm−1.

Basis ae-CCSD(T) fc-CCSD(T) 	fci Total

wtcc-2 13249.6 14239.9 +4.6 13254.2
wtcc-3 15701.2 15975.0 +0.3 15701.5
wtcc-4 16393.9 16355.8 −1.2 16392.7
wtcc-5 16645.7 16411.9 −1.9 16643.8
∞ 16903.9 16563.8 −2.4 16901.5
Expt.a <16350.0
Rev. expt.b <16910.6

aThe original experimental value of Kopp et al. [160].
bRevision of the experimental value, Moore et al. [76].

the 	fci correction is very small for this molecule, of the order
of a few wave numbers, indicating that the CCSD(T) method
works exceptionally well for this molecule.

Passing to the second molecule, strontium hydride, the
corresponding results are given in Table VII. Unfortunately,
for this system we have no direct experimental results at
our disposal. However, we can compare our results with
values reported in other theoretical papers. The most recent
result of Liu et al. [164] gives De = 14114.6 cm−1, i.e.,
differing merely by 17 cm−1 or about 0.1%. The somewhat
older paper of Gao et al. [163] gives De = 14259.8 cm−1—a
slightly larger deviation from our value. However, let us note
that a significantly smaller basis set was used in this work.
Overall, it appears that the newest theoretical values converge
towards the most probable result around De = 14100 cm−1.
Parenthetically, the values of the 	fci correction are by an
order of magnitude larger for SrH than for BaH, indicating that
the former possesses a much more pronounced multireference
character.

TABLE VII. Dissociation energy of the strontium hydride (see
the main text for technical details) calculated with small-core
pseudopotential (ECP28MDF). The abbreviations “ae” and “fc” stand
for all electron and frozen core, respectively. The quantity in the last
column (	fci) is the difference between the dissociation energies
calculated at the frozen-core FCI and CCSD(T) levels. The row
denoted ∞ lists values extrapolated to the complete basis set. All
values are given in wave numbers, cm−1.

Basis ae-CCSD(T) fc-CCSD(T) 	fci Total

wtcc-2 12157.2 13221.7 +28.1 12185.3
wtcc-3 13561.4 14280.3 +31.0 13592.4
wtcc-4 13881.9 14428.6 +29.2 13911.1
wtcc-5 13982.5 14474.3 +28.7 14011.2
∞ 14103.9 14530.6 +28.0 14131.9
Other theor. 14259.8a

14114.6b

aReference [163].
bReference [164].
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TABLE VIII. Molecular properties of strontium and barium
hydrides calculated with the small-core pseudopotentials. The ab-
breviations μ and IP stand for the absolute values of the permanent
electronic dipole moment and the (vertical) ionization potential. IPs
and dipole moments are given in units of wave numbers (cm−1) and
Debyes (D), respectively.

SrH BaH

ae-CCSD ae-CCSD(T) ae-CCSD ae-CCSD(T)

IP 42707.5 42917.6 38453.6 38791.6
μ 13.49 13.53 14.30 14.38

Finally, in Table VIII we present vertical ionization po-
tentials and permanent electronic dipole moments calculated
for both molecules. Unfortunately, these values are not directly
comparable with any experimental data available. Nonetheless,
they can be used for comparison with other theoretical results,
e.g., note that the permanent dipole moments of SrH reported
here are substantially larger than the values given by Gao et al.
[163].

To conclude this section we would like to comment on
the computational efficiency of the procedures for calculation
of the pseudopotentials matrix elements. In all applications
reported here we found these quantities to be much more
computationally expensive than the standard one-electron
integrals, both in the atomic and diatomic systems. However,
this cost is still insignificant compared to the two-electron
matrix elements of the electron-electron repulsion operator.
Therefore, calculations of the effective core potentials matrix
elements do not constitute any significant bottleneck within
the present approach.

VI. CONCLUSIONS

We have presented a general theory to evaluate matrix
elements of effective core potentials in a one-electron basis
set of Slater-type orbitals. As a rule, we have used the Barnett-
Coulson translation method for STOs whenever possible. It
generates transparent formulas and all infinite summations
truncate. As a result, the matrix elements are reduced to rela-
tively simple one-dimensional integrals. We have presented a
scheme to evaluate them to a very good precision.

Next, we have shown that the matrix elements of the spin-
orbit pseudopotentials are reduced to the same basis quantities
as averaged effective potentials and only minor modifications
are necessary to accomplish the calculations. Somewhat larger
changes are necessary to facilitate computations with the
core polarization potentials due to the apparent singularities
in the potential. Additional one-dimensional integrals with
logarithmic singularities appear and we have discussed their
evaluation in detail.

Finally, various numerical examples have been provided
to verify the validity of the present approach. First, we have
shown a set of test results for the calcium, strontium, and
barium atoms, and compared the excitation energies, dipole
polarizabilities, and valence orbital energies with reliable
reference (exact or experimental) data. In all cases we have
found a very good agreement. Lastly, we have considered two
molecular systems (strontium and barium hydrides) and eval-
uated interaction energies, permanent dipole moments, and
ionization energies; deviations from the available experimental
values have been found surprisingly small.

In this paper we have concentrated mainly on the diatomic
molecules. However, the present approach can probably be
extended to an arbitrary polyatomic case with relative ease.
This may be important for calculations in the spirit of density
functional theory [167], but also for general quantum chemical
calculations for polyatomic systems in the STOs basis in the
face of recent improvements in many-center STOs integrals
technology [168].

The code for evaluation of matrix elements of the effective
core potentials in the STOs basis described in this paper has
been incorporated in the KOŁOS program: general purpose
ab initio program for electronic structure calculations with
Slater-type orbitals, geminals, and Kołos-Wolniewicz func-
tions.
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