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Resonances in positronic lithium in hot and dense plasmas
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Low-lying S-wave resonances in positronic lithium (e+Li) under hot and dense plasmas are investigated by
the stabilization method. The screened interaction in plasma is represented by the Debye-Hückel model. Two
resonances are located lying below the Ps(n = 2) excitation threshold. It is found that resonance positions are
lifted with increasing plasma screening strength. For the free atomic system, our reported results are in agreement
with the results of other reliable calculations.
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I. INTRODUCTION

Theoretical calculations show that a positron can bind itself
to the ground state of a lithium atom to form a positronic
lithium atom (e+Li) [1–8]. In fact, positronic lithium is the
first atom that showed that a positron is able to bind itself
to the ground state of a neutral atom [1]. The ground state
of positronic lithium has a binding energy of 0.002 484 a.u.
and is electronically stable against decay into both the Li-e+
and Li+-Ps channels [6]; however, it is not stable against
electron-positron annihilation. Besides the ground state of
lithium, the positron can also attach itself to a number of
excited states of the lithium atom [1]. Such states can be
viewed as excited states of e+Li and would open the possibility
of spectroscopic detection of this system [1]. There is also cal-
culational evidence that positrons can form bound states with
a variety of atoms such as positronic sodium and positronic
calcium [9–14]. The existence of positron bound states with
neutral atoms and molecules has important implications for
positron and positronium (Ps) chemistry [15]. One possible
signature for positron-atom binding is the existence of resonant
structures associated with atomic excited states in the positron
scattering spectrum. The bound or quasibound (resonance) of
positron and Ps to atoms and molecules has been a subject
of extensive study (see [2–26] and references therein). Large
Feshbach resonances have been observed in annihilation cross
sections corresponding to the formation of positron-molecule
bound states, providing strong evidence that such states also
exist for molecules [27]. However, experimental evidence of
positron-atom bound states has proven to be evasive [9]. In
the case of the positron-lithium system, experimental results
relating to cross sections have been found [28,29], but their
energy resolution is not adequate to map out the resonance
structure.

In this paper we look for S-wave resonances lying below
the Ps(n = 2) excitation threshold in positronic lithium under
hot and dense plasmas. The existence of such low-lying S

resonances, as a rule, leads to a resonant radiative recombi-
nation (RRR) process, which is bound to take place in dense
plasma. The RRR process is likely to dominate recombination
rates in the low-energy regimes where the wavelength of
the electron is much larger than the range of the potential.
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Moreover, the observational evidence of the existence
of positrons in several astrophysical plasma environments
[30–33] suggests that we examine positron scattering phenom-
ena in plasma environments. In astrophysical environments,
such as of compact objects and inertial confinements, plasma
remains hot and dense. The ranges of density Ne and
temperature Te are around 1020–1023 cm−3 and 107–108 K,
respectively [34,35], whereas the Debye length λD for such
plasmas is known to be λD � 10a0, where a0 is the first
Bohr radius of the hydrogen atom. These plasmas can be
classified as Debye plasmas or weakly coupled plasmas.
For these plasmas, the coupling parameter � (ratio of the
potential energy to the average kinetic energy) is much less
than unity. These conditions are also fulfilled in a wide class
of laboratory plasmas. In a Debye-type plasma, it is known that
the short-range potential around a unit test charge scales as the
Debye-Hückel potential or static screened Coulomb potential
(SSCP) [36] (in a.u.)

V (r) = e−r/λD/r. (1)

Here μ = 1/λD is called the plasma screening parameter.
The Debye length is related to the thermal velocity vT and
plasma frequency ωP by the formula λD = vT /ωP . In a Debye
plasma the interaction screening is the collective effect of
the correlated many-particle interactions and in the lowest
particle correlation order it reduces to a SSCP of the form (1).
This paper aims at looking for S-wave resonances lying
below the Ps(n = 2) excitation threshold in the e+-Li system
under Debye-type plasmas by applying a stabilization method.
Atomic units will be used in the rest of the paper unless
explicitly stated otherwise.

II. THEORY AND CALCULATIONS

Carrying out calculations on resonances by applying the
stabilization method in a multibody system such as the
positron-lithium system requires enormous computational
effort. In order to reduce computational effort, here we resort
to the model potential method to treat the positron-lithium
system as a three-body system. In the model potential method,
the lithium atom is treated as a two-body system consisting of
a positive ionic core (Li+) together with an electron (active).
The interaction between the electron and the ionic core is then
represented by a model potential, whereas the core includes
the average effect of all other electrons (passive). Considering
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FIG. 1. Stabilization plot for μ = 0.0 and ω � 14 (N = 680).
The number in parentheses next to the solid line shows the order of
appearance of the eigenvalues (energy levels). The arrows indicate
the positions of resonances. The circles show the point of avoided
crossing.

the interactions among the electrons in the atom, the potential
between the ionic core and the active electron is so constructed
that it corresponds to the energy of the original atom. We
assume that the ionic core Li+ is infinitely heavy. Let �r1

and �r2 denote, respectively, the coordinates of positron and
the active electron relative to the core and �r12 (= �r1 − �r2) is
the coordinate of the positron relative to the active electron.
The average effect of the passive electrons is taken care of by
simulating the multielectron core interaction with the single
valence electron in an analytical modification of the Coulomb
potential such that

lim
r2→∞

[
V (e−)

m (�r2)
] = lim

r2→∞

(
− Z̃

r2

)
,

(2)

lim
r2→0

[
V (e−)

m (�r2)
] = lim

r2→0

(
−Z

r2

)
,

where Z is the nuclear charge and Z̃ is the ionization stage
defined by Z̃ = Z − Nc, with Nc being the number of electrons
in the core shell. Details of various aspects of the model
potential method have been considered in several studies
[37–40]. In the present work, to represent the interaction
between the ionic core Li+ and the electron in vacuum we
use the following model potential:

V (e−)
m (�r2) = − 1

r2
[Z̃ + Nc(e−2αr2 + βr2e

−2γ r2 )], (3)

where α, β, and γ are parameters to be determined. This model
potential function satisfies the asymptotic conditions (2). In
order to determine the parameters α, β, and γ we solve
the corresponding one-electron Schrödinger equation within
the framework of the Rayleigh-Ritz variational principle by
employing Slater-type orbitals

φnlm(�r2) = Rnl(r2)Ylm(θ2,φ2)

=
[∑

i

Cie
−Air2r

li
2

]
Ylm(θ2,φ2), li = 0,1,2, . . . ,

(4)

where Ci are the normalization constants and Ai are variational
parameters. The values of the parameters are then obtained by
optimizing the Hamiltonian matrix elements with respect to
the parameters so that the resulting energies are in agreement
with the experimental results. In view of Eqs. (1) and (3),
we represent the interaction between the ionic core and the
electron in Debye plasma by the potential (in a.u.)

V (e−)
m (�r2) = −e−r2/λD

r2
[Z̃ + Nc(e−2αr2 + βr2e

−2γ r2 )]. (5)

The above potential with opposite sign is used to represent
the interaction potential between the core and the positron
V (e+)

m (�r1), that is,

V (e+)
m (�r1) = e−r1/λD

r1
[Z̃ + Nc(e−2αr1 + βr1e

−2γ r1 )]. (6)

FIG. 2. Fittings of the density of resonance states to the Lorentzian form for the lowest two resonances below the Ps(n = 2) threshold
in positronic lithium for μ = 0. The circles are the calculated values and the solid line is the fit function. (a) The resonance parameters are
determined to be Er = −0.080 550 a.u. and � = 0.000 22 a.u. using 34th and 35th eigenvalues. (b) The resonance parameters are determined
to be Er = −0.071 436 a.u. and � = 0.000 08 a.u. using 38th and 39th eigenvalues.
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TABLE I. Energy levels (in a.u.) of lithium relative to ionization
limit for various Debye lengths λD = 1/μ.

States

μ 2s 3s 4s 5s 6s

0.00 −0.198141 −0.074310 −0.038677 −0.023640 −0.015642
a −0.19816 −0.07419 −0.03862 −0.02364 −0.01595
b −0.19814 −0.07418 −0.03862 −0.02364 −0.01594
c −0.19815 −0.07415 −0.03862 −0.02364 −0.01595
d −0.198141
0.01 −0.188122 −0.064751 −0.029567 −0.015063 −0.007446
d −0.188122
0.02 −0.178471 −0.056104 −0.022068 −0.008887 −0.001872
d −0.178471
0.03 −0.169174 −0.048288 −0.015946 −0.004601
0.04 −0.160220 −0.041237 −0.011022 −0.001742
d −0.160220
0.05 −0.151597 −0.034894 −0.007156
d −0.151597
0.06 −0.143293 −0.029211 −0.004234
0.07 −0.135299 −0.024144 −0.002146
0.08 −0.127606 −0.019655 −0.000755
0.09 −0.120206 −0.015710
0.10 −0.113089 −0.012276
d −0.113089

aExperimental results of Johansson [47].
bExperimental results of Bashkin and Stoner [48].
cTheoretical results of Laughlin and Victor [38].
dTheoretical results of Sahoo and Ho [49].

As this interaction includes the effect of exchange between
the positron and the electron, it is a bit more repulsive than
the real physical situation, so our reported energies may lie a
bit higher than the true resonance energies. With this choice
of model potential, the nonrelativistic Hamiltonian (in a.u.) of
positronic lithium under a Debye plasma, characterized by the
Debye-Hückel potential (1), is given by

H =−1

2
∇2

1 − 1

2
∇2

2 + V (e+)
m (�r1) + V (e−)

m (�r2)− e−r12/λD

r12
. (7)

We now apply stabilization method to determine resonances in
positronic lithium. Various aspects of the stabilization method
that we use in the present work have been described in detail in
a number works by Ho and co-workers [41–45], so here we just
state the salient features of the method, which are required for
implementation of the method. Implementation of the method
consists of four major steps. In the first step, eigenenergies
of the Hamiltonian are calculated, for a certain range of the
scaling parameter 0 < s < 1, by employing an extensive wave

function 
 that includes the scaling parameter. In the present
investigation we choose the following wave function:


(�r1,�r2) =
N∑

i=1

ψi(r1,r2,r12)

=
ω∑

li+mi+ni=0

Climini
e−s(r1+r2)r

li
1 r

mi

2 r
ni

12, (8)

where Climini
is linear expansion coefficient and li ,mi,ni,

ω ∈ Z∗ is the set of non-negative integers. Thus ω = 0
corresponds to N = 1, ω = 1 corresponds to N = 4, and so
on. In the second step, energy eigenvalues of the Hamiltonian
are plotted as a function of the scaling parameter. This plot
is referred to as a stabilization plot or stabilization diagram
(shown in Fig. 1). The appearance of a stabilized energy level
(slowly varying energy level) at the energy Er indicates the
existence of a resonance state with energy Er . It should be
mentioned that the wave function should be an extensive one
in order to be able to predict a resonance. In the third step,
the density of the resonance state is calculated for each energy
level near the avoided crossing at Er by the formula

ρn(E) =
[

si+1 − si−1

En(si+1) − En(si−1)

]
En(si )=E

, (9)

where the index i is the ith value for s and the index n is for the
nth resonance. In the fourth step, the resonance energy Er and
width � are determined by fitting the density of the resonance
state ρn(E) for each pair of consecutive energy levels near
the avoided crossing (indicated in Fig. 1) to the following
Lorentzian form:

ρn(E) = y0 + A

π

�
2

(E − Er )2 + (
�
2

)2 , (10)

where y0 is the baseline offset, A is the total area under the
curve from the baseline, Er is the center of the peak, and �

denotes the full width of the peak of the curve at half height (as
shown in Fig. 2). From the above Lorentzian fitting we obtain
the resonance energy Er and resonance width � corresponding
to each stabilized energy level. Out of all those fittings, the one
that corresponds to the best fitting is considered the desired
result for that particular resonance. The best fitting means that
fitting for which the value of the coefficient of determination
(the square of the correlation coefficient between the sample
and predicted data) is closest to unity. It should be mentioned
that Hazi and Taylor [46] used the stabilization method for
calculating resonance energies of model problems.

TABLE II. Lowest S-wave resonance energy and width below the Ps(n = 2) threshold in positronic lithium.

−E(1)
r (a.u.) �(1) (a.u.)

N = 455 N = 560 N = 680 N = 455 N = 560 N = 680
μ (ω = 12) (ω = 13) (ω = 14) (ω = 12) (ω = 13) (ω = 14)

0.00 0.080400 0.080454 0.080550 0.00024662 0.00019317 0.00021503
0.01 0.070629 0.070683 0.070781 0.0002414 0.00019122 0.00021308
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TABLE III. Comparison of the S-wave resonance energy Er and width � for positronic lithium in vacuum. The quoted values of resonance
energy Er are relative to the Li(2s) state with an energy of −0.198141 a.u.

Parameter Present work Ref. [19] Ref. [17] Ref. [16] CC5 of [21] MP1 of [24] Potential V of [25]

E(1)
r (a.u.) 0.117591 0.117483 0.117451 0.110615 0.110836 0.117517 0.117498

�(1) (a.u.) 0.00022 0.00020a 0.00021 0.00147 0.00276 0.00023 0.00013
E(2)

r (a.u.) 0.126705 0.124209 0.125609 0.123661 0.124029
�(2) (a.u.) 0.00008 0.00004 0.00008 0.00004 0.00096

aThis number is taken from the text of Han et al. [19]. The number reported by them in Table I is 2.93 eV.

III. RESULTS AND DISCUSSION

We have examined the fitness of the model potential (5)
by calculating the binding energies of the lithium atom. The
optimized values of the parameters in the potential (5) have
been obtained as α = β = γ = 1.6559. It should be mentioned
that the equality of the parameters α, β, and γ is a mere
coincidence. The same model potential (5) can be used to
represent Na(1s22s22p6nl). In this case α, β, and γ have
been found to be α = 1.8321, β = 1.0591, and γ = 1.3162,
respectively. The ground-state energies of the lithium atom
for various Debye lengths are shown in Table I. From Table I
we notice that our present results for the binding energies of
the lithium atom are in close agreement with the experimental
observations [47,48] and the theoretical predictions [38,49].
Below the Ps(n = 2) excitation threshold we have found two
S-wave resonances. The positions of those resonances are
indicated by arrows in the stabilization plot in Fig. 1. The
convergence of the resonance parameters with an increase in
the number of terms of the wave function (8) for the lowest
S-wave resonance below the Ps(n = 2) excitation threshold is
shown in Table II. It should be mentioned that for each best
fitting the value of the coefficient of determination R2 is at least
of the order of 0.999 996, which is an indication of good fitting.
In all cases, the scaling parameter s is given an increment of
0.0005. From Table II it is apparent that it is possible to obtain
convergent results for the resonance energies correct up to three
significant digits by using N = 680 (ω = 14) terms in the wave
function (8). The uncertainty in our reported results lies in the
fourth significant digit. All other reported results of resonance

TABLE IV. Lowest two S-wave resonances (in a.u.) below the
Ps(n = 2) threshold in positronic lithium under Debye plasma for
various values of the screening parameter μ (in a−1

0 ) corresponding
to kT = 4.0 eV. The notation x[y] means x × 10y .

Ne (cm−3) μ −E(1)
r �(1) −E(2)

r �(2)

0.00 0.00 0.080550 0.00022 0.071436 0.00008
7.82[18] 0.01 0.070781 0.00021 0.061824 0.00007
3.13[19] 0.02 0.061576 0.00021 0.053069 0.00007
7.04[19] 0.03 0.052992 0.00019 0.045154 0.00007
1.25[20] 0.04 0.045068 0.00017 0.038031 0.00007
1.96[20] 0.05 0.037827 0.00014 0.031643 0.00007
2.82[20] 0.06 0.031284 0.00011 0.025934 0.00007
3.83[20] 0.07 0.025440 0.00008
5.01[20] 0.08 0.020287 0.00005
6.34[20] 0.09 0.015806 0.00003

parameters have been obtained by using 680 terms in the wave
function (8). For a given Debye length all 680 eigenvalues of
the Hamiltonian (7) have been calculated for various values
of the scaling parameter s within the range 0.25 � s � 0.45
with a mesh size of 0.0005 to prepare stabilization diagram. It
should be mentioned that energy of the core (which is −3 a.u.)
has to be added with the reported value of the resonance energy
in order to get the exact resonance position.

For a free atomic system (μ = 0), we make a list of the
resonance parameters for the lowest two S-wave resonances
below the Ps(n = 2) excitation threshold, obtained by various
methods, in Table III. From this table we note that our
reported resonance positions agree nicely with the others.
Also, the reported resonance widths agree with [17,19,24].
As far as the width is concerned, we note that there is
significant disagreement between the results of stabilization
calculations [17,19,24] and the results of close-coupling
calculations [16,21]. In particular, the CC5 results of Liu
et al. [21] seem to be overestimated. This is, according to the
authors [21], due the effect of the channel coupling scheme.

In Table IV we report the results of the resonance
energies and widths for various Debye lengths. A graphical
representation of our present results is given in Fig. 3. From
Table IV and Fig. 3(a) it can be seen that the resonance energy
increases steadily with decreasing Debye length and ultimately
tends to merge with the Ps(n = 2) excitation threshold. It is
expected that resonance energy would increase with increasing
screening effect, as the interaction potential becomes weak
with increasing screening effect. Moreover, from Fig. 3(b)
we note that with decreasing Debye length the width of
both resonances decreases; however, the width of the lowest
resonance decreases rapidly, whereas the width of the other
resonance decreases slowly. It should be noted that resonances
are of Feshbach type. The effect of increasing screening on a
Feshbach resonance is in general to decrease its width because
in a screening environment the movements of particles slow
down, which results in the lifetime of the resonance process
being elongated. Thus the resonance width becomes narrow as
a consequence of the uncertainty principle [50,51].

IV. CONCLUSION

We have identified two Feshbach resonances in positronium
lithium embedded in a Debye plasma lying below the Ps(n= 2)
excitation threshold. With an increase in plasma screening
strength, the positions of these resonances are lifted and
their widths narrow. The existence of these resonances pre-
dicts the positron-lithium bound system. Nowadays energetic
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FIG. 3. (a) Lowest two resonance energies E(1)
r and E(2)

r below the Ps(n = 2) threshold in positronic lithium for different values of the
screening parameter μ. The red line denotes the Ps(2s) threshold energy. (b) Resonance widths �(1) and �(2) corresponding to the resonance
energies in (a) for different values of the screening parameter μ.

positron beams are available in different positron research
laboratories around the world [52–54]; we expect that our
results may stimulate an experimental search for resonances
in the positron-lithium system. We hope that our present
investigation of resonances will provide useful information
to astrophysics, plasma physics, and positron physics.
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