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Universal quantum control in zero-field nuclear magnetic resonance
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This paper describes a general method for the manipulation of nuclear spins in zero magnetic field. In the
absence of magnetic fields, the spins lose the individual information on chemical shifts and inequivalent spins can
only be distinguished by nuclear gyromagnetic ratios and spin-spin couplings. For spin- 1

2 nuclei with different
gyromagnetic ratios (i.e., different species) in zero magnetic field, we describe the scheme to realize a set of
universal quantum logic gates, e.g., arbitrary single-qubit gates and a two-qubit controlled-NOT gate. This method
allows for universal quantum control in systems which might provide promising applications in materials science,
chemistry, biology, quantum information processing, and fundamental physics.
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I. INTRODUCTION

Zero-field NMR has attracted attention as a tool for
chemical analysis [1–6], not limited by the disadvantages of su-
perconducting magnets typically used in traditional high-field
NMR. In zero-field NMR, the Zeeman interaction is negligible,
which provides a natural regime for the measurement of local
spin-spin interactions. This is “the inverse coupling” regime
to that in conventional high-field NMR which allows one
to measure some complementary information that cannot be
measured in the high-field case. Zero-field NMR features
high absolute field homogeneity and the absence of certain
relaxation pathways such as chemical shift anisotropy or
susceptibility-induced gradients, yielding narrow resonance
lines and the accurate determination of the coupling parameters
[6,7]. Very recently, long-lived spin-singlet states (spin-singlet
lifetimes as long as 37 s) were observed in heteronuclear spin
pairs in zero magnetic field [8], where the lifetime of the
singlet-triplet coherence, T2, actually exceeds the lifetime of
the triplet-state dipole moment, T1. Further, the elimination
of expensive cryogenically cooled superconducting magnets
enables NMR devices that are portable, affordable, and energy
efficient.

In the absence of an external strong magnetic field,
nuclear spin polarization can be prepared through techniques
such as parahydrogen-induced polarization [9,10], dynamic
nuclear polarization [11–14], quantum-rotor-induced polar-
ization [15,16], or spin-exchange optical pumping [17,18];
encoding can be accomplished through J coupling and dipole-
dipole coupling between spins; and spin resonance signals can
be detected using atomic magnetometers [19,20], nitrogen-
vacancy centers in diamond [21,22], or superconducting
quantum interference devices (SQUIDs) [23,24]. The spins
in zero-field NMR can be manipulated by applying pulsed dc
fields along three directions (x, y, and z). Unlike high-field
NMR, where spin dynamics and control problems are well
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studied, studies on these topics in zero field, where the spin
dynamics and control methods are different from that in high
field, are just beginning [20,25].

In this paper, we consider the topic of quantum control
in zero-field NMR [26]. While pioneering works have shown
that performing arbitrary rotations in zero field is not a solved
problem and, generally speaking, the control of multiple
spin species is significantly restricted [27,28], we show here
a way of implementing a set of universal quantum logic
gates, i.e., arbitrary single-qubit rotations and a two-qubit
controlled-NOT (CNOT) gate [29] by using the information on
nuclear gyromagnetic ratios and spin-spin couplings. Such a
set of gates is sufficient to realize universal control on nuclear
spins in zero field. The controllability in such systems might
provide promising applications in materials science, chemistry,
biology, quantum information processing, and fundamental
physics.

II. NUCLEAR SPIN SYSTEMS IN ZERO MAGNETIC FIELD

A liquid-state n spin- 1
2 system in zero magnetic field can

be described by the Hamiltonian (h̄ = 1)

H0 =
n∑

i<j,=1

2πJij Ii · Ij , (1)

where Jij is the scalar coupling (or J -coupling) constant (in
Hz) between the ith and j th spins and Ii = (Iix,Iiy,Iiz)T is the
spin angular momentum operator of the ith spin,

Ix =
(

0 1
2

1
2 0

)
, Iy =

(
0 − i

2
i
2 0

)
,

Iz =
(

1
2 0
0 − 1

2

)
. (2)

We can apply a dc magnetic field B to such a system,

Hdc(B) = −
n∑

i=1

γiB · Ii , (3)
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where B = (Bx,By,Bz) and γi denotes the gyromagnetic ratio
of the ith spin. The dc magnetic field pulses are simultaneously
exerted on all the spins, but the effect is dependent on the
different gyromagnetic ratios γi .

The controllability of such a system is determined by
the property of the network of nuclear spins, as studied by
Albertini and D’Alessandro [30]. Taking the spin network as
a graph whose nodes represent the spins and whose edges
represent the interactions between the two corresponding spins
(i.e., there exists an edge between node i and j when Jij �= 0),
they relate a Lie algebra structure to the properties of a graph.
For networks with different gyromagnetic ratios, the necessary
and sufficient condition for controllability is that the associated
graph is connected, which implies that the spin system is
completely controllable, i.e., it is possible to realize any
unitary element in SU(2n) for a n spin- 1

2 nuclear spin system
[30]. Complete controllability also has significant practical
implications, e.g., in quantum information processing, and it
is directly related to the question of universality of a quantum
computer [29,31–33].

A practical way to achieve universal control with physical
operations is to realize a set of universal logic gates, e.g.,
arbitrary single-qubit gates and two-qubit controlled-NOT gates
[29]. The complete controllability tells us that a set of universal
logic gates can in principle be implemented in such systems.
The question is then, how can we achieve this using the internal
Hamiltonian H0 [Eq. (1)] and the external Hamiltonian Hdc

[i.e., dc pulses in Eq. (3)] in zero-field NMR systems? In the
following sections, we answer this question and describe the
method to realize a set of universal logic gates consisting of
arbitrary single-qubit gates and a two-qubit controlled-NOT

gate [29], where the qualities for the operations are evaluated
by the gate fidelity [29] defined by

F = |Tr(U †
idealU )|/2n. (4)

This describes the accuracy of a realized unitary operation U

with respect to the ideal one Uideal, and Tr denotes a trace
operation.

III. ARBITRARY SINGLE-QUBIT GATES

An arbitrary single-qubit gate on spin i is

Ui
n(θ ) = e−in·Ii θ , (5)

where n is the unit vector and θ is the angle of the rotation.
The available external control is the dc pulse with duration t

along any axis with the unit vector n,

Udc(Bn) = e−iHdc(Bn)t , (6)

where Hdc(Bn) is given by Eq. (3) with Bn = Bn. Although the
spins cannot be individually addressed in zero magnetic field,
their different gyromagnetic ratios allow one to effectively
manipulate them individually. For example, in a two-spin
system (say, spins 1 and 2) [34], when

γ1

γ2
= 2m1 + 1

2m2
, (7)

where m1,2 are integers (m2 �= 0), one can realize a local π

pulse on either spin i or spin j , e.g., the 13C (γC = 67.262 ×
106 rad s−1 T−1) and 1H (γH = 267.513 × 106 rad s−1 T−1)

system with γC/γH ≈ 1
4 . For any two-spin system with γ1 �=

γ2, one can always find the integers m1 and m2 to approximate
Eq. (7). Therefore, an arbitrary single-qubit gate on spin 1 can
be realized by

U 1
n (θ ) = U 2

n⊥(π )e−iHdc(−Bn)t/2U 2†
n⊥(π )e−iHdc(−Bn)t/2,

where θ = γ1Bt , n · n⊥ = 0, and U
2†
n⊥(π ) = U 2

n⊥(−π ). In this
sequence, the phases accumulated by spin 2 in the two halves
of the rotation cancel out, while the phases by spin 1 are
summed to the angle θ . Here, we assume that the dc magnetic
field |B| � |2πJ12/γ1| such that we can neglect the effect of
J couplings during the dc pulses. For instance, an arbitrary
rotation along the x axis on spin 1 can be realized as follows,

U 1
x (θ ) = e−iI1xθ = U2

z (π )e−iHx t/2U2†
z (π )e−iHx t/2

= e−iγ1BxI1x t ,

with Hx = Bx(γ1I1x + γ2I2x) by using Re−iH tR† = e−iRHR†t

with a unitary operator R and its conjugation R†,
U2

z (π )I2xU2†
z (π ) = −I2x , and U2

z (π )I1xU2†
z (π ) = I1x .

Similarly, the realization of any single-qubit gate can be
generalized to multispin systems,

U 1
n (θ ) = U 2∼n

n⊥ (π )e−iHdc(−Bn)t/2U 2∼n
n⊥

†(π )e−iHdc(−Bn)t/2, (8)

where U 2∼n
n⊥ (π ) = U 2

n⊥ (π )U 3
n⊥(π ) · · ·Un

n⊥(π ). The key is to

implement a π rotation on one local spin, e.g., U j
n (π ) =

e−in·Ij π . Without loss of generality, we consider the case
of implementing the target operation U1

z (π ), using dc pulse
Udc(Bz) in Eq. (6) with n along the z axes. Intuitively, this
requires that all spins perform an even number of π rotations,
except for spin 1, which performs an odd number of π

rotations. This is mathematically equivalent to finding a pulse
duration t satisfying Bzγ1t = (2m1 + 1)π and Bzγj t = 2mjπ

(2 � j � n), i.e.,

γ1

γj

= 2m1 + 1

2mj

, (9)

which is a generalization of (7). A high-fidelity π pulse can be
realized by choosing an appropriate set of mk (k = 1,2, . . . ,n).
As mentioned above, a π pulse on 13C in a 13C-1H system is
approximated by choosing m1 = 0, m2 = 2. Taking Bz = 9 G
(the value is in the reasonable range of experimental param-
eters), the pulse duration can be t = (2m1 + 1)π/(Bzγ1), and
then one gets

t = π

γCBz

= 5.2 × 10−5 s,

with a gate fidelity of about 0.9994.
A higher fidelity is achieved by a better approximation of

Eq. (9), which generally results in a longer pulse duration.
This can be seen, for example, in a 31P (γP = 108.291 ×
106 rad s−1 T−1) and 1H (γH = 267.513 × 106 rad s−1 T−1)
system, one approximate solution of the π pulse on 31P
is m1 = 2, m2 = 6 by utilizing the fact that γP/γH ≈ 5/12.
Taking the pulse duration to be

t = 5π

γPBz

= 1.6 × 10−4 s,

with Bz = 9 G, the corresponding gate fidelity is about 0.9782.
γP/γH ≈ 17/42 is a better approximation than 5/12, i.e.,
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FIG. 1. Pulse sequence realizing π/2 gate on 13C in a C-H-F
system. τ1 = π

4γCBz
≈ 12.9 μs, τ2 ≈ 1761 μs is the time to realize a

π pulse on both 13C and 19F simultaneously (leaving 1H alone), which
is found by the numerical simulation discussed in the main text.

m1 = 8 and m2 = 21, thus resulting in a higher gate fidelity
(∼0.9998) with a longer pulse length t = 5.48 × 10−4 s.

Pulse durations in multispin systems can also be determined
through approximating Eq. (9). Appropriate mk’s have to ap-
proximately satisfy n − 1 equations simultaneously in Eq. (9)
for an n-spin system. For example, for a three-spin system con-
sisting of 13C, 1H, and 19F (γF = 251.662 × 106 rad s−1 T−1),
an approximate solution of the π pulse on 19F is found
to be t = 2.1 × 10−4 s for Bz = 9 G with the gate fidelity
F = 0.9932. Alternatively, without considering the effect of
J coupling, the gate fidelity between Udc(Bz) and the target
operation U1

z (π ) can be written as

F = ∣∣Tr
[
U1

z (π )†Udc(Bz)
]∣∣/2n

=
∣∣∣∣sin

Bzγ1t

2

∣∣∣∣
n∏

j=2

∣∣∣∣cos
Bzγj t

2

∣∣∣∣. (10)

One can also find the pulse duration for implementing the π

pulse to satisfy F ≈ 1 by numerical methods.
Generally, for systems composed of a larger number of

spins, it requires a longer time to implement a π pulse
(perhaps with a lower fidelity). However, in a small spin system
(∼3–5spins), it is feasible to find a reasonable solution with
a high enough fidelity to achieve the local rotation by this
method. For instance, in the C-H-F system, the π/2 pulse
UC

n (π/2) is constructed with the gate fidelity of around 0.9998
via Eq. (8), where the π pulses are implemented as above. The
whole sequence is illustrated in Fig. 1. By a similar procedure,
local rotations on two or more different spins can also in
principle be achieved.

Very recently, other methods have been found to achieve
control with spin-species selectivity [20] or transition selec-
tivity [25] in zero-field NMR. For example, the high-field
selectivity in zero-field NMR is used by temporarily applying a
magnetic field on the sample, allowing one to apply ac pulses
that individually address different spin species, such as that
in high-field NMR [20]. In principle, this method is feasible
for the implementation of arbitrary single-qubit gates if all
gyromagnetic ratios are different, as the operators are almost
the same as those in high-field NMR quantum information
processing. Furthermore, transition-selective pulses have been
demonstrated in zero-field NMR [25] which can also be

implemented by the set of universal logic gates presented in
this paper.

IV. TWO-QUBIT CONTROLLED-NOT GATE

In order to to achieve universal control on a multispin
system, one still needs a two-qubit gate, e.g., the controlled-
NOT gate between spin i and spin j . Its matrix form in the
Iz basis {|0〉i |0〉j ,|0〉i |1〉j ,|1〉i |0〉j ,|1〉i |1〉j } with Iz|0〉 = 1

2 |0〉
and Iz|1〉 = − 1

2 |1〉 reads

CNOTij =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, (11)

where spin i (the high bit) is the control spin, and spin j (the
low bit) is the target spin. This operation flips spin j (target
spin) when spin i (control spin) is in the state |1〉 and does
nothing when spin i is in the state |0〉. This operation can be
further decomposed into [34]

CNOTij =
√

iU i
z

(π

2

)
Uj

z
†
(π

2

)
Uj

x

(π

2

)
U (i,j )

zz

(π

2

)
Uj

y

(π

2

)
,

(12)

in which

U (i,j )
zz (θ ) = e−iH

(i,j )
0 tUj

z (π )e−iH
(i,j )
0 tUj

z
†(π ), (13)

where H
(i,j )
0 = 2πJij Ii · Ij and θ ≡ 2πJij t for Jij > 0. An

arbitrary single-qubit gate Ui
α or U

j
α (θ ) (α = x, y, or z) is

realized by the method in Sec. III. If Jij < 0, CNOTij is realized
by CNOT

†
ij as CNOTij = CNOT

†
ij and the free evolution under

H
(i,j )
0 is a conjugate to one with the case of Jij > 0.
For spin systems with n spins (n > 2), the main barrier to

implementing the controlled-NOT gate is the implementation
of U

(i,j )
zz (θ ) in a large coupled spin network, where only the

coupling H
(i,j )
0 is active. To achieve this, one needs to turn off

the undesired couplings, as achieved by refocusing schemes
[35] in high-field NMR. This is, however, somewhat more
complicated in zero-field NMR.

Consider a complex spin network where all spin pairs are
coupled, e.g., an example shown in Fig. 2(a). Let us first
analyze a basic pulse sequence shown in Fig. 2(e),

U = U (τ0)U 1···n
z (θ1, . . . ,θn)U (τ0)U 1···n

z
†(θ1, . . . ,θn)

×U 1···n
y (θ1, . . . ,θn)U (τ0)U 1···n

y
†(θ1, . . . ,θn)

×U 1···n
x (θ1, . . . ,θn)U (τ0)U 1···n

x
†(θ1, . . . ,θn), (14)

with U (τ0) = e−iH0τ0 and U 1,2,...,n
α (θ1,θ2, . . . ,θn) =

U 1
α (θ1)U 2

α (θ2) · · · Un
α (θn) (α = x,y,z) [θm = 0 if m does

not appear on the upper index of U 1,...
α (θ1, . . .)]. By

average Hamiltonian theory [36], one gets the zero-order
approximation for τ0 → 0,

U ≈ e
−iτ0[H0+

∑
α=x,y,z

U 1···n
α (θ1···θn)H0U

1···n
α

†(θ1···θn)]
. (15)
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FIG. 2. Multiple pulse sequence for implementing the zero-order average Hamiltonian H̄(0) = H
(1,2)
0 in a complex n-spin network: (a)–(d)

for the diagram of the spin network and (e)–(g) for the corresponding concatenated pulse sequence.

Here,

U 1···n
α (θ1 · · · θn)H0U

1···n
α

†(θ1 · · · θn)

=
n∑

i<j,=1

U 1···n
α (θ1 · · · θn)H (i,j )

0 U 1···n
α

†(θ1 · · · θn)

=
n∑

i<j,=1

2πJij [IiαIjα + IiβIjβ cos(θi − θj )

+Iiγ Ijγ cos(θi − θj )]

+
n∑

i<j,=1

2πJij [Iiγ Ijβ sin(θi − θj )

+IiβIjγ sin(θj − θi)], (16)

where {α,β,γ } is the cyclic permutation of {x,y,z}. Relations
such as e−iθIiα IiαeiθIiα = Iiα and e−iθIiα IiβeiθIiα = Iiβ cos θ +
Iıγ sin θ are used. Hence one gets

H
(i,j )
0 +

∑
α=x,y,z

U 1···n
α (θ1 · · · θn)H (i,j )

0 U 1···n
α

†(θ1 · · · θn)

=
{

0, θi − θj = (2rij − 1)π,

4H
(i,j )
0 , θi − θj = 2rijπ,

(17)

where rij is any integer. This property shows that one can turn
on or turn off the coupling H

(i,j )
0 by choosing the rotation

angles θi and θj . The simplest choices of θi and θj are the
integer multiples of π . For example, by setting

θ1 = θ2 = π, θj = 0 for j = 3,4 . . . ,
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Eq. (14) is rewritten as

U = U (τ0)U 1,2
z (π,π )U (τ0)U 1,2

z
†(π,π )U 1,2

y (π,π )

×U (τ0)U 1,2
y

†(π,π )U 1,2
x (π,π )U (τ0)U 1,2

x
†(π,π )

= U (τ0)U 1,2
z (π,π )U (τ0)U 1,2

x (π,π )

×U (τ0)U 1,2
z

†(π,π )U (τ0)U 1,2
x

†(π,π ), (18)

up to a normalized phase factor, as shown in Fig. 2(e). Thus,
as obtained from Eq. (17), the average Hamiltonian during the
pulse sequence is

H̄(0) = H0 +
∑

α=x,y,z

U 1,2
α (π,π )H0U

1,2
α

†(π,π )

= 4

⎛
⎝H

(1,2)
0 +

n∑
i<j,=3

H
(i,j )
0

⎞
⎠. (19)

After the sequence, the spin network shown in Fig. 2(a) is
decoupled into two uncoupled subsystems: the pair of spin 1
and 2, and the rest of the network consisting of all the other
spins 3, . . . ,n, as shown in Fig. 2(b). However, the implemen-
tation of a CNOTij gate in an n-qubit system requires keeping
only 2πJij Ii · Ij while turning off all of the other couplings.
This can be achieved via a concatenated scheme by recursively
building on the base sequence [·]Zk[·]Xk[·]Z†

k[·]X†
k , as shown

in Fig. 2. Here, Xk ≡ U
i,j
x (π,π ) (k = 1) or Uk+1

x (π ) (k > 1)
and Zk ≡ U

i,j
z (π,π ) (k = 1) or Uk+1

z (π ) (k > 1). The se-
quence is initialized as

P0(τ0) = U (τ0), (20)

and higher levels are generated via the rule

Pk+1(τk+1) = [Pk(τk)]Zk[Pk(τk)]Xk[Pk(τk)]Z†
k[Pk(τk)]X†

k,

where τk = 4kτ0. By setting θ1 = θ2 = π and θm = 0 for
m > 2 in the first-levelP1, an n-spin coupled system is divided
into two subsystems: 1 + 2 and 3 + 4 + · · · + n. Spin 3 is
further decoupled from the subsystem 3 + 4 + · · · + n and
keeps the 1 + 2 subsystem unchanged in the second-level
P2 with θ3 = π and θm = 0 for m �= 3. The (n − 2)th-level
procedure is required until all the spins in the subsystem
3 + 4 + · · · + n are decoupled, and the coupling between spin
1 and 2 is kept. The procedure is shown schematically in
Fig. 2. Thus U (1,2)

zz (θ ) = e−iH
(1,2)
0 tU 1

z (π )e−iH
(1,2)
0 tU 1

z
†(π ) with

θ = 4πJ12t . In order to implement the CNOT12 gate, the total
time under H

(1,2)
0 is T = 4τn−3 = 4n−2τ0 = 1

4J12
.

For a three-spin system, CNOT12 is realized by the first-level
sequence with τ0 = 1/(16J12),

P1 : θ1 = θ2 = π, θ3 = 0.

The pulse sequence for realizing CNOTCH is numerically simu-
lated for the 13C-1H-19F system (diethyl fluoromalonate) [37]
with J -coupling constants J12 = 160.7 Hz, J13 = −194.4 Hz,
J23 = 47.6 Hz. The gate fidelity is about 0.9993 if the J

coupling is neglected during the evolutions and all single-qubit
gates required are assumed to be perfect. If single-qubit gates
are achieved via the method discussed in Sec. III, the gate
fidelity is about 0.9927.

The procedure can be slightly modified to simultaneously
realize several nonconnected CNOTij operations. For example,
the zero-order average Hamiltonian H̄(0) = H

(1,2)
0 + H

(3,4)
0 can

be generated by setting θ3 = θ4 = π , θj = 0 for j �= 3 or 4 in
the second-level sequenceP2, while maintaining the rest of the
above procedure unchanged (J12,J34 is unchanged while the
rest of the couplings are turned off). U (1,2)

zz (θ1) and U (3,4)
zz (θ2)

can be simultaneously implemented by

U (1,2)
zz (θ1)U (3,4)

zz (θ2) = e
−i

[
H

(1,2)
0 +H

(3,4)
0

]
t
U 2,4

z (π,π )

×e
−i

[
H

(1,2)
0 +H

(3,4)
0

]
t
U 2,4

z
†(π,π ), (21)

with θ1 = 2πJ12t and θ2 = 2πJ34t . When J12 = J34, U (1,2)
zz (π

2 )
and U (3,4)

zz (π
2 ) can be simultaneously directly implemented by

Eq. (21). When J12 �= J34, e.g., J12 < J34,

U (1,2)
zz

(π

2

)
U (3,4)

zz

(π

2

)
= e−iH (1,2)t2e

−i
[
H

(1,2)
0 +H

(3,4)
0

]
t1

×U 2,4
z (π,π )e−iH (1,2)t2

×e
−i

[
H

(1,2)
0 +H

(3,4)
0

]
t1
U 2,4

z
†(π,π ),

where t1 = 1
4J34

and t2 = 1
4J12

− 1
4J34

. Therefore, CNOT12 and
CNOT34 can be simultaneously implemented via

CNOT12;34 = iU 1,3
z

(π

2
,
π

2

)
U 2,4

z
†
(π

2
,
π

2

)
U 2,4

x

(π

2
,
π

2

)

×U (1,2)
zz

(π

2

)
U (3,4)

zz

(π

2

)
U 2,4

y

(π

2
,
π

2

)
.

Without loss of generality, Jij > 0 is assumed.

V. CONCLUSION

In summary, we have discussed the topic of universal
control in zero-field NMR. Unlike the case in high-field
NMR where nuclear spins can be individually addressed
by different frequencies of rf irradiation, here nuclear spins
are distinguishable by different gyromagnetic ratios and/or
J -coupling constants. A general method is developed to
design the pulse sequences for implementing a set of universal
logic gates, i.e., arbitrary single-qubit gates and a two-qubit
controlled-NOT gate for nuclear spins in zero magnetic field
where all spins have different gyromagnetic ratios. This
provides an operational method to achieve universal control
for such systems. This method is experimentally feasible for
some small real spin systems, such as formic acid [8], diethyl
fluoromalonate [37], acetonitrile [5], and so on. While the
method can in principle be applied to some large spin systems,
there will always be practical limitations with this protocol
due to the exponential scaling of resource requirements with
the number of qubits, e.g., the number of π pulses.

Moreover, attention should be paid to some simplifications
by neglecting the effect of J coupling, the relaxation, and mag-
netic field inhomogeneity in the calculation of the gate fidelity.
As in high fields, we can combine further this current method
with the methods of self-refocusing shaped pulses [38,39],
composite pulses [40], and numerical optimization [41], and
so on. A numerical method is currently underway as our next
work and will be described elsewhere. We expect the study
of universal control in zero-field NMR will offer promising

052342-5



JI BIAN et al. PHYSICAL REVIEW A 95, 052342 (2017)

applications in materials science, chemistry, biology, quantum
information processing, and fundamental physics.
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