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We experimentally demonstrate the efficacy of a three-layer nested Uhrig dynamical decoupling (NUDD)
sequence to preserve arbitrary quantum states in a two-dimensional subspace of the four-dimensional two-qubit
Hilbert space on a nuclear magnetic resonance quantum information processor. The effect of the state preservation
is studied first on four known states, including two product states and two maximally entangled Bell states. Next,
to evaluate the preservation capacity of the NUDD scheme, we apply it to eight randomly generated states in the
subspace. Although, the preservation of different states varies, the scheme, on the average, performs very well.
The complete tomographs of the states at different time points are used to compute fidelity. State fidelities using
NUDD protection are compared with those obtained without using any protection. The nested pulse schemes are
complex in nature and require careful experimental implementation.
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I. INTRODUCTION

Dynamical decoupling (DD) sequences have found wide-
spread application in quantum information processing (QIP),
as strategies for protecting quantum states against decoherence
[1]. For a quantum system coupled to a bath, the DD sequence
decouples the system and bath by adding a suitable decoupling
interaction, periodic with cycle time 7 to the overall system-
bath Hamiltonian [2]. After N applications of the cycle for a
time N T, the system is governed by a stroboscopic evolution
under an effective average Hamiltonian, in which system-bath
interaction terms are no longer present.

The simplest DD sequences were motivated by early
nuclear magnetic resonance (NMR) spin-echo-based schemes
for coherent averaging of unwanted interactions [3] and
used periodic time-symmetrized trains of instantaneous m
pulses (equally spaced in time) to suppress decoherence.
More sophisticated DD schemes are of the Uhrig dynamical
decoupling (UDD) type, wherein the pulse timing in the DD
sequence is tailored to produce higher-order cancellations in
the Magnus expansion of the effective average Hamiltonian,
thereby achieving system-bath decoupling to a higher order
and hence stronger noise protection [4—8]. UDD schemes are
applicable when the control pulses can be considered as ideal
(i.e., instantaneous) and when the environment noise has a
sharp frequency cutoff [9-12]. These initial UDD schemes
dealt with protecting a single qubit against different types of
noise—and were later expanded to a whole host of optimized
sequences involving nonlocal control operators—to protect
multiqubit systems against decoherence [13—19]. Quantum
entanglement is considered to be a crucial resource for QIP, and
several studies have explored the efficacy of UDD protocols
in protecting such fragile quantum correlations against decay
[20-22]. The experimental performance of UDD schemes
has been demonstrated for trapped ion qubits undergoing
dephasing [23,24], for electron spin qubits decohering in a spin

“harpreetsingh @iisermohali.ac.in
farvind @iisermohali.ac.in
fkavita@iisermohali.ac.in

2469-9926/2017/95(5)/052337(8)

052337-1

bath [25], and for NMR qubits [26-28]. The freezing of state
evolution using super-Zeno sequences was experimentally
demonstrated using NMR [29], and DD sequences were inter-
leaved with quantum gate operations in an electron-spin qubit
of a single nitrogen-vacancy center in diamond [30]. Optimal
experimental dynamical decoupling of both longitudinal and
transverse relaxation was demonstrated on two NMR qubits
using quadratic dynamical decoupling, periodic dynamical
decoupling, and concatenated dynamical decoupling schemes
[31]. Non-QIP applications of DD schemes include their usage
for enhanced contrast in magnetic resonance imaging of tissue
samples [32] and for suppression of NMR relaxation processes
while studying molecular diffusion via pulsed field gradient
experiments [33].

While UDD schemes can well protect states against single-
and two-axis noise (i.e., pure dephasing and/or pure bit-
flip), they are not able to protect against general three-axis
decoherence [34]. Nested UDD (NUDD) schemes were hence
proposed to protect multiqubit systems in generic quantum
baths to arbitrary decoupling orders by nesting several UDD
layers, and it was shown that the NUDD scheme can preserve
a set of unitary Hermitian system operators (and hence all
operators in the Lie algebra generated from this set of oper-
ators) that mutually either commute or anticommute [35,36].
Furthermore, it was proved that the NUDD scheme is univer-
sal; i.e., it can preserve the coherence of m coupled qubits by
suppressing decoherence up to order N, independent of the
nature of the system-environment coupling [37]. Recently, a
theoretical proposal examined in detail the efficiency of NUDD
schemes in protecting unknown randomly generated two-qubit
states and showed that such schemes are a powerful approach
for protecting quantum states against decoherence [38].

This work focuses on the preservation of arbitrary states
in a known two-dimensional subspace using appropriate
NUDD sequences on a two-qubit NMR quantum information
processor. Several interesting QIP phenomena have been
recently demonstrated using two NMR qubits, including the
quantum simulation of the Avian compass [39], the observation
of time-invariant coherence at room temperature [40], and
the detection of quantum entanglement using random local
measurements [41]. We first evaluate the efficacy of protection
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of the NUDD scheme by applying it on four specific states
of the subspace P = {|01),]10)}, i.e., two separable states,
|01) and |10), and two maximally entangled singlet and
riplet Bell states, —=(|01) — [10)) and —=(|01) +101)), in a
four-dimensional two-qubit Hilbert space. Next, to evaluate
the effectiveness of the NUDD scheme on the entire subspace,
we randomly generate states in the subspace P (considered
as a superposition of the known basis states |01),[10)) and
protect them using NUDD. We randomly generate eight states
in the two-qubit subspace and protect them using a three-layer
NUDD sequence. Full state tomography is used to compute
the experimental density matrices. We allow each state to
decohere, and compute the state fidelity at each time point
without protection and after NUDD protection. The results are
presented as a histogram and show that while NUDD is always
able to provide some protection, the degree of protection varies
from state to state.

This is the first experimental demonstration of the efficacy
of NUDD sequences in protecting arbitrary states in a two-
qubit subspace against arbitrary noise, up to a high order.
Although NUDD schemes are designed to be independent
of any noise-model assumptions and also do not require
a priori information about the state to be protected, they
are experimentally challenging to implement as they involve
repeating cycles of several dozen rf pulses. Nevertheless,
their efficacy in suppressing decoherence to higher orders
in multiqubit systems makes them promising candidates for
realistic QIP. Our experiments are hence an important step
forward in the protection of general quantum states against
general decoherence.

This paper is organized as follows. Section II briefly
recapitulates the NUDD scheme for two qubits and gives
details of how the nesting of three layers of UDD is
constructed in order to protect the diagonal populations and
the off-diagonal coherences against decoherence. The explicit
quantum circuit and corresponding NMR pulse sequences to
implement NUDD on two qubits is given in Sec. III A. The
results of experimentally protecting four specific states in the
known subspace are described in Sec. IIIB. Section IIIC
contains a detailed description of the NUDD protection of
a randomly generated set of arbitrary states in the subspace
of two NMR qubits. Finally, Sec. IV offers some concluding
remarks.

II. THE NUDD SCHEME

Consider a two-qubit quantum system with its state space
spanned by the states {|00) |01) [10),]11)}, the eigenstates
of the Pauli operator o ® a . Our interest is in protecting
states in the subspace P spanned by states {|01),]10)}, against
decoherence. The density matrix corresponding to an arbitrary
pure state ) = «|01) + B]10) belonging to the subspace P
is given by

0 0 0 0
{0 je? e 0O
:O(t)— 0 ﬂOl* |ﬂ|2 ol (l)

0 O 0 0

with the coefficients o and g satisfying |«|> + |B]*> = 1 at time
t = 0. We briefly describe here the theoretical construction of
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a three-layer NUDD scheme to protect arbitrary states in the
two-qubit subspace P [13,38].

The general total Hamiltonian of a two-qubit system
interacting with an arbitrary bath can be written as

Hio = Hs + Hp + Hjp + His, )

where Hy is the system Hamiltonian, Hp is the bath Hamil-
tonian, Hp is qubit-bath interaction Hamiltonian, and Hj; is
the qubit-qubit interaction Hamiltonian (which can be bath
dependent). Our interest here is in bath-dependent terms and
their control, which can be expressed using a special basis set
for the two-qubit system as [13,38]

H = Hg+ Hjp + Hip = Hy+ H,,

10 16
Hy=) W;Y;, H=) Wy &)
j=1

j=l11

where the coefficients W; contain arbitrary bath operators. Y
represents the special ba51s computed from the perspective of
preserving the subspace spanned by the states {|01),[10)} in
the two-qubit space [13,38]:

Y1 =1, Y, = |01)(01] + [10)(10],
Y3 = 00)(11], Y4 =100)(00] — [11)(11],
Ys = [11)(00],  Ys = |01)(01] — [10)(10],
Y; = |10){00|, Yg = 100)(10],
Yo = [10)(11], Yo = [11)(10],
Y1 = [01){00], Y12 = [00)(01],

) (

11}, Y4 = |11)(01],
Y15 = [01)(10] 4 [10)(01],
Y16 = —i(|10)(01] — |O1)(10}). “4)

The recipe to design UDD protection for a two-qubit state
(say |x)) is given in the following steps. (i) First a control
operator X, is constructed using X, = I — 2|x) (x| such that
XZ = [, with the commuting relation [X.,Hy] = 0 and the
anticommuting relation {X.,H;} = 0. (ii) The control UDD
Hamiltonian is then applied so that system evolution is now
under a UDD-reduced effective Hamiltonian, thus achieving
state protection up to order N. (iii) Depending on the explicit
commuting or anticommuting relations of X, with Hy and H;,
the UDD sequence efficiently removes a few operators Y; from
the initial generating algebra of H and hence suppresses all
couplings between the state |x) and all other states.

To protect the general two-qubit state |Y) in P against
decoherence using NUDD, it has to be locked by nesting three
layers of UDD sequences.

Innermost UDD layer. The diagonal populations
Tr[p(£)|01)(01]] ~ |a|? are locked by this UDD layer with the
control operator Xy = I — 2|01)(01]. The reduced effective
Hamiltonian is given by HelftDD ! Z}il D, ;Y;, where D, ;
refer to the expansion coefficients of this first UDD layer.
Terms containing basis operators Y, ---Yj¢ are efficiently
decoupled.

Second UDD layer. The diagonal populations
Tr[p(¢)|10)(10|] ~ |B|*> are locked by this second UDD
layer with the control operator X; = I — 2[10)(10|. This
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UDD sequence is applied to the reduced effective Hamiltonian

HSPP~! (defined in the step above), yielding a further reduced

effective Hamiltonian Hng D-2 — 21'6:1 D, ;Y;, where D;
refer to the expansion coefficients of this second UDD layer.
Terms containing basis operators Y7 ---Yjy are efficiently
decoupled.

Outermost UDD layer. The oft-diagonal coherences
Tr[p(#)|01)(10]] ~ af* are locked by this final UDD layer
with the control operator X4 =1 — [|01) 4 [10)][(01] 4 (10[].
The final reduced effective Hamiltonian after the three-
layer NUDD contains five operators: Helf]fD D=3 — Zle D5 Y,
where D3 ; are the coefficients due to three UDD layers.

The innermost UDD control X pulses are applied at the
time intervals 7 ;, the middle layer UDD control X pulses
are applied at the time intervals T x, and the outermost UDD
control X4 pulses are applied at the time intervals 7; (j,k,l =
1,2,...,N) given by

-2 T
Tjkt = Tjx+ (Tjkts = Tjx) sin <2N + 2)’

.2
Tix =T;+ (Tj+1 — Tj)sin <2N +2>,

T, = Tsin® | =2 ). (5)
IN 12

The total time interval in the Nth-order sequence is (N + 1)3,
with the total number of pulses in one run being given by
N[(N + 1)+ N + 2] for even N [38].

III. EXPERIMENTAL PROTECTION OF TWO
QUBITS USING NUDD

A. NMR implementation of NUDD

We now turn to the NUDD implementation for N = 2 on
a two-qubit NMR system. The entire NUDD sequence can be
written in terms of UDD control operators X, X, X (defined
in the previous section) and time evolution U (§;¢) under the
general Hamiltonian for time interval fractions §;:

Xc(#) = U10)XoU (820)XoU (831) X1U (842) XoU (851) Xo
U(861)X1U(878) XU (831) XU (891) X o U (8102) X0
Uun)XoUS120)X1U (8131) XoU (8141) XoU (8151)
X1U((8161)XoU (8178) XU (818) X U (8191)

XoU (8201)XoU (8218) X1U (8221) XoU (82317)

XoU(8241)X1U (8251) XU (8261) X0 U (8271). (6)
In our implementation, the number of Xy, X, and X4 control
pulses used in one run of the three-layer NUDD sequence are
18, 6, and 2, respectively.

Using the UDD timing intervals defined above and applying
the condition ) §; = 1, their values are computed to be

{6} = {B.28.B.2B.48.2B.8.28.8.28.4B.28.4B.88,
4B.28.48.26.8.28.8.28,48.28.8.26.8}, (1)

where the intervals between the X, X, and X control pulses
turn out to be a multiple of 8 = 0.015 625.
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FIG. 1. (a) Circuit diagram for the three-layer NUDD sequence.
The innermost UDD layer consists of X, control pulses, the middle
layer comprises X, control pulses, and the outermost layer consists
of X4 pulses. The entire NUDD sequence is repeated M times; A;
are time intervals. (b) NMR pulse sequence to implement the control
pulses for X, and X; UDD sequences. The values of the rf pulse
phases ¢, and ¢, are set to x and y for the X, and to —x and —y
for the X; UDD sequence, respectively. (c) NMR pulse sequence to
implement the control pulses for the X, UDD sequence. The solid
rectangles denote /2 pulses while the empty rectangles denote
pulses, respectively. The time period 7y, is set to the value (2J12)7!,
where Jj, denotes the strength of the scalar coupling between the two
qubits.

The NUDD scheme for state protection and the correspond-
ing NMR pulse sequence is given in Fig. 1. The unitary gates
X0, X1, and X4 drawn in Fig. 1(a) correspond to the UDD
control operators already defined in the previous section. The
A; time interval in the circuit given in Fig. 1(a) is defined by
A; = §;t, using the §; given in Eq. (7). The pulses on the top
line in Figs. 1(b) and 1(c) are applied on the first qubit ('H
spin in Fig. 2), while those at the bottom are applied on the
second qubit (1*C spin in Fig. 2), respectively. All the pulses
are spin-selective pulses, with the 90° pulse length being 7.6
and 15.6 us for the proton and carbon rf channels, respectively.
When applying pulses simultaneously on both the carbon and
the proton spins, care was taken to ensure that the pulses
are centered properly and the delay between two pulses was
measured from the center of the pulse duration time. We note
here that the NUDD schemes are experimentally demanding
to implement as they contain long repetitive cycles of rf pulses
applied simultaneously on both qubits and the timings of the
UDD control sequences were matched carefully with the duty
cycle of the rf probe being used.
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FIG. 2. (a) Structure of isotopically enriched chloroform-'*C
molecule, with the 'H spin labeling the first qubit and the '*C
spin labeling the second qubit. The system parameters are tabulated
alongside with chemical shifts v; and scalar coupling Jy; (in Hz)
and NMR spin-lattice and spin-spin relaxation times 7} and 75 (in
seconds). (b) NMR spectrum obtained after a 7 /2 readout pulse on the
thermal equilibrium state and (c) NMR spectrum of the pseudopure
|00) state. The resonance lines of each qubit in the spectra are labeled
by the corresponding logical states of the other qubit.

We chose the chloroform-'*C molecule as the two-qubit
system to implement the NUDD sequence (see Fig. 2 for details
of system parameters and average NMR relaxation times of
both the qubits). The two-qubit system Hamiltonian in the
rotating frame [which includes the Hamiltonians Hg and H,
of Eq. (2)] is given by

Hyo =27 [ (v — i) I + (ve = vQ) IS + JIPIS], (8)

where vy (vc) is the chemical shift of the 1H(BC) spin, v{f is the
rotating frame frequency (virf = v; for on-resonance), IZH(IZC)
is the z component of the spin angular momentum operator for
the '"H(**C) spin, and J}, is the spin-spin coupling constant.

The two qubits were initialized into the pseudopure state
|00) using the spatial averaging technique [42], with the
corresponding density operator given by

1—¢€
Po0 = TI + €]00){00], 9

with a thermal polarization € ~ 107 and I being a 4x4
identity operator. All experimental density matrices were
reconstructed using a reduced tomographic protocol [43]
and the maximum likelihood estimation technique [44]. The
fidelity of an experimental density matrix was computed by
measuring the projection between the theoretically expected
and experimentally measured states using the Uhlmann-Jozsa
fidelity measure [45,46],

F = [Tr(\/\/ptheorypexpl\/plheory)]za (10)

where pgeory and pexpe denote the theoretical and experimental
density matrices, respectively. The experimentally created
pseudopure state |00) was tomographed with a fidelity of 0.99.

B. NUDD protection of known states in the subspace

We begin evaluating the efficiency of the NUDD scheme
by first applying it to protect four known states in the
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FIG. 3. Plot of fidelity versus time for (a) the |01) state and
(b) the [10) state, without any protection and after applying NUDD
protection. The fidelity of both the states remains close to 1 for up to
long times, after NUDD protection.

two-dimensional subspace P, namely two separable and two
maximally entangled (Bell) states.

Protecting two-qubit separable states. We experimentally
created the two-qubit separable states |01) and |10) from the
initial state |00) by applying a . on the second qubit and on
the first qubit, respectively. The states were prepared with a
fidelity of 0.98 and 0.97, respectively. One run of the NUDD
sequence took 0.127 56 s, which included the time taken
to implement the control operators, and t = 0.05 s [as per
Eq. (6)]. The entire NUDD sequence was applied 40 times. The
state fidelity was computed at different time instants, without
any protection and after applying NUDD protection. The state
fidelity remains close to 0.9 for long times (up to 5 s) when
NUDD is applied, whereas for no protection the |01) state loses
its fidelity (fidelity approaches 0.5) after 3 s and the |10) state
loses its fidelity after 2 s. A plot of state fidelities versus time is
displayed in Fig. 3, demonstrating the remarkable efficacy of

X X -X-y X—y X -X
eRr A X X
|
|
N ] —~
jus ™ 0 s
Toxoad Yy ox x$ R
| —‘ E)
I =
1B : s
T12 | T12
o H
G |
|00){00| '

State Initialization,

FIG. 4. NMR pulse sequence for the preparation of random states.
The sequence of pulses before the vertical dashed red line achieve
state initialization into the |00) state. The values of flip angles 6 and
¢ of the rf pulses are the same as the 6 and ¢ values describing a
general state in the two-dimensional subspace P = {|01),|10)}. Solid
and empty rectangles represent 5 and 7 pulses, respectively, while all
other rf pulses are labeled with their respective flip angles and phases;
the interval 7y, is set to (2J,)~!, where Jj, is the scalar coupling.
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FIG. 5. Real (left) and imaginary (right) parts of the experimental
tomographs of the (a) %QOI) — |10)) state, with a computed fidelity
0f 0.99. Panels (b)—(e) depict the state at 7 =0.28, 0.55, 0.83, 1.10s,
with the tomographs on the left and the right representing the
state without any protection and after applying NUDD protection,
respectively. The rows and columns are labeled in the computational
basis ordered from |00) to |11).

the NUDD sequence in protecting separable two-qubit states
against decoherence.

Protecting two-qubit Bell states. We next implemented
NUDD protection on the maximally entangled singlet state
%2(|()1) — |10)). We experimentally constructed the singlet
state from the initial |00) state via the pulse sequence given in
Fig. 4 with values of # = —7 and ¢ = 0. The fidelity of the
experimentally constructed singlet state was computed to be
0.99. One run of the NUDD sequence took 0.277 56 s, and ¢
was kept att = 0.2 s. The entire NUDD sequence was applied
4 times on the state. The singlet state fidelity at different time
points was computed without any protection and after applying
NUDD protection, and the state tomographs are displayed in
Fig. 5 (tomographs for other states not shown). The fidelity
of the singlet state remained close to 0.8 for 1 s when NUDD
protection was applied, whereas when no protection is applied
the state decoheres (fidelity approaches 0.5) after 0.55 s.
We also implemented NUDD protection on the maximally
entangled triplet state \%(lOl) + |10)). We experimentally

constructed the triplet state from the initial |00) state via the
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FIG. 6. Plot of fidelity versus time for (a) the Bell singlet state
and (b) the Bell triplet state, without any protection and after applying
NUDD protection.

pulse sequence given in Fig. 4 with values of 6 = % and

¢ = 0. The fidelity of the experimentally constructed triplet
state was computed to be 0.99. The total NUDD time was
kept at = 0.2 s, and one run of the NUDD sequence took
0.277 56 s. The entire NUDD sequence was repeated 4 times
on the state. The state fidelity at different time points was
computed without any protection and after applying NUDD
protection. The fidelity of the triplet state remained close to
0.71 for 0.28 s when NUDD protection was applied, whereas
when no protection is applied the state decoheres quite rapidly
(fidelity approaches 0.5) after 0.28 s. A plot of state fidelities
of both Bell states versus time is displayed in Fig. 6. While
the NUDD scheme was able to protect the singlet state quite
well (the time for which the state remains protected is double
as compared to its natural decay time), it is not able to extend
the lifetime of the triplet state to any appreciable extent. What
is worth noting here is the fact that the state fidelity remains
considerably higher under NUDD protection compared to no
protection, implying that there is a reduction in the “leakage”
to other states.

01)

RS-6

RS-1

10)

FIG. 7. Geometrical representation of eight randomly generated
states on a Bloch sphere belonging to the two-qubit subspace P =
{|01),]10)}. Each vector makes angles 6,¢ with the z and x axes,
respectively. The state labels RS-i (i = 1, ...,8) are explained in the
text.
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FIG. 8. Bar plots of fidelity versus time of eight randomly
generated states (labeled RS-i,i =1, ...,8), without any protection
(blue cross-hatched bars) and after applying NUDD protection (red
solid bars): (a) RS-1, (b) RS-2, (c) RS-3, (d) RS-4, (e) RS-5, (f) RS-6,
(g) RS-7, and (h) RS-8. (i) Bar plot showing average fidelity of all
eight randomly generated states at each time point. The state labels
are explained in the main text.
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C. NUDD protection of unknown states in the subspace

We wanted to carry out an unbiased assessment of the
efficacy of the NUDD scheme for state protection. To this end,
we randomly generated several states in the two-dimensional
subspace P and applied the NUDD sequence on each state.

A general state in the two-qubit subspace P = {|01),]10)}
can be written in the form

0 0
) = cos§|01) +e¢ sin§|10). (11)

These states were experimentally created by using the values
of 6 and ¢ [Eq. (11)] as the flip angles of the rf pulses in
the NMR pulse sequence (see Fig. 4 for visualization). The
eight randomly generated representative two-qubit states are
shown in Fig. 7. The entire three-layer NUDD sequence was
applied 10 times on each of the eight random states. The time
t for the sequence was kept at + = 0.05 s and one run of
the NUDD sequence took 0.127 56 s. The plots of fidelity
versus time are shown as bar graphs in Fig. 8, with the blue
(cross-hatched) bars representing state fidelity without any
protection and the red (solid) bars representing state fidelity
after NUDD protection. The final bar plot in Fig. 8(i) shows
the average fidelity of all the randomly generated states at
each time point. The results of protecting these random states
via three-layer NUDD are tabulated in Table 1. Each state
has been tagged by a label RS-i (RS denoting “random state”
and i = 1,...,8), with its 6,¢ values displayed in the next
column. The fourth column displays the values of the natural
decoherence time (in seconds) of each state without NUDD
protection, estimated by computing the time up to which state
fidelity does not fall below 0.8. The last column in the table
displays the time for which the state remains protected after
applying NUDD, estimated by computing the time up to which
state fidelity does not fall below 0.8. While the NUDD scheme
is able to protect specific states in the subspace with varying
degrees of success (as evidenced from the entries in the last
column of in Table I), on an average, as seen from the bar plot
of the average fidelity in Fig. 8(i), the scheme performs quite
well.

TABLE I. Results of applying NUDD protection on eight randomly generated states in the two-dimensional subspace. Each random state
(RS) is tagged with a number for convenience, and its corresponding (0,¢) angles are given in the column alongside. The fourth column
displays the time at which the state fidelity approaches ~0.8 without NUDD protection, and the last column displays the time for which state

fidelity approaches ~0.8 after applying NUDD protection.

State Label (60,¢) (deg) Time (s) (F > 0.8) Time (s) (F > 0.8)
Without NUDD With NUDD
0.2869]01) + (0.9403 + :0.1828)|10) RS-1 (147,57) 0.1 1.0
0.1474]|01) — (0.7586 + 10.6346)|10) RS-2 (163,349) 0.3 1.1
0.9802|01) + (0.1079 — :0.1662)|10) RS-3 (23,345) 0.1 1.1
0.1356]01) + (0.3646 — :0.9212)|10) RS-4 (164,175) 0.3 1.1
0.9883|01) + (0.1048 + :0.1109)|10) RS-5 (18,51) 0.3 1.1
0.9058]01) + (0.2153 + :0.3648)|10) RS-6 (50,152) 0.1 0.9
0.0667|01) 4+ (—0.7693 + 10.6353)|10) RS-7 (172,285) 0.1 1.1
0.0551]01) + (0.9861 — 10.1570)|10) RS-8 (174,346) 0.3 1.1
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IV. CONCLUSIONS

We experimentally implemented a three-layer nested UDD
sequence on an NMR quantum information processor and
explored its efficiency in protecting arbitrary states in a
two-dimensional subspace of two qubits. The nested UDD
layers were applied in a particular sequence and the full
NUDD scheme was able to achieve second-order decoupling
of the system and bath. The scheme is sufficiently general as
it does not assume prior information about the explicit form
of the system-bath coupling. The experiments were highly
demanding, with the control operations being complicated
and involving manipulations of both qubits simultaneously.
However, our results demonstrate that such systematic NUDD
schemes can be experimentally implemented, and are able to
protect multiqubit states in systems that are arbitrarily coupled
to quantum baths.

The main advantage of the NUDD schemes lies in the fact
that one is sure that some amount of state protection will
always be achieved. Furthermore, one need not know anything

PHYSICAL REVIEW A 95, 052337 (2017)

about the state to be protected or the nature of the quantum
channel responsible for its decoherence. All one needs to know
is the subspace to which the state belongs. In summary, if
the QIP experimentalist has full knowledge of the state to be
protected, it is better to use UDD schemes that are not nested.
However, if there is only partial knowledge of the state, the QIP
experimentalist would do better to use these “generic” NUDD
schemes. Our study points the way to the realistic protection of
fragile quantum states up to high orders and against arbitrary
noise.
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