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Two-qubit entangling gates between distant atomic qubits in a lattice
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Arrays of qubits encoded in the ground-state manifold of neutral atoms trapped in optical (or magnetic) lattices
appear to be a promising platform for the realization of a scalable quantum computer. Two-qubit conditional
gates between nearest-neighbor qubits in the array can be implemented by exploiting the Rydberg blockade
mechanism, as was shown by D. Jaksch et al. [Phys. Rev. Lett. 85, 2208 (2000)]. However, the energy shift due
to dipole-dipole interactions causing the blockade falls off rapidly with the interatomic distance, and protocols
based on direct Rydberg blockade typically fail to operate between atoms separated by more than one lattice site.
In this work, we propose an extension of the protocol of Jaksch et al. for controlled-Z and controlled-NOT gates
which works in the general case where the qubits are not nearest neighbors in the array. Our proposal relies on
the Rydberg excitation hopping along a chain of ancilla noncoding atoms connecting the qubits on which the
gate is to be applied. The dependence of the gate fidelity on the number of ancilla atoms, the blockade strength,
and the decay rates of the Rydberg states is investigated. A comparison between our implementation of a distant
controlled-NOT gate and one based on a sequence of nearest-neighbor two-qubit gates is also provided.
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I. INTRODUCTION

It is now recognized that quantum computing holds the
promise of a new technological revolution. For instance, it
will enable solving efficiently complex optimization problems
or simulating efficiently many-body quantum systems to
understand new phases of matter or even biological systems.
A wealth of applications in the fields of artificial intelligence
and secure communications is also foreseen. The task to build
a quantum computer is, however, a considerable one. Different
paradigms have been proposed to build a universal quantum
computer [1], such as cluster-state [2,3] or gate-based quantum
computers [4]. The latter are composed of a qubit register on
which logic gates are applied. Any unitary operator acting
on the register can be approximated with arbitrary accuracy
by a sequence of operations from a set of universal quantum
gates composed of single-qubit operations and a two-qubit
entangling gate [4]. Although there is always a nonzero
probability of error per gate, quantum error correction and
fault-tolerant quantum computation open the door to accurate
and arbitrarily long quantum computations, provided the error
produced by single- and two-qubit gates does not exceed a
certain threshold [4]. High-fidelity quantum gates are thus
a major ingredient for scalable quantum computing. Several
platforms implementing a universal gate-based quantum com-
puter have been proposed (see, e.g., [1,5] for reviews), which
include neutral atoms [6], photons [7], trapped ions [8,9],
and superconducting circuits [10-12]. Cold neutral atoms
in optical or magnetic lattices represent a very promising
platform due to the long coherence time of the qubits encoded
in Zeeman or hyperfine ground states, the possibility to
address atoms individually [13-15], and the ability to produce
large arrays of qubits [5,6,16,17]. Moreover, deterministic
loading of one atom per lattice site in large arrays can be
achieved by relying on the superfluid-Mott insulator transition
in a cloud of ultracold atoms [15,18]. Recently, high-fidelity
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single-qubit gates using microwave fields have been reported in
a two-dimensional (2D) array of cesium atoms [19]. Different
schemes implementing two-qubit entangling gates on neutral
atoms have been proposed [20], one of which relies on the
dipole blockade [21]. By taking advantage of the strong
dipole-dipole interactions between atoms in Rydberg states
[22-26], it is possible to prevent any modifications of the
target’s atom state conditionally on the control’s atom state.
This concept has been demonstrated experimentally with the
implementations of two-qubit controlled-NOT (CNOT) [27-30]
and controlled-phase gates [30,31]. Note that interactions
between atoms in Rydberg states also allow us to implement,
in principle, quantum gates involving more than two qubits
[32,33]. Most of the protocols for the implementation of
two-qubit gates proposed so far operate between atoms that
are on adjacent lattice sites. However, in a large array of
qubits, it is highly desirable to be able to perform entangling
gates between arbitrarily far apart atoms in the lattice. A few
proposals addressing this problem have been made [34-39].
One idea put forward is to use a spin chain as a quantum bus
to perform quantum gates between distant qubits [34]. It is
based on the adiabatic following of the ground state of the
spin chain across the paramagnet to crystal phase transition.
Another proposal is to use moving carrier atoms of a different
species while mediating the quantum gate with molecular
states [35-37]. Alternatively, it has been suggested to transport
the state of the control qubit near the target qubit via optical
lattice modulations [38,39].

In this work, we propose to use a chain of ancilla noncoding
atoms to implement two-qubit entangling gates between atoms
arbitrarily far apart in the lattice. The ancilla atoms are used
as mediators to connect control and target atoms. Rydberg
excitation hopping along the chain of ancilla atoms enables
us to modify the state of the target atom conditionally on the
state of the control atom via Rydberg blockade. As such, our
protocol can be seen as a generalization of the one of Jaksch
et al. [21] to the case where the qubits are spatially separated.
More specifically, we present protocols that implement either
a CNOT gate or a modified control-Z (Cz) gate, represented in
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FIG. 1. (a) Qubits are encoded in a 1D chain of atoms (blue). A
parallel chain of ancilla noncoding atoms (green) is used to connect
the control and target qubits through the nearest-neighbor Rydberg
blockade (red arrows). (b) Internal structure of the qubit and ancilla
atoms. For clarity, the subscript denoting the atom to which the
different states belong is omitted.

the computational basis by the unitary matrices [40]
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This paper is organized as follows: In Sec. II, the system and
the master equation describing its time evolution are presented.
The section also contains a review of the process fidelity used
to assess the performance of our protocols in the presence
of errors. Section III is devoted to the description of the
protocol implementing two-qubit entangling gates between
atoms arbitrarily far apart in the lattice. In Sec. IV, we
present and discuss our results on the effects of dissipation and
imperfect blockade on the gate fidelity and compare, in terms
of performance, our protocol with implementations using only
nearest-neighbor two-qubit gates. Section V discusses some
experimental considerations and gives perspectives of our
work. A conclusion (Sec. VI) ends this paper.

II. SYSTEM AND ITS THEORETICAL DESCRIPTION

A. System and Hamiltonian

The physical system that we consider is a one-dimensional
(1D) chain of coding atoms (qubit atoms, labeled q) next to
a shifted parallel chain of noncoding atoms [ancilla atoms,
labeled A; see Fig. 1(a)]. This system could be implemented,
e.g., by loading an optical lattice with different atomic species
[26]. The protocol that we present in Sec. I1I also works for 2D
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or three-dimensional lattices. Here, we consider a 1D lattice
merely for computational convenience. The control (C) and
target (T) qubits are connected via a chain of n ancilla atoms,
as illustrated in Fig. 1(a).

Each atom, either qubit or ancilla, is assumed to be
individually addressable by laser pulses. Qubit atoms are
modeled by three-level systems in a A configuration [see
Fig. 1(b)], where the two lower states |04) and |14) encode the
qubit and the upper Rydberg state |ry) allows for dipole-dipole
interaction with either ancilla or qubit atoms. The transitions
[0g) <> |rq) and [14) <> |rq) can be resonantly driven by
laser pulses with constant Rabi frequencies 2y and i,
respectively. The Hamiltonian for a single-qubit atom in the
basis {|0g),[14),|rq)} thus reads

. 0 0 0)
Hy(t) = 2 0 0 Q]|. )
Qi Qi) 0

As only square pulses will be considered, €2;(f) =
(k = 0,1) whenever a pulse drives the transition |kq) <> [7rq),
and (1) = 0 otherwise.

The ancilla atoms are modeled as two-level systems with a
lower-energy state |g) and excited Rydberg state |e) resonantly
driven by laser pulses [see Fig. 1(b)]. In the basis {|g),|e)}, the
Hamiltonian for a single ancilla atom reads

N _h 0 Qa(t)

with Rabi frequency Q,4(¢) = 24 whenever a pulse drives the
transition |g) <> |e) and Q4(f) = 0 otherwise. As only the
control, target, and ancilla atoms take part in the gate protocol,
other qubit atoms will not be considered in our description of
the two-qubit gate.

Any two neighboring atoms, either qubit or ancilla, strongly
interact via dipole-dipole interactions when they are in a
Rydberg state. In the strong-interaction regime, this leads to
an effective energy shift of the doubly excited state, either
leieiv1), |rcrr), or |leirq) (@ = C,T) depending on the pair
of interacting atoms. When this energy shift is much larger
than the atom-laser interaction energy, only one atom can
be excited at a time to the Rydberg state, and the system
is said to exhibit dipole or Rydberg blockade [17,22,23,25].
Note that this phenomenon can also occur between atoms of
different species [26]. In order to model Rydberg blockade
in our system, we add to the system Hamiltonian terms
accounting for the energy shifts of the doubly excited states:
U,,|rcrr){rcrr| for the interaction between control and target
qubit atoms, U,.le;ej){e;e;| with i # j for the interaction
between ancilla atoms i and j, and U,.|rqe;)(rqe;| (@ = C,T)
for the interaction between qubit and ancilla atoms. The total
Hamiltonian of our system is thus

H(t) = Ho(t) + Vaa, 4
with
Aty =ASO+ B0+ A0 5)
j=1
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and

Vaa = U, lrerr)(rerr| + Z Uelrqe;)(rqe;|
q=C,T
na
+ ) Ueleie))eie;l. 6)
i#]
The next-nearest-neighbor energy shifts are also taken into

account assuming a resonant dipole-dipole interaction between
atoms in Rydberg states [41].

B. Master equation

Spontaneous deexcitation of the Rydberg states to lower-
energy states is one of the major sources of error in the
implementation of quantum gates relying on the dipole
blockade mechanism. In our system, we consider that the qubit
atoms can decay from the Rydberg state |r) to states |0) and |1)
with decay rates yy and y,, respectively, whereas the ancilla
atoms can decay from the Rydberg state |e) to the state |g)
with decay rate y4.

In order to take this source of dissipation into account, we
solve a master equation for the density operator g describing
the global state of the control, target, and n, ancilla atoms. Its
standard form reads

dp(r)
dt

| N
= —[H®.p0)]

+> > [sz(r)(L )! ——{(L )L, <r>}]

q=C,T k=0,1

+ Z [Lg,s(z)(Lg)T - —{(L )L, ﬁ(t)” 7

j=1

with the jump operators Lo= VY0 10)(r], L= Jri )],

and L, = . /va 1g)(e|. For convenience, we introduce the total
decay rate for the qubit atoms, yq = yo + y1.

C. Process fidelity

In order to assess the performance of our protocols
implementing CNOT and CZ gates against sources of error, we
compute the process fidelity Fy, [42]. The process fidelity
measures the difference between ideal and real quantum
processes. For an ideal unitary quantum process U, the process
fidelity between U and the real process specified by its
completely positive map £(-) takes the simple form [42,43]

Fyro(£,0) = ZTr[

where {AJ- j=1,... ,d?} is a basis for operators acting on
a d-dimensional Hilbert space that verifies the orthonormal-
ization condition Tr(A! A;) = d &;;. The process fidelity thus
corresponds to the overlap between an operator A ; evolved
with the ideal process and the same operator evolved with the
real process, averaged over all basis operators A ;. Itis related
to the average fidelity F,y, which quantifies the uniform average
over the whole Hilbert space of the overlap between U |) and

Uledpl®
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E(1Y) (¥ |) through [42-44]

d Fyro(E,0) + 1
d+1

The computation of the process fidelity involves the prop-
agation of d? operators under the process &£, which rapidly
becomes intractable as d increases. However, lower and upper
bounds of the process fidelity can be computed much faster
using only two complementary bases of pure states [45].
Consider a basis of d pure states {|¢,) :n=1,...,d} and
the complementary basis {|¢y) : k = 1, ... ,d}, defined as

|pe) = Zexp (—z kn)hm (10)

Introducing the classical fidelity of the process in a basis {|i) :
i =1,...,d} of the d-dimensional Hilbert space as

Fo(E,0) = ©)

U

FAE.0) = Z WOTEN EDDi). (11)

the following inequalities hold [45]:

Fy, + Fp — 1 < Fpo(€,0) < min(Fy,, Fy,),  (12)

where Fy, = Fy, (£,0) and Fy, = F¢k(5,0) are the classical
fidelities computed, respectively, in the bases {|v,,) } and {|¢%)}.
The expression Fy, + Fg — 1 is referred to as the Hofmann
bound on process fidelity. For these bounds to be computed, it
suffices to propagate 2d pure states instead of d” operators.

As in many other situations considering implementations
of quantum computing devices, the system of interest not only
contains the qubits but also includes ancilla subsystems or
noncoding sublevels needed in order to implement quantum
gates. As these ancilla systems or levels are generally in well-
defined states before and after the gate operation, computing
the fidelity on the whole Hilbert space may lead to overly
pessimistic error estimation. In order to avoid this problem,
the process fidelity can be computed using only a basis of
the relevant qubits subspace [44]. In the case of our distant-
qubit gate protocol, the relevant subspace is spanned by the
four states encoding the control and target qubits, whereas all
noncoding ancilla atoms are in their ground state. Therefore,
the process fidelity will be computed only for this subspace of
dimension d = 4.

III. PROTOCOL

Our protocol is a generalization of the one proposed in [21]
for the implementation of a two-qubit quantum gate for the
case where the qubits are spatially separated as encountered in
arrays of qubits encoded in the internal state of neutral atoms
trapped in an optical lattice. The basic idea of our proposal is to
use a chain of ancilla atoms to transfer the Rydberg excitation
that the control atom may carry, depending on its initial state,
near the target atom. This can again be performed by using
the Rydberg blockade. More specifically, we consider the case
in which control and target qubits are separated by n, ancilla
noncoding atoms (see Fig. 1). In the following, we assume that
the ancilla atoms are initially prepared in their ground state |g)
and that we operate in the strong-blockade regime (U > Q).
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FIG. 2. Pulse sequence implementing the CZ and CNOT gates. Note that the pulse sequence on ancilla atoms is the same regardless of the

parity of 5.

The generic pulse sequence implementing a given trans-
formation on the target qubit conditionally on the state of the
control qubit is illustrated in Fig. 2.

During the protocol, the transition of the control atom that
is to be driven depends both on the length n, of the chain of
ancilla atoms and on the particular two-qubit gate that is to
be implemented (in this work either CNOT or modified Cz).
The first part of the pulse sequence goes as follows: The first
7 pulse is applied to the control atom and drives only the
transition from one of the ground states (either |Oc) or |1¢))
to the Rydberg state |rc). It is followed by a & pulse acting
on the first ancilla atom A;. Due to the Rydberg blockade, if
the control atom is in |r¢), then A; stays in the ground state
|g1), while if the control atom is in the ground-state manifold,
then A gets excited to the Rydberg state |e;). Then, a second
7 pulse is applied on the control atom that brings it back to
its initial state. After these three pulses, the first ancilla atom
is in its ground state |g;) only if the control atom was excited
to its Rydberg state |r¢). Next, two 7 pulses are successively
applied to the second and first ancilla atoms A; and A;. The
first one excites A, to its Rydberg state |e;) only if Aj isin |gy).
The second pulse brings A back to its initial state. Note that if
A is initially in |g;), then the Rydberg blockade due to atom
A, prevents unwanted excitation of A;. At this stage of the
protocol, the ancilla atom A; is in the Rydberg state |e;) only
if the control atom was driven to |r¢) by the very first pulse of
the sequence. The same pattern that consists of successive
pulses on A;y; and A; is applied sequentially to each pair of
ancilla atoms, i.e., fori =1, ...,npo — 1.

The effect of the pulse sequence above is to produce a
hopping of the Rydberg excitation from one atom to the next-
nearest-neighbor atom all along the chain separating control
and target qubits [see red path in Fig 1(a)]. More precisely, if
the first = pulse of the protocol excites the control atom to its
Rydberg state |rc), then the ancilla atoms A; with even i go
through their Rydberg state during the protocol, while those
with odd i always stay in the ground state. Conversely, if the
control atom is unaffected by the first pulse, i.e., if it remains

in the ground-state manifold, then the ancilla atoms A; with
odd i go through their Rydberg state during the protocol, while
those with even i always stay in the ground state.

After this first part of the pulse sequence, a suitable trans-
formation Ucong is applied to the target atom that implements
the desired conditional gate. The implementation, which
should obviously rely on the dipole blockade mechanism, is
shown on the bottom of Fig. 2 for the cases of Cz and CNOT
gates. Note that the transition of the control atom to be driven
should be chosen in accordance with the parity of the length n
of the chain of ancilla atoms. Finally, in order to bring back the
ancilla atoms to their initial state, the same pulses as in the first
part of the sequence are applied, but this time in reverse order.

During the execution of our protocol, at most one atom
at a time is in a Rydberg state, and the Rydberg excitation
thus stays localized on a single atom. The number of 7 pulses
required in our protocol to implement a long-distance quantum
gate is

Npulse = dnp + 2+ nT, (13)

where nt is the number of 7 pulses applied on the target atom.
Each 7 pulse leads either to no phase shift when the transition
is prevented by the dipole blockade mechanism or to a /2
phase shift when the transition is driven resonantly. All atoms,
except A,, and target atoms, are submitted to four 7 pulses
which altogether do not produce any phase shift. Thus, the
accumulated phase of the global state comes from only the
pulses on A,, and on the target atom. If A,,, is excited to its
Rydberg state during the sequence, then it produces a phase
shift of .

This generic pulse sequence can be tailored in order to
implement either a modified CZ-gate or a CNOT gate [as in
Eq. (1)]. Let us first consider the case of the modified Cz gate
with an even number of ancilla atoms n, = 2n. In that case, the
control atom is submitted to (four) pulses driving the transition
|1c) <> |rc), and the target atom is submitted to a 2w pulse
driving the transition |11) <> |rr). When the control atom is
in |1¢), the last ancilla atom A,, is excited to the Rydberg
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state |rp,), which produces a w phase shift while the dipole
blockade prevents the excitation of the target atom. When the
control atom is in |O¢), the last ancilla atom stays in the ground
state, and the pulse on the target atom produces a 7 phase shift
only if the target atom is in |17). Therefore, the only state
producing no phase shift is |0cOr), and the pulse sequence
implements the modified Cz gate (1) between two qubits that
can be arbitrarily far apart in the lattice.

For an odd number np = 2n + 1 of ancilla atoms, the
protocol needs to be slightly amended. In that case, when the
control atom is in |1¢), it should not be driven to the Rydberg
state by the pulses applied on it, so that the last ancilla atom
Aj,+1 gets excited to the Rydberg state. Therefore, driving the
transition |Oc) <> |rc) leads to the desired modified Cz gate
(1).

A potential alternative for implementing the modified Cz
gate with an odd number of ancilla atoms consists of applying a
&, transformation on the control qubit right before and after the
protocol shown in Fig. 2, where the pulses on the control atom
drive the transition |1¢) <> |rc), as was the case for an even
number of ancilla atoms. This operation amounts to swapping
the role of states |Oc) and |1¢), which eventually leads to the
desired situation where A, is in the Rydberg state |ey;,+) if
the control atom is initially in | 1¢) and Ay, 41 isin |g,41) if the
control atom is initially in |O¢c). An advantage of this alternative
protocol is that, independent of the number of ancilla atoms,
only the |1¢) < |r¢) transition of the control atoms has to be
driven. This simplifies the experimental implementation at the
cost of performing two additional single-qubit gates on the
control qubit.

As explained previously, the modified CZ gate can be
turned into a CNOT gate using only single-qubit operations
[40]. Nevertheless, it might be useful to directly perform a
CNOT gate, which consists of swapping the internal state of
the target qubit when the control atom is in |1¢). This can
be achieved by applying three 7 pulses on the target atom
driving successively the transitions |Ot) <> |rr), |1T) <> |r1),
and |0r) < |rr). In the absence of Rydberg excitation near the
target atom that would induce Rydberg blockade, this sequence
of three pulses swaps the coding state of the target atom. Note
that independent of the state of the target atom, only two pulses
out of three effectively affect the target atom. Therefore, this
operation on the target atom leads to a r phase shift. In order to
ensure that the swap operation is performed only if the control
atom is in |1¢), the transition |O¢c) <> |rc) (|1¢) <> |rc)) must
be driven on the control atom if the number of ancilla atoms
is even (odd). The resulting protocol implements a CNOT gate
up to a global phase factor of —1.

IV. RESULTS AND DISCUSSION

In this section, we discuss the results of our simulations
based on the resolution of the master equation (7) for the
pulse sequences presented above. For small numbers of ancilla
atoms (na < 5) the master equation is directly solved for p(¢),
while for larger numbers of ancilla atoms (5 < na < 9) it is
solved using a Monte Carlo wave-function approach [46-50].
In the former case, the exact process fidelity (8) is computed,
while in the latter case only lower and upper bounds given in
Eq. (11) are evaluated. For an odd number of ancilla atoms,

PHYSICAL REVIEW A 95, 052330 (2017)

we performed the simulations for the alternative protocol by
relying on a swap of the internal states of the control qubit. In
our simulations, we consider that all transitions are driven with
identical Rabi frequencies, i.e., Q2= Q; = Q4 =Q > 0,
which sets a natural frequency unit. We consider square pulses
without any delay time between two consecutive pulses. We
also take identical energy shifts of the doubly excited states
between nearest-neighbor atoms, i.e., U,, = U,, = U,, = U,
with U > Q. In all recent experiments demonstrating two-
qubit gates based on Rydberg blockade [27-31], the Rabi
frequency is of the order of 1 MHz. Moreover, Rydberg states
with principal quantum number n = 80 have a lifetime of the
order of 1 ms at cryogenic temperature [51]. Accordingly, we
choose the decay rates Yy = yo + y1 and y4 to vary with y; /
ranging from 0 to 0.01 (i = A,q).

A. Gate fidelity with respect to the dipole blockade shift

In this section, we discuss the effects of imperfect blockade
on the performance of our protocols. The process fidelity
of both gates was numerically computed for values of the
dipole blockade shift U/ €2 ranging from 1 to 200 and for up
to five ancilla atoms in the absence of dissipation (y; = 0,
i =0,1,A). In this situation, the gate error originates from
imperfect blockade. In the strong-blockade regime (U > ),
the probability of double excitation to the Rydberg states is
proportional at leading order to P, o« Q%/U? [16,22]. In this
regime, we expect the gate error also to be proportional to
P>, which is indeed confirmed by our numerical simulations
(data not presented). We observe that the ratio of the gate
error 1 — Fpc to the probability of double excitation P,
is constant for U/Q 2 25 for both gates, regardless of the
number of ancilla atoms. Thus, in the regime of strong
blockade without any dissipation, the process fidelity can be
accurately approximated by

-2
FPV;;O(%) =1- a<%> , (14)

with 0.1 < « < 2 being a constant whose value depends only
on na and Uceng. More precisely, o depends only on the parity
of the number na of ancilla atoms. For the Ccz gate, o ~ 0.5
forny = 0and odd npa, while @ =~ 1.7 for even n,. In the case
of the CNOT gate, o ~ 0.4 for np =0, o = 0.1 for odd na,
and o ~ 2 for even na. We attribute the differences in « to
the dependence on the parity of ns of the way errors arising
from double Rydberg excitation propagate along the chain of
ancilla atoms.

B. Gate fidelity with respect to the dissipation rate

We now turn to a discussion of the effects of dissipation
on the process fidelity. For this purpose, the doubly excited
state energy shift is set to U,/ Q2 = U,/ 2 = U,/ 2 = 200.
At this value of U/ and in the absence of dissipation, the
gate error 1 — Fpoc is smaller than 10~* for every number of
ancilla atoms we will consider.

a. Modified cz gate. The results of our simulations for the
process fidelity of the modified CZ gate are displayed in Fig. 3.
Figures 3(a) and 3(b) show the process fidelity (dots) in the case
of no dissipation on the ancilla and qubit atoms, respectively.
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FIG. 3. Process fidelity Fp, of the distant qubits protocol im-
plementing a modified CZ gate as a function of n, for different
values of the decay rates: from top to bottom y/Q =4 x 107°
(black dots), 32 x 1077 (blue triangles), 128 x 10~ (green squares),
and 512 x 1073 (red diamonds). (a) yp = y; = ¥/2 and y, = 0, (b)
Yo=vi=0andys =vy,(c) o =y1 = v/2, ya = y. The lower and
upper bounds on the process fidelity (12) delimit the shaded area. The
symbols are the values of Fj,, obtained through numerical simulations
and the lines correspond to the fits of the data using (15) with 7, and
ta given by (16) and (17) with ¢; as only fitting parameter (see text).

Figure 3(c) shows the process fidelity for identical decay rates
for qubit and ancilla atoms. The upper and lower bounds for
Fpro [see Eq. (12)] delimit the shaded areas. Our results show
that the actual process fidelity is consistently very close to the
upper bound.
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For yo =0 and yy = y1 = y/2 > 0 [dissipation only on
the qubit atoms, Fig. 3(a)], the process fidelity no longer
depends on the number of ancilla atoms. This is an immediate
consequence of our protocol in which the accumulated time
spent by the qubit atoms in their Rydberg state does not
depend on na. There is, however, one exception when there
are no ancilla atoms (n5 = 0) because in this case only two 7
pulses are applied to the control atom instead of four, which
reduces errors caused by the decay of the control atom from the
Rydberg state to the ground-state manifold. For yo = y and
yo = y1 = 0 [dissipation only on the ancilla atoms, Fig. 3(b)],
the process fidelity decreases with n 5. For identical decay rates
on the qubit and ancilla atoms [Fig. 3(c)], the process fidelity
displays the combined features of the two previous cases. For
na = 0, it starts at the value for y5 = 0 and decreases with n5
as in the case where dissipation acts only on the ancilla atoms
[Fig. 3(b)]. In all cases, the process fidelity decreases with the
total decay rate y of the qubit atoms.

In the protocol depicted in Fig. 2, dissipation occurs either
in the interval between two 7 pulses when an atom, either a
qubit or an ancilla, is in its Rydberg state or during one of
the pulses. In the former case, the probability for an atom to
stay in its Rydberg state decays as exp(—yt), with y being
the decay rate and ¢ being the time since the atom is in its
Rydberg state. In the latter case, the probability of unwanted
deexcitation from the Rydberg state during a pulse has to be
evaluated from the exact solution of the master equation for
a decaying two-level atom. The probability to be in the target
state after a 7w pulse can be written in the form exp(—ytJ;),
where 17, is interpreted as the effective time spent by the
atom in the decaying Rydberg state during the pulse. If the
decay rates are low enough (y/Q < 1), 7 is constant up to
corrections of order y /2 for both exciting and deexciting
pulses. By equating exp(—ytJ;) with the probability for the
atom to be in the target state after the w pulse as evaluated
from the exact solution of the master equation, we obtain
Q7 /m = 3/8. Because, in our protocol, only one atom can
be in an excited state at a time, the effects of dissipation on
the different atoms simply add up, and the process fidelity is
determined by the cumulated time spent by the atoms in the
decaying Rydberg states during the execution of the protocols.
If the dissipation rates are low enough to ensure that there is
at most one decay (quantum jump) during the whole protocol,
the process fidelity can be approximated by

U U
Fpro (5, yquA) ~ Fg/m=0 (5)6”‘*"18“”*("’*). (15)

In Eq. (15), prr:O(U/ Q), given by Eq. (14), takes into account
the effects of imperfect blockade, yj is the total decay rate of
the qubit atoms, 7, is the effective cumulated time spent by the
qubit atoms in the Rydberg states averaged over all possible
qubit initial states, and ¢, is the effective total time spent by
the ancilla atoms in the Rydberg states. Both times 74 and 5
can be directly evaluated for the pulse sequence depicted in
Fig. 2. A total of six m pulses are applied to the qubit atoms
(control and target). Depending on the control atom’s initial
state, either the four pulses on the control atom or the 2 pulse
on the target atom lead to an excitation to the Rydberg state,
but not both at the same time as a consequence of the dipole
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blockade. Depending on its initial state, the control atom either
spends the duration of two 7 pulses in the Rydberg state or
stays in the ground state. Thus, by averaging over all possible
initial states, we obtain

Q1 = 2r + 6thff.

(16)
As for the ancilla atoms, they are each submitted to four &
pulses, except for the last one, which is submitted to only two
7 pulses. Only half of these pulses bring the ancilla atoms to
their Rydberg state, in which they spend in total the duration
of four & pulses. This leads eventually to

dmnp + (4na — 2)Q%
7 .

Our data for the process fidelity display excellent agreement
with Eq. (15). In fact, by fitting our data by Eq. (15) with ¢; as
the only parameter, we get Q7 /m ~ 0.40, in good agreement
with our previous estimate of 3/8. The fits are shown by solid
lines in Fig. 2. The upper and lower bounds on the fidelity (12)
follow similar behavior with respect to the dissipation rate and
the number of ancilla atoms.

b. cNoT gate. The results of our simulations for the process
fidelity of the CNOT gate are displayed in Fig. 4. Like in Fig. 3,
Figs. 4(a) and 4(b) show the process fidelity (dots) in the case
of no dissipation on the ancilla and qubit atoms, respectively.
Figure 4(c) shows the process fidelity for identical decay rates
for qubit and ancilla atoms.

Overall, the process fidelity of the CNOT gate behaves, as
a function of the decay rate and the number of ancilla atoms,
in a way similar to the modified Cz gate. In the absence of
dissipation acting on the ancilla atoms [Fig. 4(a)], the process
fidelity does not depend on ns. When the dissipation acts
only on the ancilla atoms [Fig. 4(b)], the fidelity decreases
with na. For identical decay rates for the qubit and ancilla
atoms [Fig. 4(c)], the process fidelity displays the combined
features of the two previous cases. Like for the modified cz
gate, dissipation acts only when the atoms are evolving freely
in their Rydberg state or during the pulses that drive qubit or
ancilla atoms into their Rydberg states, and thus, the process
fidelity of the CNOT gate is determined by the cumulated time
spent by the atoms in the Rydberg states. A counting argument
similar to that for the modified Cz gate can be made, which
leads to an approximation of the form of Eq. (15) for the
process fidelity with

Qrp(na) = a7)

_ 2w + 7 Q4

Qty = 5 (18)

and
dmnp + 7 + (dnpa — 2)Q%
> .

In Eq. (19), the last two terms in the numerator account for the
facts that the last ancilla atom may spend the duration of five
7 pulses in its Rydberg state instead of four and that only two
7 pulses are applied on it, respectively. Again, our data for
the process fidelity display excellent agreement with Eq. (15).
In fact, by fitting our data by Eq. (15) with #J; as the only
parameter, we get Q7 /m A 0.39. This value is similar to the
one obtained for the case of the CZ gate. The results of this fit
are illustrated in Fig. 4.

Qip(np) =

19)
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FIG. 4. Same as in Fig. 3, but for the CNOT gate. The data for Fy,,
have been fitted using Eq. (15) with 4 and ¢4 given by (18) and (19)
with ¢J; as only a fitting parameter (see text).

C. Comparison with a sequence of nearest-neighbor CNOT gates

It is interesting to compare the fidelity of our protocol for
the distant-qubit CNOT gate with an implementation relying
on a sequence of nearest-neighbor two-qubit gates. In the
geometrical configuration illustrated in Fig. 1 where the two
chains of atoms are displaced, performing our distant-qubit
protocol for n, ancilla atoms corresponds to the control and
target qubits being separated by np — 1 other qubits. An
obvious advantage of our protocol is that only the two qubits
involved in the gate are manipulated and thus prone to errors
(we recall that ancilla atoms are noncoding). In contrast, for
a sequence of nearest-neighbor CNOT gates, all the qubits in
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T
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FIG. 5. Possible implementation of a CNOT quantum gate between
nonadjacent qubits using only nearest-neighbor CNOT gates [53].

between the control and target qubits are submitted to quantum
gates and thus potentially prone to errors.

The number of pulses needed to perform a distant-qubit
CNOT gate with na ancilla atoms, given in Eq. (13), is 4na +
2 + nt. The same operation can be performed with 4(ny — 1)
nearest-neighbor CNOT gates [52,53], which amounts to apply-
ing 20(na — 1) pulses to the register of qubits, as illustrated in
Fig. 5 in the case np — 1 = 3 [54].

Even for next nearest-neighbor qubits (nx = 2), our proto-
col requires a smaller number of pulses (13 pulses instead of
20), resulting in a higher process fidelity. This is exemplified
in Fig. 6, where we compare the process fidelity (8) of our
protocol with the one based on a sequence of nearest-neighbor
CNOT gates [55]. The process fidelity is plotted as a function
of the decay rate when control and target qubits are separated
by two and three qubits, respectively.

Our protocol always leads to a higher fidelity. A simple
estimate of the gain in fidelity can be made in the case of
low dissipation rates following reasoning similar to that in
the previous sections. For strong blockade and identical decay
rates on qubit and ancilla atoms (yo = ¥4 = ¥ and Yo = 1),

" 4
e
A &
0.95 |- Q o R
A Q )
[ ]
A 2 O e
0.9 + i o e o
Fpro & 4 9 O [ ]
0.85 |- 4 £ 9
A
0.8 o §
A
075 | | | | | o |
0  0.001 0.002 0.003 0.004 0.005

v/9

FIG. 6. Comparison of the process fidelity obtained using only the
nearest-neighbor CNOT gate [53] and the distant-qubit protocol using
noncoding ancilla atoms with yo = ¥4 = ¥ and yy = y;. The black
dots correspond to the case of two ancilla atoms, while the black open
circles represent the corresponding fidelity for the nearest-neighbor-
qubit implementation with a single qubit between the control and
target atoms. The red solid triangles represent the process fidelity in
the case of three ancilla atoms, and the red open triangles correspond
to the case where the control and target are separated by two other
qubits.
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FIG. 7. Gain in the fidelity (20) resulting from the use of non-
coding ancilla atoms in a distant qubits CNOT gate as a function of
the decay rate (ya = yq = ¥ and yp = y;) for (from bottom to top)
na = 2 (black dots), 3 (blue triangles), 4 (green dashed curve) and
5 (red dotted curve). The symbols correspond to the gain computed
from our numerical simulations.

the ratio of process fidelities is approximately given by

,ZL ~ oxp (SnA(n + 2thff)z— 537 + 5Q1%) 4 > 0,

pro

where Fyro and Fpy are the process fidelities for our protocol
and for the protocol relying on a sequence of nearest-neighbor
CNOT gates, respectively. Figure 7 shows the results of numer-
ical simulations for the ratio Fpo/ Fl;‘r‘j, (dots) as a function of
the decay rate in the case of two and three ancilla atoms. The
solid lines represent Eq. (20) with Qt%; /7 ~ 0.379, which was
obtained from a fit.

The ratio is always greater than 1 and increases with the
decay rate y and the distance ns between control and target

qubits.

V. PERSPECTIVE AND EXPERIMENTAL
CONSIDERATIONS

The estimates for the process fidelity of the protocols pre-
sented in this work may not account for all possible dissipation
and decoherence channels or experimental imperfections. In
this regard, it would be interesting to include in our model
a noncoding state for both qubit and ancilla atoms in order
to account for qubit atom losses due to dissipation. Also, we
could consider an intermediary level between the ground-state
manifold and the Rydberg state of the qubit atoms as the laser
excitation to the Rydberg state is usually a two-stage process.
A more rigorous description of the dipole-dipole interaction
between atoms leading to the Rydberg blockade could also
be considered. However, such simulations are much more
demanding in terms of resources.

For simplicity, only square pulses have been considered in
this work. From an experimental perspective, it is certainly
relevant to investigate the implementation of our protocol
using Gaussian pulses or optimized pulses [56], allowing us to
further increase the process fidelity. In order to experimentally
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implement our protocol, one could use the same species for
both qubit and ancilla atoms. In such a configuration, the
position of the atoms in the different traps or in the lattice will
determine its role (coding or noncoding) in the protocol. This
solution could be implemented with rubidium atoms [28,31]
in dipole traps or using two-dimensional arrays of cesium
atoms [30]. Another possibility is to rely on two different
atomic species to implement the qubits and the chain of
ancilla noncoding atoms. In this case, suitable Rydberg states
need to be identified that allow for strong dipole blockade
between qubit and ancilla atoms and in between ancilla atoms.
A good candidate for the implementation of our protocol is
the configuration described in Ref. [26] in which two optical
lattices, one for rubidium and the other for cesium atoms, are
considered to perform nondemolition state measurements.

VI. CONCLUSION

In this paper, we have considered an array of qubits
encoded in the ground-state manifold of trapped neutral atoms,
supplemented by an array of ancilla noncoding atoms. We
have proposed a protocol for the implementation of two-qubit
entangling gates (CZ, CNOT) between any pair of qubits in
the array that relies on the Rydberg excitation hopping along
a chain of ancilla noncoding atoms in the strong-blockade
regime. The hopping of the Rydberg excitation from one atom

PHYSICAL REVIEW A 95, 052330 (2017)

to its next nearest neighbor is produced by an appropriate
pulse sequence that ensures that at most one atom at a time
in the entire system is in a Rydberg state. We have solved
a master equation for up to nine ancilla atoms in order to
evaluate the process fidelity characterizing the performance of
our protocols in the presence of dissipation. We have found
that the process fidelity is determined by the cumulated time
spent by the atoms in the decaying Rydberg states during the
execution of the protocols. The design of our protocol ensures
that this time scales linearly with the number of ancilla atoms.
Moreover, we have shown that our protocols for entangling
gates between distant qubits lead to better process fidelities
than those based on a sequence of nearest-neighbor two-qubit
gates, even when the qubits are separated by a few other atoms.
Our protocols could be implemented experimentally for a
few ancilla atoms using state-of-the-art trapping and selective
laser-addressing techniques.
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