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Quantum parameter estimation plays a key role in many fields like quantum computation, communication, and
metrology. Optimal estimation allows one to achieve the most precise parameter estimates, but requires accurate
knowledge of the model. Any inevitable uncertainty in the model parameters may heavily degrade the quality of
the estimate. It is therefore desired to make the estimation process robust to such uncertainties. Robust estimation
was previously studied for a varying phase, where the goal was to estimate the phase at some time in the past, using
the measurement results from both before and after that time within a fixed time interval up to current time. Here,
we consider a robust guaranteed-cost filter yielding robust estimates of a varying phase in real time, where the
current phase is estimated using only past measurements. Our filter minimizes the largest (worst-case) variance
in the allowable range of the uncertain model parameter(s) and this determines its guaranteed cost. It outperforms
in the worst case the optimal Kalman filter designed for the model with no uncertainty, which corresponds to
the center of the possible range of the uncertain parameter(s). Moreover, unlike the Kalman filter, our filter in
the worst case always performs better than the best achievable variance for heterodyne measurements, which we
consider as the tolerable threshold for our system. Furthermore, we consider effective quantum efficiency and

effective noise power, and show that our filter provides the best results by these measures in the worst case.
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I. INTRODUCTION

Quantum parameter estimation plays a central role in many
fields, such as quantum computing [1], communication [2—4],
and metrology [5]. It involves estimating a classical variable,
such as an optical phase shift, of a quantum system [6]. This is
required since measurements are corrupted with unavoidable
noises in practice and it is important to estimate as accurately as
possible the desired variable from such noisy measurements.
Also, often the variable of interest is not directly accessible
to measurement. As an example, the detection of an optical
beam always results in the measurement of the amplitude of
the beam. It is, however, an important task to estimate the
phase of an optical beam from the available measurement
results for the amplitude of the field. In communications, for
example, it is more reliable to encode information into the
phase rather than the amplitude or intensity of the optical
field [7]. Moreover, adaptive measurements (i.e., involving
feedback) allow for demonstrably better estimation of phase
than nonadaptive estimation. Quantum phase estimation has
therefore been extensively studied in this context [§—15].

Optimal estimation strategies have played significant roles
in improving the achievable precision in quantum phase
estimation [16—18]. For example, adaptive estimation with
a Kalman filter has provided mean-square errors less than
the standard quantum limit (SQL) [16,19]. The SQL is the
minimum phase estimation error that can be obtained with
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a coherent beam using a perfect heterodyne technique and
sets an important benchmark for the quality of a measure-
ment. However, optimal estimation schemes provide optimal
performance only if the parameters underlying the system
are accurately known. Any uncertainty in our knowledge
of these parameters can heavily degrade the estimation
performance under certain circumstances. In the presence of
large uncertainty, the worst-case mean-square errors can be
higher than the acceptable thresholds in practical engineering
systems. Such a threshold often determines the point beyond
which a system has a risk of breaking down or becoming
unusable. It is therefore important to make the estimation
process robust to such uncertainties [20,21]. A robust filter is
one that provides acceptable performance for the full possible
range of the uncertain system parameter(s), and the worst
case is the situation where the parameters result in the largest
mean-square error.

For quantum estimation problems that can be approximated
as having linearized dynamics, many of the principles of robust
classical estimation can be applied. There is a rich set of
classical estimation strategies in modern control theory for
achieving robustness for systems with explicitly introduced
uncertainties in a systematic state-space setting [20,21]. Such
classical robust estimation principles as applied to quantum
estimation problems are little studied. Some of the authors have
earlier studied in Ref. [22] the problem of robustly estimating
a continuously varying phase, modeled as a stochastic noisy
process, of a squeezed state of light [23,24]. In particular, a
robust fixed-interval smoother was constructed that provides
guaranteed worst-case performance when compared to an op-
timal smoother in adaptive quantum-optical phase estimation.
A smoother involves deducing an estimate based on both past
and future measurements with respect to the time at which the
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phase is to be estimated [25,26]. This noncausal estimator is of
relevance to applications such as gravitational wave detection
[27,28], where obtaining more precise estimates is of greater
interest than real-time estimates.

However, for applications such as quantum computing
and communication, it is instead required to obtain real-time
estimates as precisely as possible. In such cases, it is filtering,
involving only past measurements, that can be used and should
be made to yield as accurate real-time estimates as possible.
In this paper, we consider a robust guaranteed-cost filter [29]
in an adaptive quantum phase estimation process of the form
considered in Ref. [16], using a coherent state of light. Such a
robust filter helps in achieving real-time guaranteed worst-case
performance, in relation to the SQL taken as the tolerable
threshold, over a Kalman filter. The phase to be estimated is
modeled as an Ornstein-Uhlenbeck (OU) process [Eq. (3.1)]
as in Refs. [16,17,22].

The robust smoother illustrated in Ref. [22] was shown
to consist of a forward robust filter and a backward robust
filter, the estimates of which were combined to yield the
desired smoothed estimate. However, the approach of Ref. [22]
considered an energy-bounded description of noise [30]. By
contrast, we here use the approach of Ref. [29] that considered
a white noise description, which is the actual noise involved
here [Egs. (3.4) and (3.5)]. In addition, such a robust filter
[Eq. (4.7)], as its name suggests, comes with a guaranteed cost
[Eq. (4.6)] that quantifies an upper bound on the mean-square
error of estimates obtained from the filter for the uncertain
system [Eq. (5.14)]. In other words, the worst-case mean-
square error of the robust filter is guaranteed to be bounded by
the aforementioned cost.

The robust guaranteed-cost filter considered here has
previously been applied by three of the authors to a coherent
state of light to yield some preliminary results [19,31]. This
paper builds on Ref. [19] and presents more in-depth results,
insights, and analysis relevant to the physical problem at
hand. We demonstrate that with uncertainty in the system
[Eq. (4.2)], the Kalman filter performance [Eq. (5.13)] gets
increasingly worse with respect to the SQL [Eq. (B3)], whereas
the robust filter [Eq. (5.14)] consistently beats the SQL in the
worst-case scenario. We explicitly illustrate that the robust
filter is guaranteed to beat the Kalman filter as well as the SQL
in the worst-case situation.

Moreover, we define an effective quantum efficiency
[Eq. (8.3)] for our filters, such that the best estimation scheme
yields the same variance as the suboptimal estimation scheme
with no loss [32]. We illustrate that our robust filter always
exhibits the maximum achievable effective quantum efficiency
in the worst-error case, whereas the Kalman filter suffers
heavily in this regard. Furthermore, we define an effective
noise power [Eqgs. (9.23) and (9.22)] for our filters, such that the
mean-square error for the optimal filter with added noise is the
same as that for a suboptimal filter. This is inspired by a similar
result for a constant phase [33,34]. We see that our robust filter
always admits the minimum possible effective noise power in
the worst-error case, but the Kalman filter suffers from much
higher effective noise owing to the uncertainty in the model.

The structure of the paper is as follows. Section II provides
an introduction to the theory of estimation using filters.
Section III discusses the optimal adaptive estimation process
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using a Kalman filter for an exact system model. Section IV
deduces the robust filter for the uncertain system model.
Section V shows how to calculate the filter mean-square errors
for the uncertain system. Section VI concerns the comparison
of the mean-square errors of the Kalman and robust filters for
the uncertain system. Section VIl illustrates that the worst-case
mean-square error of the robust filter always beats that of the
Kalman filter as well as the SQL. Section VIII introduces
a quantity called the effective quantum efficiency for the
Kalman and robust filters and compares the filters in terms
of this quantity. Section IX defines another quantity called the
effective noise power for the filters, which are then compared
in terms of this quantity. Finally, Section X ends the paper with
concluding remarks.

II. ESTIMATION USING FILTERS

Here we look at the problem of estimating a set of
time-varying parameters describing the state of a system,
given noisy measurements (output) of observable quantities
along with a model relating the observations to the underlying
state, corrupted by noise (input). Such a dynamical system
is conveniently modeled in a compact state-space form as
a set of input, output, and state variables related by first-
order differential equations, where the variables are expressed
as vectors. If the system is linear and time invariant, the
differential and algebraic equations are written in matrix form
as follows [35]:

x(t) = Ax(t) + Bv(1), 2.1
y() = Cx(t) + Dw(t), (2.2)
2(t) = Lx(t). (2.3)

Here x is the state vector, y is the output vector, z is the
vector of variables to be estimated, v and w are the inputs
and are (possibly vector) white noise processes that may be
correlated, ¢ is the time variable, and A, B, C, D, and L are
suitable matrices of compatible dimensions. In particular, A is
referred to as the state matrix.

A suitable estimator for the above system (2.1)—(2.3) is then
a filter of the form

£@t) = F£(t) + Ky(@®),

2(t) = Lx(1),

where % is the estimate of the state x, and Z is the estimate
of the desired quantity z. The input to the filter is the output
vector y of the system, and the filter output is the estimate Z.
In the Laplace domain, we get

(2.4)
2.5)

(sI — F)i(s) = Ky(s),
2(s) = Lx(s),
where s is the Laplace variable. The transfer function, relating

the filter output to the filter input, is therefore

9 -k
y(s)
The estimation error is ¢ = z — Z. Then, the optimal steady-
state filter is the system (2.4), (2.5), and (2.8) with F and K

(2.6)
2.7)

G(s) (2.8)
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suitably chosen to minimize the cost,

Je = lim (")), (2.9)
where (-) denotes the expectation.

The optimal estimator that minimizes the above cost is
given by the Kalman filter. It operates recursively on streams
of noisy input data to produce a statistically optimal estimate
of the underlying system state. The steady-state Kalman filter
[Egs. (2.4) and (2.5)] for the system (2.1)—(2.3) is obtained
from the solution to the algebraic Riccati equation [20,22,36],

AP + PAT + BOBT — PCT(DRDT)"'CcP =0, (2.10)

which is quadratic in P, the error-covariance matrix for the
state. The positive-semidefinite solution (if one exists) for P is
the stabilizing solution that is desired. Here, we have assumed
the following about the white noises v and w (in particular that
they are uncorrelated):

(e’ (7)) = Q8(t — 1), (2.11)
(wtw’ (1)) = R8(t — 1), (2.12)
(ww’(z)) =0, (2.13)

where §(-) is the Dirac delta function. Then, the Kalman filter
cost [Eq. (2.9)] is
J.=LPLT, (2.14)

which is the error covariance for the desired quantity, and the
relevant matrices of the filter are

F=A—-KC,
K = PCT(DRD"T)™".

2.15)
(2.16)

Here the matrix K is the gain matrix of the Kalman filter,
when L is identity, and, therefore, is commonly referred to as
the Kalman gain.

Essentially, the Kalman filter recursively calculates a new
prediction of the system’s state upon averaging it with a
new measurement, weighted suitably based on the estimated
certainty: values with higher certainty are trusted more. The
Kalman filter needs only the last “best guess” instead of the
entire history of a system’s state to calculate a new one.
The Kalman gain determines the relative certainty of the
current state and the measurements and, therefore, the filter
performance [35].

III. OPTIMAL FILTER

The adaptive estimator used in Ref. [16] involves a feedback
filter and an offline smoother, which yields the final optimal
estimate with a delay with respect to the estimation time. The
feedback filter used in Ref. [16] is suboptimal and would be
optimal when using a Kalman filter [19]. Here, we consider
the Kalman filter alone, the output of which is the desired
optimal real-time estimate, which is also used to adapt the local
oscillator phase through feedback in the adaptive estimation
process. First, we define the process and measurement models
for our system in a state-space setting [22].
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A. System model (exact)

An OU noise process modulates the phase ¢(f), to be
estimated, of the continuous coherent beam of light [16] and
constitutes our process model:

o) = —rp(t) + Vrv(),

where A > 01is the inverse correlation time of the phase, x > 0
is the magnitude of the phase variation, and v(#) is a zero-mean
white Gaussian noise with unity amplitude.

The normalized output photocurrent of the adaptive homo-
dyne detection of the above coherent beam is

[(1)dt = 2|a|sin[¢(t) — ¢(1)]dt + dW (),
~ 2)al[p(t) — ()1t + dW (1),

where ¢3(t) is the phase estimate output of the (feedback) filter,
« is the coherent amplitude of the beam, and W(¢) is a Wiener
process arising from quantum vacuum fluctuations. Also, here
we have taken a linear approximation of the sine function, since
the phase estimate would be close to the true phase owing to
the feedback. The measurement is appropriately scaled to yield
a measurement model as follows:
1(1)

~ 1
0(t) = 2al + (1) = @) + mw(f),

3.1)

(3.2)

(3.3)

where w(t) := dW/dt is another zero-mean white Gaussian
noise with unity amplitude.
Thus we have the following state-space model:

(ﬁ(t) = —Xg(t) + Vxv(1) (process model),

0(t) = o) + %w(r) (measurement model), (3.4)
o

where

(v@(r)) =6(t — 1),
(w®w(r)) = 8@ — 1),

(v(@w(r)) = 0. (3.5)

B. Kalman filter

The steady-state Kalman filter for the model (3.4) is
obtained from Egs. (2.4), (2.5), and (2.15) as

d(1) = —2d(t) + K(O(1) — $(t))

::4A+Kﬁ0y+Kmn+JEw@)

3 (3.6)

Here, the Kalman gain K is derived from the error covariance
P = 0 of the Kalman filter. The algebraic Riccati equation
for P from Eq. (2.10) simplifies for our system to

—2AP —4|a*P? +k = 0. (3.7)
The stabilizing solution P+ of Eq. (3.7) is found to be
Pt = £ : (3.8)
22+ dicla|?
and the Kalman gain K from Eq. (2.16) is then
K = —A+ VA2 + 4k |a)?. (3.9)
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The transfer function (2.8) of the Kalman filter here is

o) K (3.10)

Equations (3.8), (3.9), and (3.6) are key equations.

IV. ROBUST FILTER

In this section, we construct a robust guaranteed-cost filter
of the form defined in Ref. [29], as outlined in Appendix A,
corresponding to the optimal filter discussed earlier. First, we
define our uncertain model.

A. Uncertain model

We consider uncertainty in the parameter A as follows:

A — A+ A, 4.1

where || < 1 is unknown, and u € [0,1) is the level of
uncertainty in the model.
Then, the equivalent of Eq. (3.4) for the uncertain case is

H(1) = —(h 4+ udNP(t) + xv(t)  (process model),

0) = o(t) + Lw(t) (measurement model).

Tl 4.2)

B. Guaranteed-cost filter

The steady-state robust filter is then obtained by solving the
following Riccati equation for model (4.2):

2

—@|a)? —erx®)0* =210 + <? + K) =0, (4.3)

which is obtained from Eq. (A4) in Theorem 1 from Ap-
pendix A. Here Q is the upper bound for the error covariance
of the robust filter. Also, € is a positive constant, with additional
conditions on its value given in Theorem 1 in Appendix A.
The stabilizing solution Q% of Eq. (4.3) is found to be

S

Q+ _ “? +K
A+ \//\2 + (@4lal? — ex?)(2 + i)

(4.4)

The optimum value of € for which the above bound [Eq. (4.4)]
is minimum is obtained as

_ = )+ /220 — p)? + Al

€opt = Y . (4.5)
Substituting this value of € in Eq. (4.4) yields
0" = i (4.6)

A = )+ VR = ) + e
The robust filter equation is then given as
$(1) = (= + € O IDB(1) + 4> QT (O (1) — $(1))
= (=1(1 — p) — 4P Q1)
+4la? Q1) + 2|a| QT w ().

Note that this does not depend on §, which is the unknown
quantity, so the filter can be used. Equations (4.6) and (4.7)

4.7
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are two of the main results in this paper. The transfer function
of the robust filter is

b(s) 4lal?Q*

(4.8)

Clearly, when p = 0, we have € = 0, so that with no
uncertainty in the system, Egs. (4.4) and (4.6) reduce to
Eq. (3.8). In other words, Eq. (4.6) is the optimal mean-square
error for the case where A is known and A is replaced with
A(1 — ). Likewise, with i = 0, the robust filter equation (4.7)
reduces to the Kalman filter equation (3.6), and the robust filter
transfer function (4.8) reduces to the Kalman filter transfer
function (3.10).

Note that the robust filter [Eqs. (4.7) and (4.8)] is the same
as the Kalman filter with X replaced by A(1 — ). Essentially,
arobust filter and a Kalman filter are two different filter design
algorithms; i.e., a Kalman filter is designed to be optimal with
respect to a certain fixed model and a robust filter is designed
to provide acceptable performance for an uncertain system
model. However, there is no reason why the Kalman filter and
the robust filter design methods should not lead to the same
filter in certain situations, even though they are for different
models.

V. FILTER MEAN-SQUARE ERRORS
FOR UNCERTAIN SYSTEM

In the previous sections we considered the Kalman filter and
its error for § = 0 and the robust filter’s maximum error. In this
section we consider the mean-square errors for the robust and
Kalman filters as functions of the unknown parameter §. We
employ a Lyapunov equation [22] to obtain the desired results.

The uncertain process model from Eq. (4.2) is augmented
with the filter equation, i.e., Eq. (3.6) for the Kalman filter or
Eq. (4.7) for the robust filter, to yield the following state-space
model:

&) = Ap(t) + Bw(r), (5.1)

where ¢(1) := [W)] and wW(t) := ["(t)]. Here,

b(t) w(t)
Je o0
[0 &] (5.2)
2le]|

— [~04wusn) 07 =
wo[ete 0] g

In the case of the Kalman filter,

Q=K =—A++A2 +4dk|a|?, (5.3)
A=i+K =02+ dlal. (5.4)

In the case of the robust filter,

Q=4al?0" = —a(l — p) +V22(1 — w2 + 4 lal?,
(5.5)

A=A1—p)+4al0t = V221 — w? +4klaf2. (5.6)

The steady-state state covariance matrix Ps is obtained by
solving a Lyapunov equation as follows:

APs+ PsA + BB =0. (5.7)
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Here, Pgs is the symmetric matrix

Py Pz} (5.8)

Ps = @)§ (1) = [ 5 B

where Py = (¢%(1)), P, = (¢p(1)$(1)), and P; = ($*(1)). Then,
the estimation error can be written as

e(t) =¢t) —dt) =[1 —11¢(),

which is of mean zero, since all the quantities determining &(¢)
are of mean zero. The error covariance is then given as

(5.9)

o2 =(e*(t)) = P, — 2P, + P;. (5.10)
Upon solving Eq. (5.7), we get the following:
Pl=—
2(A + uéAr)
Qk
Py, = ,
2(h 4 wSA)(A + A+ udA)
Q? Q%
P (5.11)

= BlaPA | 2AC.+ pO)A At on)
Substituting Eqgs. (5.11) in Eq. (5.10) and simplifying, we get

) A+ A+ ud) Q?

0" =K . (5.12)
2A(1 + wd)(A + A+ udr)  8la|2A

Thus, the mean-square error a,% of the Kalman filter for the
uncertain system is

R A+ (K + A1+ us)
K™ 7201 + ud)(K + A)(K + 2% + udd)
KZ
t (5.13)
8lael2(K + A)

and the mean-square error o of the robust filter for the
uncertain system is
o2 — W +JA+pud) | @0ty
R 5201+ )+ udr + J) 8lae|?J

where J := A(1 — i) + 4|a|>Q*. Equations (5.13) and (5.14)
constitute two more main equations in this paper.

. (5.14)

VI. COMPARISON OF THE MEAN-SQUARE ERRORS
OF THE FILTERS

The mean-square errors of the Kalman and robust filters can
be computed using the technique mentioned in the previous
section for the uncertain system for —1 < § < 1 and plotted on
the same graph for comparison. We used the following values
for the various parameters for consistency with Ref. [17]: A =
5.9 x 10%rad/s,k = 1.9 x 10*rad/s,and |a|> = 1 x 10057,
Figure 1 shows the comparisons for u = 0.5 and u = 0.8. Also
shown on the plots are the upper bounds Q% of the robust filter
mean-square error. Moreover, the optimal limit for arbitrary &
(i.e., the minimum achievable mean-square error if the exact
value of A was known at each §) is found to be [as in Eq. (3.8)]

1
02, = W[—(,\ + usA) + O+ sh)? + 4K|a|2],
6.1)

which is always less than or equal to o',
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FIG. 1. Comparison of the mean-square errors of the Kalman and
robust filters for (a) u = 0.5 and (b) © = 0.8.

All the curves (except Q1) monotonically decrease with
increasing §. This is obvious from the respective expressions
(5.13), (5.14), and (6.1). The Kalman filter mean-square error
is lower than the robust filter mean-square error at § = 0,
because the Kalman filter is optimized for the parameters of

the exact model. Also, note that K + A = /A2 + 4« |a|? >
VAX(1 — w)? + 4c|a|? = J. Here, K + A is the corner fre-
quency of the Kalman filter, whereas J is that of the robust
filter. The corner frequency of the process model from Eq. (4.2)
is A(1 4+ wé), which rises with increasing §. Thus, the Kalman
filter outperforms the robust filter with § approaching +1,
owing to the larger corner frequency of the Kalman filter,
resulting in less phase information getting truncated compared
to the robust filter.

However, as § approaches —1, the robust filter is superior
to the Kalman filter. Since the corner frequency of the process
model is now less than A, the lower corner frequency of the
robust filter provides an advantage. At § = —1, the worst-case
mean-square error al% = 02(8 = —1,u) of the robust filter
is quantified by Q%, which is much lower than that of the
Kalman filter. This advantage is greater with u = 0.8 than
with u = 0.5. Indeed, as noted earlier, 9 from Eq. (4.6) is
the optimal mean-square error [Eq. (3.8)] with A replaced by
A(l — ) (i.e., A 4+ udA, where § equals —1 and corresponds
to the worst-case situation).

The fact that the relative guaranteed worst-case perfor-
mance of the robust filter with respect to the optimal filter
improves with increasing level of uncertainty p in the model
is illustrated in Fig. 2(a). We have also shown the worst-case
SQL, which is computed for each u as in Appendix B. Note
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FIG. 2. Comparison of the worst-case mean-square errors of the
Kalman and robust filters as a function of (a) « and (b) |«|?. For (b),
we fix u = 0.8.

from the plot that the worst-case robust filter mean-square
error beats the SQL for all values of u, whereas the Kalman
filter worst-case mean-square error increasingly exceeds the
SQL at higher values of u. Indeed, the worst-case corner
frequency of the uncertain process is A(1 — w), which goes
down with increasing value of w, while the corner frequency
of the Kalman filter remains unchanged at /A2 + 4« |a|? >
A(1 — ), allowing for less noise getting filtered out with rising
wu. Consequently, the mean-square error of the Kalman filter
keeps rising with increasing p to exceed the SQL. On the
other hand, the corner frequency /A2(1 — w)? + 4« ||? of the
robust filter consistently falls with rising w, allowing for the
mean-square error to stay below the SQL throughout.

Figure 2(b) shows a comparison of the worst-case mean-
square errors of the two filters as a function of the photon
flux |«|?> with the uncertainty level set at u = 0.8. We also
plot the SQL for comparison. We see that our robust filter
exhibits an optimal photon number for which its worst-case
performance is the best relative to the Kalman filter. This is
similar to the observation made in Ref. [22] (that the robust
smoother admitted an optimal photon number when compared
to the optimal smoother). Also, the worst-case mean-square
error of the robust filter is always lower than the SQL, while
that of the Kalman filter is not. Indeed, for low values of
photon flux, the corner frequency /A2 + 4« | |? of the Kalman
filter is well beyond the corner frequency A(1 — w) of the
uncertain phase, resulting in its mean-square error being quite
high. However, with rising |«|?> beyond the point where A2
is comparable to 4« |a|?, the value of A (that remains fixed
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here) becomes increasingly less dominant and, therefore, the
impact of any uncertainty in A on the estimation precision
keeps reducing. The behavior of the robust filter is similar,
although its corner frequency /A2(1 — 1) + 4« |a|? clearly
stays much lower than that of the Kalman filter, resulting in
lower mean-square errors. Also, the mean-square error of the
robust filter starts falling earlier compared to the Kalman filter
with rising |« |? at the point where A2(1 — u)? is comparable to
4« |or|?. A similar observation can be made for the SQL too, the
worst-case corner frequency for which is A(1 — ) + Ksqr, =
VA1 — w)? + 2¢|a|? from Eq. (B4).

All these plots indicate that the worst-case mean-square
error, quantified by Q%, of our robust filter is guaranteed to
beat that of the Kalman filter for all situations. Moreover, the
robust filter worst-case mean-square error beats the SQL, even
when the Kalman filter worst-case mean-square error does not.
So if the SQL is considered as the tolerable threshold of the
mean-square error for our system, our robust filter guarantees
that the mean-square error never exceeds this threshold. This is
exactly why robust design methods are powerful for practical
engineering applications (as also noted in Ref. [22]).

VII. ERROR ANALYSIS

In this section, we explicitly prove that the robust filter
mean-square error is guaranteed to beat the Kalman filter
mean-square error and the SQL in the worst-case situation
for all admissible values of A, «, ||, and .

a. Robust filter vs Kalman filter. Here, we intend to show
that the worst-case Kalman filter mean-square error, i.e.,
Eq. (5.13) with § = —1, is always beaten by the worst-case
robust filter mean-square error, given by Q% from Eq. (4.6).
As mentioned earlier, it is immediately obvious from Eq. (4.6),
when compared to Eq. (3.8), that Q7 is the optimal mean-
square error at § = — 1. Therefore, it can be no larger than the
mean-square error at this value of § of the Kalman filter, which
is constructed to be optimal for the exact model having § = 0
and is suboptimal everywhere else including at § = —1.

b. Robust filter vs SQL. Here, we intend to show that the
worst-case robust filter error covariance, quantified by Q7
from Eq. (4.6), always beats the SQL, given by Eq. (B3) with
§=—1,forall A,k,|a|] 2 0and 0 < u < 1.

Subtracting Eq. (4.6) from Eq. (B3) and simplifying with
6 = —1, we get

Psqu(d = —1)— Q*
_ M= ) V(A — )2 + 2kl
B 2|a|?
=M= ) + VA = ) il
4laf? '

One can see that, in order for the above quantity to be
greater than or equal to zero, we need to have

2321 = 2 + 2|2 = (1 — ) = VA1 — p)? + 4icla?,
(7.2)

(7.1)

which is proven in Appendix C.
Hence, PsqL(8 = —1)— Q" > 0; ie., the robust filter
mean-square error for the uncertain system is always less than
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FIG. 3. A suboptimal estimation process may yield the same
mean-square error as the optimal estimation process preceded by
a loss.

or equal to the SQL in the worst-case situation. This is a key
result in our paper.

VIII. EFFECTIVE QUANTUM EFFICIENCY

In all of the above, we have assumed perfect detector
efficiency. That is, the photon flux |«|? equals the square of
the absolute amplitude of the input coherent state a.e*®. In
practice, the photon flux is

loe|* = nalece|?, (8.1)

where 0 < 1y < 1 is the homodyne detector efficiency.

The inefficiency of detectors increases the mean-square
error, just as using a suboptimal filter does. This suggests
considering an effective quantum efficiency for our filters. That
is, the effective quantum efficiency is that which would in-
crease the mean-square error as much as using the suboptimal
filter (see Fig. 3). The effective quantum efficiency 7 for a
suboptimal filter is defined to be that such that the optimal filter
with this efficiency gives the same mean-square error as the
suboptimal filter with unit efficiency. This effective efficiency
is inspired by that in Ref. [32], where a measurement scheme
is mathematically identical to a combination of loss followed
by a better measurement. The difference is that here we are
just matching the mean-square error.

Consider the plant here to be our uncertain model from
Eq. (4.2). Also, suppose a suboptimal filter yields mean-square
error e as shown in the figure. Then, the mean-square error
yielded by the optimal (Kalman) filter preceded by a loss
introduced in the form of 7n.s as in the figure will be equal to
e if we have

1
e = ———|—A, + /A2 + dinegrla|? ),
4fleff|0l|2< ut /A Meft| x|

where the right-hand side has been obtained with A, := (A +
wé) for the uncertain system (4.2) as Eq. (3.8) was obtained
for the exact model (3.4). Upon solving Eq. (8.2) for neg, we
get

(8.2)

Kk — 2e(A + uédr)
4|or|2e?

This equation is one of the main results in this paper.

Now, consider Fig. 1 and note that the filters are suboptimal
everywhere except the Kalman filter at § = 0 and the robust
filter at § = —1. Then, the mean-square errors o,z( from
Eq. (5.13) or 01% from Eq. (5.14) for these filters (that were

plotted in Fig. 1) may be obtained by an effective filter,

Neff = (8.3)

PHYSICAL REVIEW A 95, 052322 (2017)
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FIG. 4. Effective quantum efficiency: Comparison of the effective
quantum efficiencies of the Kalman and robust filters for the uncertain
system as a function of § with u = 0.8.

involving an optimal Kalman filter preceded by a loss channel
with transmissivity e given by Eq. (8.3) with e = o2 or o2,
respectively.

At this point, let us ensure that n.s from Eq. (8.3) satisfies
the lower and upper bounds of 0 and 1, respectively, as desired.

Note from Eq. (8.3) that we have neg > 0 if

e < ;
2(A + udh)

The right-hand side above is P; from Eq. (5.11). This P; is
simply the state covariance (¢>(¢)) for the uncertain process
model in Eq. (4.2). On the other hand, e is the error covariance
((p(t) — q@(t))z). Note that the right-hand side of Eq. (8.4)
equals the error covariance if the phase estimate is zero. In
most practical situations, the phase estimate would be better
than this, giving a positive efficiency.

Next, note from Eq. (8.3) that we have neg < 1 if

8.4)

4laf*e® + 200 4+ udr)e —k =0

A S\ — A SA)?2 +4 2
©(6+( + udh) JEH;'ZM 2+ K|a|>

(h+ p182) + /(1 + udr)? + dicla |
X |e—+ 4|a|2

> 0. (8.5)

Clearly, the second term in the product on the left-hand
side above is positive. The first term in the product is merely
e— aozpt, which is evidently greater than or equal to zero, since
the estimation mean-square error of any filter is greater than or
equal to that of the optimal filter. Hence, Eq. (8.5) is satisfied.

Now, it is interesting to see how the effective quantum
efficiency n.s from Eq. (8.3) varies with various parameters for
our Kalman and robust filters for the uncertain system. Figure 4
shows a comparison of the effective quantum efficiencies of
the filters as a function of § for u = 0.8. The efficiency 7. for
the robust filter is unity in the worst-error case, i.e., at§ = —1,
since the robust filter is optimal for this value of §. On the
other hand, 7. for the Kalman filter is far below unity in the
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FIG. 5. Effective quantum efficiency: Comparison of the worst-
error case effective quantum efficiencies of the Kalman and robust
filters as a function of (a) |«|?> and (b) k. Here, we fix u = 0.5.

worst-error case. Also, note that nes = 1 for the Kalman filter
at§ = 0, since the Kalman filter is optimal for the exact model,
which corresponds to § = 0.

It is further interesting to note our robust filter’s advantage
over the Kalman filter in terms of the effective quantum effi-
ciency in the worst-error case situation (i.e., at § = —1), which
we denote as n;. Figures 5(a) and 5(b) show comparisons of
neg of the filters as functions of la|? and «, respectively, for
w = 0.5. Since the robust filter is always optimal at § = —1,
its effective quantum efficiency always remains unity in the
worst-error case, whereas that of the Kalman filter varies
significantly and approaches nZ; = 1 of the robust filter for
increasingly higher values of k and |«|?. Indeed, for low values
of k or |a|?, the corner frequency /A2 + 4« |« |? of the Kalman
filter is well beyond the worst-case corner frequency A(1 — )
of the uncertain phase, yielding poor estimates and therefore
poor effective quantum efficiency. However, beyond the point
at which 4« |or|? becomes comparable to A2, the value of A (that
remains fixed here) becomes increasingly less dominant and
therefore the impact of any uncertainty in A on the quality of
the estimate starts diminishing, resulting in improved effective
quantum efficiency. Thus, our robust filter always achieves
the maximum effective quantum efficiency that is possible
in the worst-case situation, unlike the Kalman filter. This is
because, while the robust filter is designed to be optimal in
the worst-error case, the Kalman filter is optimal for the exact
model without uncertainty.

PHYSICAL REVIEW A 95, 052322 (2017)

IX. EFFECTIVE NOISE POWER

In Sec. VIII, we defined effective quantum efficiency
for a suboptimal measurement with respect to the optimal
measurement. However, the effect of the loss is an increase in
the error covariance, which can be viewed as resulting from
a scaling of the phase (the same model involving the same
differential equations with suitably scaled variables) and not
the suboptimal filter. We illustrate this in the following.

The measurement model equation is

1
0(t) =) + —w().

9.1
2| .1
With efficiency n we have
1
0(t) =)+ w(t). 9.2)
2/1la|

Now let us scale the time to ¢ = ,/nt. Then, in terms of the
new time we have a new Gaussian noise w;(q) = n'*w(t),
which gives

1
0(q) = ¢(q) + =—7—wi(q)

9.3
2n'/4a] ©-3

or

n'*0(q) = n'"*p(q) + ﬁwn(q).

Let us define 6(q) := n'/*0(q) and ¢1(q) := n'*¢(g). In
terms of these new quantities the equation is

9.4)

1
01(q) = ¢1(q) + =—wi(q).

el 9.5)
The modified equation for ¢ is
n'*¢(q) = —rd(q) +n'*Vicvi(q) (9.6)
or
$1(q) = —n""*r1(q) + Vicui(g). 9.7)
Defining A; := 1~ !/?A, we get
$1(q) = —M11(q) + Vivi(q). 9.8)

That is, the loss on || gives the same plant but with a scaled
time, a scaled A, and scaled phases.
Now consider the filter

B(1) = (1) + K(O(1) — d(1)). 9.9)
In terms of the scaled time,
n'"2$(q) = —1d(q) + K(©0(q) — $(q)). (9.10)

Considering scaled variables as well and transferring the 7 to
the other side,

b1(q) = —("2)d1(q) + (PR 01(g) — di(q)). (9.11)

Let us define K; := 5~ /2K, so this equation becomes

$1(q) = —11d1(q) + K1 (01(q) — d1(q)).

If the Kalman gain was previously calculated for a coherent
amplitude of n'/?a, then K = —X + /A2 + 4kn|a|?. That

means that K; :=n~"?K = —i; + /A7 + 4k|a|?. This, in

9.12)
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FIG. 6. A suboptimal estimation process of a phase may yield
the same mean-square error as the optimal estimation process of the
phase plus additional noise.

turn, means that K, is the desired Kalman gain for the state
with scaled A without loss. The error covariance is therefore
just multiplied by the scaling factor between ¢; and ¢, and is
therefore ~!/? times the error covariance without loss. Thus,
the effect of the loss can be absorbed into scaling of the various
variables to give the same differential equations as before, but
still with the optimal Kalman filter (and not the suboptimal
filter). In other words, the loss is equivalent to having a phase
that varies by a larger amount, which would be like adding
some noise and trying to measure the joint phase variation
plus noise accurately.

Here, we intend to define an effective noise power for the
OU phase under measurement, motivated by the result that a
suboptimal measurement of a constant phase is equivalent to
an optimal measurement on a different state [33,34]. In some
cases the different state can correspond to the original state
with added phase noise. Here, we instead consider added phase
noise with an optimal measurement for the varying phase case.
We consider an additional OU noise ¢’ := —A,,¢' + /K, V',
added to the original phase ¢. This is depicted schematically
in Fig. 6. We measure ¢ + ¢’, but estimate only ¢ and not
¢ + ¢'. This is distinct from trying to estimate ¢ + ¢’, which
is directly equivalent to a scaled scheme of measurement with
the optimal filter (similar to the case with effective quantum
efficiency discussed above).

The model can then be given in state-space form as

¢ = Ag + BV,
0’ =Cop + Dw,
z=Lg, (9.13)
where z determines the parameter to be estimated, and
5 = |:$/i|s V= |:;)/],
| A 0 B— JK 0
- 0 - I ) VEn |’
1
CcC =1[1 1], =——, L=[1 0]. (9.14)
2|ex|

Here, A, = A + uéXx and v, v’, and w are mutually uncorrelated
Gaussian white noises, each with unity amplitude. Also,
we take A, = A, for simplicity. Note that while the new

PHYSICAL REVIEW A 95, 052322 (2017)

measurement 6’ considers the measurement of the combination
¢ + ¢’ (through C), the variable to be estimated, z, is just the
original phase ¢ (through L). Then, if the optimal steady-state
estimate is given by Z, the optimal mean-square estimation
error ((z — 2)?) is obtained by solving the following Kalman
filter algebraic Riccati equation:

AP+ PAT — pcT(DD"Y"'cP+BBT =0, (9.15)
where P is the symmetric matrix
_ | P
P = [P2 PJ’ (9.16)
such that the desired mean-square estimation error is
(z—2%=LPL" = Py. (9.17)

Now, expanding Eq. (9.15), we get the following equations:

—2, Py +k — 4ol (P 4+ P,)> =0, (9.18)
20, P — 4a (P + Py (P, + P3) =0,  (9.19)
20 Ps + Ky — 4o (Pa+ P3)? =0.  (9.20)

Upon solving the system of equations (9.18)—(9.20) for P, P,
and P3, we get

K(2|a|2/c,,(/< +x,) — K)\i + K)»u,B)

P - )
: a2k + )
P =2l Prcin(k + 1) — KK,,A% + kKA B
2 a2k + k) ’
» i (2l |2k + Kn) — kA2 + KnhuB)
3 = )

4ol + ) A

B = \/4|a|2(/c k) 4 A2, 9.21)

Next, we deduce «, > 0, such that the optimal filter for
Eq. (9.13) yields a variance (9.17) equal to the estimation
mean-square error e of a given arbitrary filter for the original
model [Eq. (4.2)]. Thus, we should have P; = ¢ and k,, may
be derived to be

_ kA, 2lale — Ak — 21 e)
a loel(c —2h,)

The effective noise power of the phase ¢ + ¢’ being
measured is then given by

iefr := [V /K] [%} =K + K.

This is because one may verify that the phase being measured
(not estimated) is effectively another OU process as below
obtained from Eq. (9.13):

(9.22)

n

(9.23)

§+ ¢ = —h(d + ) + Vi V&l m (924)
Equations (9.23) and (9.22) are two more main results.

Note that in measurement theory for a constant phase,
modifying the state suitably and using an optimal measurement
gives the same result as a suboptimal measurement [33,34].
As a result, it yields the same overall probability distribution
for the estimation errors, not just the mean-square error. This
means that the measurement can be regarded as being the
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FIG. 7. Comparison between the two-time error correlations of
various filters as a function of the time difference t for u = 0.5 and
8 = 1. The various traces in the plot are as follows: (i) the solid pink
line is the two-time error correlation at each t of the Kalman filter
constructed for the exact model and applied to the uncertain system;
(ii) the solid cyan line is the two-time error correlation at each t of
the robust filter constructed for the uncertain model and applied to
the uncertain system; (iii) the dotted blue line is the two-time error
correlation at each t of the optimal filter constructed for the uncertain
model plus an added noise corresponding to the Kalman filter of trace
(1); and (iv) the dotted red line is the two-time error correlation at
each 7 of the optimal filter constructed for the uncertain model plus
an added noise corresponding to the robust filter of trace (ii).

same in Fig. 6 in a deeper sense than considered so far here
by demonstrating that it will reproduce the same probability
distribution for the measurement errors. This can be tested
for a varying phase, as considered here, by demonstrating the
equivalence not just in terms of mean-square errors but also in
terms of the two-time error correlations.

Figure 7 shows the comparison of the two-time error
correlations of the various filters for 6 = 1, u = 0.5, A, = A,,,
and «,, as derived in Eq. (9.22) and, as used before, A = 5.9 x
10* rad/s, k = 1.9 x 10* rad/s, and |a|> = 1 x 10% s ~!. The
two-time error correlations are computed as in Appendix D.
Clearly, the effective optimal filter we obtained for the Kalman
filter is not equivalent to the Kalman filter at this value of §
in terms of the two-time error correlations; likewise for the
robust filter. Thus, we observe that with an added OU noise
as considered here, the effective optimal filter is equivalent
to the suboptimal filter (our Kalman filter at § # 0 or our
robust filter at § ## —1) in terms of mean-square estimation
errors (this is expected since k, of the added OU noise is
derived such that the mean-square errors match up) only, and
not two-time error correlations as well. There are analytic
reasons, as presented in Appendix E, that suggest that the
two-time error correlations cannot possibly be made to match
up. However, for the purposes of our work here, where our
focus is to define and compare the effective noise powers for
our different estimators, it suffices to use only mean-square
estimation errors.

We now show in Fig. 8 a comparison of the effective noise
powers of the filters as a function of § for u = 0.5. The
effective noise power k. for the robust filter is at a minimum
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FIG. 8. Effective noise power: Comparison of the effective noise
powers of the Kalman and robust filters for the uncertain system as a
function of § with u = 0.5.

and equal to « in the worst-error case, i.e., at § = —1, since
the robust filter is optimal for this value of §. By contrast, kg
for the Kalman filter is more than that of the robust filter in
the worst-error case. Also, note that k¢ is at a minimum (i.e.,
equal to «) for the Kalman filter at § = 0, since the Kalman
filter is optimal for the exact model, which corresponds to
§=0.

It is interesting to note our robust filter’s advantage over
the Kalman filter in terms of the effective noise power in the

X 105 (@)
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FIG. 9. Effective noise power: Comparison of the worst-error
case effective noise powers of the Kalman and robust filters as a
function of (a) |«|*> and (b) A. Here, we fix . = 0.5.
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worst-error case situation (i.e., at § = —1), that we denote as
k. Figures 9(a) and 9(b) show comparisons of « of the
filters as functions of |«|? and A, respectively, with © = 0.5.
We note that the worst-error case effective noise power of
the robust filter always remains constant at x, while that of
the Kalman filter approaches «; = « of the robust filter for
higher values of |a|? and lower values of A. Intuitively, since
the worst-case mean-square error rises for the Kalman filter
with decreasing |« |2, the corresponding effective optimal filter
incurs higher noise power. Moreover, with rising A, the size
of the uncertainty in the model increases, resulting in higher
effective noise power for the Kalman filter.

All these plots show that when considering the worst-case
scenario, our robust filter always incurs the least effective noise
possible, whereas the Kalman filter often effectively suffers
from much higher noise due to the uncertainty in the model.
This is again because of the fact that the robust filter design
involves optimizing the error in the worst-case situation, while
that for the Kalman filter considers zero uncertainty in the
model.

X. CONCLUSION

In this paper, we studied guaranteed-cost robust adaptive
quantum phase estimation for a coherent state with parametric
uncertainty explicitly introduced in the model in a systematic
state-space setting. Our robust filter comes with a guaranteed
cost that quantifies the worst-case mean-square estimation
error, which is guaranteed to beat that of the Kalman filter and
the SQL for the uncertain system. We showed that if the SQL is
taken as the tolerable threshold, our robust filter mean-square
error always remains under this threshold unlike the Kalman
filter. We illustrated that this guaranteed cost allows for our
robust filter to always achieve the maximum effective quantum
efficiency and the minimum possible effective noise power in
the worst-case scenario. In contrast to the robust fixed-interval
smoother from Ref. [22], our robust filter considered here
helps overcome practical challenges facing quantum parameter
estimation in applications such as quantum computing, where
real-time estimates are of greater interest than more precise
estimates.

Moreover, in deriving an effective noise power for our
robust and Kalman filters, we matched only the mean-square
errors of these filters for the uncertain system with the optimal
filter with an added noise. We saw that it does not seem
possible to also match up the two-time error correlations.
Thus, another key result here is that it appears that the results
from Refs. [33,34] for a constant phase do not generalize to
the case of a varying phase, such that the overall probability
distributions of the estimation errors match up.
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APPENDIX A: ROBUST GUARANTEED-COST FILTER

We consider here the theory underlying a steady-state
robust estimator for a class of uncertain linear systems with
norm-bounded uncertainty [29]. This extends the steady-state
Kalman filter to the case in which the underlying system is
also uncertain.

The class of uncertain systems considered is described by
the state equations

x(t) = [A+ DiAWE]x(1) + wi(t),
y(0) = [C + DA E]x(1) 4+ wa(2),

where x(7) € R” is the state, y(¢) € R is the measured output,
Xxo is the initial condition which is assumed to be a zero-
mean Gaussian random vector, A(?) is a time-varying matrix of
uncertain parameters satisfying the bound A7 (£)A(¢) < I, and
w1 (1) and w,(?) are zero-mean white Gaussian noise processes
with joint covariance matrix

[er o)-[3 3]

Since we are dealing with the steady-state filtering problem,
we assume that the initial time 7y — —oo.

Theorem 1 [29]. Consider the uncertain system (A1), which
is assumed to be quadratically stable. Then, there exists
a constant ¢* > 0, such that for all € € (0,¢*), the Riccati
equation

x(tp) = xo,
(AD)

(A2)

1
AS + SAT + eSE[E\S+ -D\D{ +V; =0 (A3)
€

has a stabilizing solution ST > 0. For any such ¢, the Riccati
equation

(A— DD} (V> + D,DI)"'C)Q
+0(A— DD (Vs + D,DI)"'C)"
+€QEIE,Q —eQCT(eVo+ D,DI) 'COQ
1 _
+=Di[I = D] (V2 + D,DJ) 'D,]DT

+Vi=0 (A4)
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has a stabilizing solution @ > 0, such that 0" < S™. Also,
the state estimator

2(t) = (A+€QE]E)2(t) + (¢Q"CT + D D))

x (€Va + DyDI) ' [y(t) — C2(0)] (AS)

has the following property: Given any § > 0, there exists a
matrix Q > 0 such that 07 < O < Q%+ + 87 and Eq. (A5) is
a quadratic guaranteed-cost state estimator for the system (A1)
with cost matrix 0.

Conversely, given any quadratic guaranteed-cost state
estimator for the system (A1) with cost matrix 0, there exists
a constant € > 0, such that Riccati equations (A3) and (A4)
have stabilizing solutions S* > 0 and Q% > 0, respectively,
and 0t < Q.

Moreover, the quadratic guaranteed-cost state estimator
defined by Eqgs. (A4) and (AS5) has the following property:
The steady-state error covariance matrix at time ¢ satisfies the
bound QA(¢) < QT for all admissible uncertainties A(z) [29].

Furthermore, the optimal guaranteed-cost state estimator
for the uncertain system (A1) can be obtained by choosing
€ > 0 to minimize Tr(Q%), where Q1 > 0 is the stabilizing
solution to Riccati equation (A4). This minimization is also
subject to the constraint that Eq. (A3) has a stabilizing solution
St >0/[29].

APPENDIX B: STANDARD QUANTUM LIMIT

The SQL is set by the minimum error in phase estimation
that can be obtained using a perfect heterodyne technique or,
in other words, a nonadaptive filtering scheme [22,31,37].
We deduce the minimum error covariance for the case of
an OU noise process from Eq. (4.2) using the standard
Kalman filtering approach [37]. The underlying principle used
in the analysis is that the heterodyne measurement scheme
is equivalent to, and incurs the same noise penalty as, the
dual-homodyne scheme [16].

The process and measurement equations for the steady-state
Kalman filter, yielding the SQL, are [37]

¢ = —(h + udM)g + kv

(process model),

1 1
P=¢+—n +—n;

(measurement model), (B1)
2l 2l

where n; is the measurement noise of one of the homodyne
detectors HD1 of the dual-homodyne measurement, n, is
the noise arising from the vacuum entering the empty port
of the input beam splitter corresponding to the arm having
HD1 (refer to Fig. C1 from Ref. [22]), and ¥ determines the
net measurement current obtained from the dual-homodyne
scheme.
Then, the algebraic Riccati equation required to be solved
is
=20k + ud2)PsqL — 2la|* Py + k =0, (B2)

where Psqr. is the desired error covariance (SQL).
The stabilizing solution of the above equation is

—(h + p8h) + V(L + pd1)? + 2 e
2|2 ’

PsqL = (B3)
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This determines the desired SQL, which we have included
in our plots in Sec. VI. In addition, note that the transfer
function of the Kalman filter here is

KsqL

_—, (B4)
s+ Ay + KsqL

GsqL(s) =

where A, = A 4+ udA and Ksqr, is the Kalman gain, found to
be KSQL = -\, + )\.5 + 2K|Ol|2.

APPENDIX C: PROOF FOR ROBUST FILTER VS SQL

We start with the obvious inequality:

©lal* >0 (CD)
= i Plalt + 2iclaPA2(1 = w)” + A% - w?

> 2o A1 — p)® + 241 — p)? (C2)
= (ko + 221 — )’y

> (1= w1 — ) + 2¢lal?) (C3)
= ko’ + 221 — p)’

> A1 — WVA(1 — w2 + 2k |erf? (C4)
= 2iclel” + 271 —w)? =21 — )

X v/22(1 — w)? + 2iclal? > ko (C5)

= 4Q2k|e)? + 22(1 — pn)®) + 22(1 — p)?
— 401 = VA1 — p)? + 2k o2

> duclal’ + A2(1 — )’ (C6)
= (2v22(1 — 2 + 2> — A1 — p))?

> duclal® + 23(1 — p)? (C7)
= 23021 — )% + 2l — A(1 — p)

> V21— ) + ka2, (C8)

APPENDIX D: TWO-TIME ERROR CORRELATIONS

Here, we devise methods to compute the two-time error
correlations of an optimal Kalman filter and also an arbitrary
(suboptimal) filter for a given system.

1. Kalman filter

Given the process and measurement models as follows,

x(t) = Ax(t) + Bvu(t), x(0) = xg
y(t) = Cx(¢t) + Dw(t) (measurement model),

(process model),

(D1)

052322-12
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where

' (7)) = Q8(t — 1),

)
(wnw’ (1)) = R8(t — 1),
(wnw' (1) =0,
(Ox"(0) = (wn)x"(0)) =0, (D2)
the optimal steady-state Kalman filter is given by
£(1) = AR(1) + K[y(t) — CE(1)], £(0) = Ro. (D3)

Here, K is the Kalman gain, K = PCT(DRD")~!, where P is
the error covariance (mean-square error), obtained by solving
the algebraic Riccati equation:

AP + PAT — PCT(DRDT)"'CcP + BOBT =0. (D4)
Then, the estimation error is
e(t) = x(t) — £(1). (D5)

Subtracting the filter equation from the process model,

(1) — 2(1) = (A — KO)x(t) — £(1)] + Bv(t) — K Dw(1),
e(t) = (A —KC)e(t) + Bu(t) — KDw(t). (D6)

If ®(¢,0) is the state transition matrix for (A — K C), then
the solution of the above equation is

e(t) = ®(1,0)e(0) +/ ®(t,s)Bu(s)ds
0

PHYSICAL REVIEW A 95, 052322 (2017)

Define P(t,t — 7) := (e(t)e” (t — 7)). Then, upon adding
Egs. (D8) and (D9), we get

P(t,t—1)=(A—KC)P(t,t — 1)+ P(t,t — ) (A — KO)T
+ Bw®)el (t — 1)) + (e(t)v! (¢t — 17))BT
— KD{w)el (t—1)) —(e()wT (t—1))DTKT.

(D10)
From Eq. (D7), we get
(et — 1)) = / ®(t,5)Bw(svT (r — 17))ds
0
= [ O(t,s)BOS(s —t + 1)ds
0
0, T>1t>0
=13B0, t€{0,1} (D11
ot —t)BQ, t>1>0,

using the following three properties of the Dirac delta function:

q 0 1
/ 3(p)dp = / 3(p)dp = >
0 —

q

q
f d(p)dp =1,

—-q

q
/ F(P¥(p)dp = f(0), (D12)
—-q

where ¢ > 0 and f(-) is some function. Similarly, we get

t
- /0 O(7,5)K Dw(s)ds. (D7) QBT®T(t—1,1), T>1t>0
v(eT(t — 1)) ={ L0BT, 7 e {0,t D13
Post-multiplying Eq. (D6) by &?(t — t), where T > 0 and e ( 2 20 0}« )
taking the expectation, we get 0, t>17>0,
(e’ (1 = 1)) = (A = KO)e()e" (1 = 7)) . " Tl
B0 — 1)) — KDl (t — 1)y, FOW = D) =1 —3KDR, relon
DS —®o(,t —t)KDR, t>r1 >0,
(D3) (D14)
Similarly, we obtain —RDTKT®T(t —1,1), T>t>0
T
(E(I)ET(t _ T)) — <8(t)8T(t _ 'L'))(A _ KC)T (w(t)g (t—f)) = —%RDTKT, T € {O,t}
(e (t — 7)) BT 0, t>1> 8-)15)
—(e(w' (¢t —)DTKT. (DY)
Then, Eq. (D10) can be expressed as
J
(A—KC)P(t,t — 1)+ P(t,t —T)(A— KCO) + &(t,t —1)BOB” + ®(t,t —1)KDRD"K"T, t>1>0
Pitt—1)={(A—KC)P(t,t — 1)+ P(t,t — 1) (A — KC)" + BOB" + KDRDTKT, T € {0,1}
(A—KC)P(t,t — 1)+ P(t,t —1)(A— KC) + BOQBT®T(t—7,t) + KDRDTKT®T(t —7,t), 7 >1>0.
(D16)

It can be verified that the above equation for v =0
reduces to the standard Kalman filter matrix differential Riccati
equation.

At steady state, the left-hand side above is zero, yielding
Eq. (D4) at = = 0. Also, the state transition matrix may be
computed as follows:

o't — 1,1).

O(t,r — 1) = A KO = (D17)
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Usually, by the notation P(z,t — t), we would imply ¢t >
7 2> 0, hence the third case in Egs. (D16) will be ignored since
the state transition matrix in this case represents backward-
time state transition. However, given ¢t > 7 > 0, the third
case allows for verifying that P(t — 7,t) = PT(t,t — 1), as
expected. Then, the steady-state matrix equation to be solved
to obtain P(t,t — 1) is

0=(A—KC)P(t,t — 1)+ P(t,t — 1)(A — KC)T

WK RO BT 4 fA-KCOT K DRDTKT . (DI18)

2. Arbitrary filter

Here, we extend Sec. V to deduce the form of Lyapunov
equation required to be solved to obtain the two-time state
covariance matrix and therefore the two-time error correlations
of an arbitrary filter for a given system state-space model.

Let the system process and measurement models and an
arbitrary filter for the system be determined by the following
differential equations:

x(t) = Ax(t) + Bv(r), x(0)=xp
y(t) = Cx(t) + Dw(t) (measurement model),
(1) = AK@) + Boy(1)

= A %)+ B.Cx(t)+ B.Dw(t) (filter equation),

(process model),

(D19)
where again
o’ (1)) = @8t — 1),
(wnw' (1)) = RSt — 1),
wow’ () =0
(n)x"(0)) = (w(r)x"(0)) = 0. (D20)

We obtain an augmented system as follows from the process
model and the filter equation:

x(t) = Ax(t) + Bw(r),

X(1) = [ﬁgﬂ W(r) = [;’f(’})]

— 4 0] = [B o0
A=|:BeC AJ’ Bz[o BL,D]' (D22)

Then, we get for T > 0,

(D21)

where

xOx (t —1)) = ATOT (t — 1)) + Bw®)x' (t — 1)).
(D23)

J

Ps(t,t —T) = Y APs(t,t — )+ Ps(t.t —71)A +BOB',

PHYSICAL REVIEW A 95, 052322 (2017)
Similarly,

FOF (1 — 1) = @FOT (1 — 1))A + @)Wt —1)B .
(D24)

The steady-state state covariance matrix of the augmented
system is given by Ps(t,t — 7) = (x(1)X' (t — 7)). Then,
Ps(t.t — 1) = EOF (1 — 1) + FOF (¢ — 1))
— APs(t,t — 7) + Ps(t,t — T)A
+ B (¢ — 1) + ZOW' (¢t —1)B .

(D25)
Note
wHw (t — 1)) = [g 2]3@ —t+71)
=: 08(s —t + 1). (D26)

Now, let E(I,O) be the state transition matrix for A. Then,
we have

x(t) = ®(1,0)x(0) + / O(t,5)Bw(s)ds. (D27)
0
Then,

xOw (t —1)) = / O(t,5)B(w(s)w! (t — 1)) ds
0

/ D(t,5)B Q8(s —t + 1) ds

0

0, T>1>0
=11B0, T €{0,1} (D28)
D(t,t—1)BQ, t>71>0.
Similarly,
0, t>1t>0
@nx (t—1) = {10B, € {01}
§§T5T(t —1,t), T>1>0.
(D29)
Thus, we get
— —T  ———T—T
APs(t,t — 1)+ Ps(t,t —1)A + BQOB & (t—1,1), 7>1t>0
T €{0,¢} (D30)
t>1t>0,

APs(t,t — 1)+ Ps(t.t —1)A +®(1,t —1)BOB.,

where

Bt —1)=e" =D (1 —1.0). (D31)

(

As before, by the notation Ps(¢,t — t), we would imply
t>1t >0, and so, the first case above is ignored. Then,
at steady state, Ps(t,# — ) = 0, and the form of Lyapunov
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equation required to be solved to obtain the desired two-time
state covariance matrix is

APs(t,f — 1)+ Ps(t,t —1)A + e "BOB =0. (D32)

Then, noting that the filter estimation error is &(t) =
[1 —1]x(¢), the two-time error correlation for the filter is
obtained as follows:

P(t,t — 1) = (e()el (t — 1))

=[1 —1]Pg(t,t — r)[_ll] (D33)

APPENDIX E: MATCHING TWO-TIME CORRELATIONS

Here, we strive to arrive at a condition under which the two-
time error correlations of a suboptimal filter for the uncertain
OU phase [Eq. (4.2)] possibly match up with those of the
optimal filter for the uncertain OU phase with added extra OU
noise [Eq. (9.13)].

With reference to Appendix D 2, in our case we have

_ _ — 0 —
e[ 0 e[S 2] o w

2|

where A, = —(A+ K) and B, = K for the Kalman filter
from Eq. (3.6), and A, = —A — 4|a>Q" + ;A2 QT and
B, = 4|a|?> Q™ for the robust filter from Eq. (4.7). Then, we

have
_ e Mt 0
eAT = |:Be(eAﬂg—x“r) eAz‘T . (E2)
Aethy
Let us denote
P51 Ps;
Ps := . E3
S |:Ps3 Ps4] E3)
Then, we get from Eq. (D32) the following:
—24, Ps1 + e ™" =0, (E4)
(_)‘-u + Ae)PSZ + BePSl = Oa (ES)
(chy + A)Ps 4+ B, Py 4 2K = )y (E6)
u e)1'S3 el S1 Ae + )Lu =Y,
B2
B.(Psy + Pg3) +2A, Pgy + eAﬂm =0. (E7)
Upon solving the above equations, we get
e Mty
Pg; = , E8
s1 e (E8)
e ™™7kB,
Py =——"7——, (E9)
2)\'M(AE - )"u)
Boke T (Ay — hy) + 2Boic ket
Pgy = — , E10
2,42 = 7) Y
o _ KBl B2 (Hal £33 — 42)
T (A2 - R) 8lal?A, (A2 —22)
(E11)
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Then, from Eq. (D33), we get P, := P(t,t — 7):
P, = Pg1 — Py — Pg3 + Psy

kA + B — 7]
BTV ERE)

B? B.k(2A, + B,
_ LAt e et K( + ) (E12)
8la|2A, 24.(A2-22)

Next, with reference to Appendix D 1, we rewrite Eq. (D18)
with tildes to avoid ambiguity with notation here:

0=(A—KC)P,+ P,(A—KCO)T

+€(A7KC)1’BQBT +€(A7KC)TKDRDTKT. (E13)

Here, the matrices are as defined in Eq. (9.14), K =
PCT(DRDT)™!, where P is as obtained from Eq. (9.15),
and Q =1 and R = 1. Note that P = P,_y = P(¢,t). For
simplicity, let K := [K; Kz]T. Clearly, from Eq. (9.21), we

have
K(—Ay, +
Ky = 4laP(P + Py = D)
K+ Ky
Kn _)"u +
Ky = 4la* (P, + P3) = knl"he + ), (E14)
K+ Ky
Then,
| ==K —K;
A—KC_|: —K, —M—Kz]’ (E15)
and the matrix exponential is obtained as
eMTK 4o MTK, (e=MnT—e=MuT)K,|
eA—KOT _ K|+Kﬂz “ Ki+K; ) (E16)
(e—Anrie—Aur)KZ g‘Al"K1+e_A"’Kz
K| +K, K| +K>
where A, = A, + K| + K>.
Let
5 ._ [P P
P, = [133 ﬁ4]' (E17)

We then wish to find an added noise such that the two-time
error correlations described by P; from the above equation
match those for the suboptimal filter given by P, from
Eq. (E12). The only parameter available to vary for the noise
is k,,, which is independent of t.

Expanding Eq. (E13) and solving for Py, the desired two-
time error correlation for the optimal filter, we get

pe €2+ B)
P+ k)

Py =e M7 £

20K + &)

Comparing Egs. (E12) and (E18), we see that we need the
following to hold:

(E18)

Ac=—B =4l +uc)+12.  (EL9)
(Ae + Be)2 — A2 Kn
u_ , E20
Az — )2 K + Ky (£20)
B.k(2A, + B, B? 2(—hu
K(2A. + B.) . k(A B) (E21)

24,(A2—22)  8lalPA, 4ol +K)?
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It turns out that it is not possible to choose a suitable
value for only «, that will allow for all the three in-
dependent conditions above [i.e., Eqs. (E19), (E20), and
(E21)] to be satisfied simultaneously. Furthermore, if we
consider there is another parameter A, available to vary

PHYSICAL REVIEW A 95, 052322 (2017)

for the added noise, in addition to k,, Eq. (E18) will
have three (instead of two) time constants, required to be
matched with two time constants from Eq. (E12). Thus,
it does not seem possible to match up the two-time error
correlations.
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