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Discontinuities of the quantum Fisher information and the Bures metric
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We show that two quantities in quantum metrology that were thought to be the same, the quantum Fisher
information matrix and the Bures metric, are not the same. They differ at points at which the rank of the
density matrix changes. The quantum Fisher information matrix is discontinuous at these points. However, these
discontinuities are removable in some sense. We show that the expression given by the Bures metric represents
the continuous version of the quantum Fisher information matrix. We also derive an explicit formula for the
Bures metric for both singular and nonsingular density matrices.
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I. INTRODUCTION

The quantum Fisher information and the Bures metric are
cornerstones of modern quantum metrology and quantum
information geometry. They give the ultimate precision bound
on the estimation of a parameter encoded in a quantum state
known as the Cramér-Rao bound [1,2]. This bound gives
the theoretical framework for maximizing the sensitivity of
new-era quantum detectors, such as the recently improved
[3] gravitational wave detector LIGO that confirmed the last
missing piece in the Einstein’s theory of relativity [4]. The
quantum Fisher information and the Bures metric have been
also used in the description of criticality and quantum phase
transitions under the name of “fidelity susceptibility”, where
they help to describe a sudden change of a quantum state when
an external parameter such as temperature is varied [5–8].
Last but not least, these measures also give the speed limits
on the evolution of quantum states [9,10]. They have been
used, for example, to estimate the speed limits of quantum
computation [11] or speed limits in charging of batteries [12].

Introduced by Holevo [13], Helstrom [14,15], by Bures
[16], and later popularized by Braunstein and Caves [1], the
quantum Fisher information and the Bures metric describe
limits in distinguishability of infinitesimally close quantum
states ρ̂ε and ρ̂ε+dε that differ only by a small variation in
parameters that parametrize them. To explain, assume we
perform a measurement on these two states to distinguish them.
We obtain two different statistics of measurement outcomes,
and how well we can distinguish between these two statistics
is given by a measure known as the Fisher information.
Since statistics of measurement outcomes depend on both
the quantum states and the chosen measurement, and because
some measurements can lead to statistics that are easier to
distinguish, to obtain the ultimate precision with what we
can distinguish between the two close states we have to
optimize over all such measurements. This then gives rise
to the quantum Fisher information, which is a function only of
the density matrix ρ̂ε [2]. Since the density matrix depends on
the parameter to be estimated, distinguishing between two
close density matrices ρ̂ε and ρ̂ε+dε is equivalent to distin-
guishing between two close parameters ε and ε + dε that
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parametrize them. As a result, the quantum Fisher information
measures how well the parameter ε itself can be estimated.

Despite the fact that both the quantum Fisher information
and the Bures metric have been widely used before, they still
contain a large number of strange and unexplored properties.
For example, although these quantities are widely believed to
be equal, finding the true connection between them is rather
elusive. It has been shown that these quantities are the same
when two infinitesimally close states that are being compared
are pure [17], or when they are both described by a full-rank
density matrix [1,18]. It has been suggested that this is also true
when the density matrices are of arbitrary rank [19]; however,
we will show that this is not true in general.

The quantum Fisher information and the Bures metric
also exhibit mathematical features that make them difficult
to handle and that are uncommon in physics. Expressions for
the quantum Fisher information or the Bures metric that are
valid for a certain quantum state are often undefined for a
state of a lower rank. Formulas for the full-rank or one-rank
density matrices are usually easy to obtain but hard to connect
to each other, even when using appropriate limits, and deriving
expressions for density matrices of an arbitrary rank is much
harder. To connect known expressions or to derive new ones,
unintuitive regularization procedures have to be employed
[20,21], or uncommon operators such as the Moore-Penrose
pseudoinverse have to be introduced [20]. Due to these diffi-
culties, it is common in literature that discussions of glaringly
pathological behavior such as 0

0 of the derived expressions are
often omitted. It is implicitly assumed that such expressions are
either invalid when they are undefined, or that such expressions
are still valid and the pathological terms are either set to zero
[22] or to some other value, depending on a particular limit
involved [21]. Performing those limits shows that expressions
for the quantum Fisher information exhibit strange jumps
(discontinuities) when a mixed state approaches a pure state,
suggesting that the physics of pure states should differ from
the physics of mixed states, a surprising statement on its own.

In this paper we study and describe this strange behavior
and expose places where we can expect discontinuities in the
figures of merit, even for density matrices that are analytical
functions of the estimated parameters. We find that these
discontinuities happen when a small change in the parameter
of the density matrix changes the rank of the density matrix.
This is also when two figures of merit of the local estimation
theory—the quantum Fisher information matrix and the Bures
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metric—do not coincide. Such scenarios are common when
estimating noise in a quantum system [23–25] or when the
parameter that we want to estimate is encoded into some larger
quantum state, while an experimentalist has access only to a
smaller subsystem [26–28]. This is inevitable in a quantum
field theory in curved space-time because there are infinitely
many modes that need to be traced over [29–34]. In all of these
scenarios the change in the parameter changes the purity of a
state. Therefore the rank of the density matrix can also change,
which ultimately leads to a discontinuity.

This paper is structured as follows. We first give the
necessary background and we review literature published on
the topic. Then we present our main results: the relation
between the quantum Fisher information matrix and the Bures
metric (Theorem 1, Corollary 1, and Theorem 2); continuity of
the Bures metric (Theorem 2); discontinuities of the quantum
Fisher information matrix and the Bures metric (Corollary 2
and Theorem 3); and an expression for the quantum Fisher
information matrix of any state as a limit of the quantum
Fisher information matrix of a mixed state (Theorem 4). We
accompany our text by three examples and four figures for
better understanding. Finally, we discuss possible physical
interpretations of points of discontinuity and conclude.

II. BACKGROUND

We use the following notation: We denote the vector of
parameters as ε = (ε1,...,εn), and we denote the density matrix
dependent on this vector as ρ̂ε . If a symbol with an index
appears under the sum, the sum goes over all values of the
index such that the property is satisfied. For example,

∑
pk>0

means that the sum goes over all k such that pk > 0. If there is
no condition present, the sum goes over all indices written
under the sum. We also usually drop writing the explicit
dependence on the vector of parameters ε unless we want
to stress out this dependence. For example, instead of pi(ε)
we often write only pi , but for pi(ε + dε) we write the full
form. dε = (dε1,...,dεn) denotes a small variation in vector
ε. We denote partial derivatives as ∂i ≡ ∂εi

and ∂ij ≡ ∂εi
∂εj

.
Derivatives with respect to elements of dε will be denoted
as ∂dεi

for the first derivatives and ∂dεidεj
for the second

derivatives. Elements of a matrix will be denoted by upper
indices, e.g., Hij , while different matrices or operators will be
denoted by lower indices, e.g., L̂i . We also write the spectral
decomposition of the density matrix as

ρ̂ε =
∑

k

pk|k〉〈k|. (1)

We define symmetric logarithmic derivatives L̂i [2] as
operator solutions to equations

1
2 (L̂i ρ̂ε + ρ̂εL̂i) = ∂i ρ̂ε . (2)

The quantum Fisher information matrix is then a symmetric
positive or a positive semidefinite matrix defined as [2]

Hij (ε) := 1
2 tr[(L̂iL̂j + L̂j L̂i)ρ̂ε]. (3)

Using the spectral decomposition (1) of the density matrix
it is relatively easy1 to check that Eq. (2) has solutions
L̂i = 2

∑
pk+pl>0

〈k|∂i ρ̂ε |l〉
pk+pl

|k〉〈l|. Inserting these expressions
into Eq. (3) gives the quantum Fisher information matrix,

Hij (ε) = 2
∑

pk+pl>0

Re(〈k|∂iρ̂ε |l〉〈l|∂j ρ̂ε |k〉)
pk + pl

, (4)

where Re denotes the real part.
The quantum Fisher information matrix is the figure of

merit in the multiparameter quantum Cramér-Rao bound,
which gives a lower bound on the covariance matrix of the
vector of locally unbiased estimators ε̂ [2,35],

Cov[ε̂] � H−1(ε). (5)

Cov[ε̂] = 〈ε̂i ε̂j 〉 − 〈ε̂i〉〈ε̂j 〉 is the covariance matrix and
H−1(ε) the inverse of the matrix defined in Eq. (3). The above
equation should be understood as an operator inequality. It
states that Cov[ε̂] − H−1 is a positive semidefinite or a positive
definite matrix.

In this paper we study the connection between the quantum
Fisher information matrix and the Bures metric (also known
the “statistical distance” in older literature [1,17] and as
the “fidelity susceptibility” in the condensed matter theory
literature [7]). To define the Bures metric [16] we first
introduce the Bures distance. The Bures distance is a measure
of distinguishability between two quantum states ρ̂1,2 and it is
defined through the Uhlmann fidelity [36]

F(ρ̂1,ρ̂2) := (tr
√√

ρ̂1 ρ̂2

√
ρ̂1)2 (6)

as

d2
B(ρ̂1,ρ̂2) = 2(1 −

√
F(ρ̂1,ρ̂2)). (7)

The Bures distance gives rise to the Bures metric gij through
the definition for the line element,∑

i,j

gij (ε)dεidεj := d2
B(ρ̂ε,ρ̂ε+dε). (8)

This definition shows that the Bures metric measures the
amount of distinguishability between two close density ma-
trices ρ̂ε and ρ̂ε+dε in the coordinate system ε. Precisely
speaking, the above equation defines a metric tensor (or simply
metric) gij induced by the Bures distance. The coordinate
system ε is not required to describe the entire manifold of
density matrices but can rather define a submanifold. The
metric (8) is then an induced metric on this submanifold. We
define quantity Hc (which we will later call the continuous
quantum Fisher information matrix) as four times the Bures
metric,

Hc := 4g. (9)

The connection between the quantum Fisher information
matrix and the Bures metric was extensively studied in

1Assuming ρ̂ε ∈ C(1), inserting L̂i to Eq. (2) gives the left-
hand side LHS = ∑

pk+pl>0〈k|∂i ρ̂ε |l〉|k〉〈l|, which together with∑
pk=pl=0〈k|∂i ρ̂ε |l〉|k〉〈l| = 0 gives the right-hand side. The second

identity comes from the fact that for ε such that pk(ε) = 0, also
∂ipk(ε) = 0 because pk reaches the local minimum at point ε.
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literature, particularly in several papers deriving explicit
formulas for the statistical distance, the Bures metric, or the
infinitesimal Bures distance [1,2,6,13,15–19,36–41]. We also
point out papers related to the continuity of the quantum Fisher
information [42,43].

There are three papers directly related to our study. In the
first paper [1] Braunstein and Caves generalized the notion
of the statistical distance from pure states to mixed states by
maximizing the Fisher information over all possible quan-
tum measurements. In today’s terms, the resulting statistical
distance is an equivalent of the quantum Fisher information
defined in Eq. (4). Moreover, it was noted in [1] that the
derived expression of the statistical distance is proportional to
the infinitesimal Bures distance that was explicitly computed
by Hübner [18]. What was not mentioned, however, is that the
results of paper [18] are applicable only to nonsingular density
matrices.2 It is discussed there that in the case when ρ̂ becomes
singular the metric can be regularized by switching to a new
set of coordinates and that the metric tensor gij remains finite.
On the other hand, paper [18] does not provide an explicit
expression for the infinitesimal Bures distance for the case of
singular density matrices. Sommers and Życzkowski went a
bit further by considering also singular density matrices [19].
However, the entire discussion of this topic is reduced to one
sentence,3 which leads to incorrect conclusions.

Performing the proof in Ref. [19] in detail using the same
argumentation reveals that the resulting expression differs
from the one that was published. The infinitesimal Bures
distance is actually d2

B(ρ̂,ρ̂ + dρ̂) = 1
2

∑
pk>0,pl>0

|〈k|dρ̂|l〉|2
pk+pl

and not d2
B(ρ̂,ρ̂ + dρ̂) = 1

2

∑
pk+pl>0

|〈k|dρ̂|l〉|2
pk+pl

as stated in the
paper. Intuitively, the reason why extra terms given by pk > 0,

pl = 0 and pk = 0,pl > 0 do not appear in the sum can be
understood in the following way: the argument d2

B(ρ̂,ρ̂ + dρ̂)
takes into account only the first-order correction ρ̂ + dρ̂, while
the right-hand side depends on the second order dρ̂2. The extra
terms that are missing come from the second-order correction
to the argument. However, to obtain these extra terms it is
necessary to consider the expression given by d2

B(ρ̂ε,ρ̂ε+dε)
from Eq. (8) instead of d2

B(ρ̂,ρ̂ + dρ̂), as has been done in
Ref. [19] (see Appendix A for more detail).

We will show in detail that even when considering the right
figure of merit d2

B(ρ̂ε,ρ̂ε+dε) for the Bures metric, there is still a
discrepancy between the Bures metric and the quantum Fisher
information matrix in certain cases. To motivate this paper we
illustrate this discrepancy in the following example.

Example 1. Consider a state where the parameter we
estimate characterizes the purity of a quantum state,

ρ̂ε = sin2 ε |0〉〈0| + cos2 ε |1〉〈1|. (10)

The fidelity between two close states can be eas-
ily calculated as

√
F(ρ̂ε,ρ̂ε+dε) = | sin(ε) sin(ε + dε)| +

| cos(ε) cos(ε + dε)|, which inserting into Eq. (8) and using

2Hübner states “We assume A(0) = ρ invertible”.
3The sentence being “Note that if ρν = 0 and ρμ = 0, δρνμ does not

appear and therefore terms where the denominator vanishes have to
be excluded”.

FIG. 1. The quantum Fisher information H and the (four times)
Bures metric Hc give different results for the same density matrix (10).

definition (9) gives a constant function

Hc(ε) = 4. (11)

Using Eq. (4), for ε �= k π
2 , k ∈ Z we find H (ε) = 4. For ε =

k π
2 one term in the sum has its denominator equal to zero

(pk + pl = 0) and therefore it is not considered in the sum,
while other terms are zero. Together we have

H (ε) =
{

4 ε �= k π
2

0 ε = k π
2 .

(12)

Graphs of functions H and Hc are shown in Fig. 1 .
This example shows that although the expression given by

the quantum Fisher information matrix H and the four times
Bures metric Hc give the same results everywhere where the
density matrix is full-rank (nonsingular), the expressions differ
at points ε at which an eigenvalue vanishes. As we will show in
the following section, this is a completely general behavior. For
parameterized quantum states ρ̂ε in which a slight change in
the parameter ε results in an eigenvalue of the density matrix to
vanish (or equivalently, results in an eigenvalue to “pop out”),
the two figures of merit do not coincide. This discrepancy
will be then connected to the discontinuous behavior of the
quantum Fisher information matrix.

III. RESULTS

We assume ρ̂ε ∈ C(2) in all following theorems, i.e., we
assume that the second derivative of the density matrix exists
and that it is a continuous function. Although the first theorem
could be easily modified to require only the existence of the
second derivative (with its discontinuity possibly resulting
in ∂ijpk �= ∂jipk), the continuity of the second derivative is
crucial for other theorems that speak about continuity of the
quantum Fisher information matrix and the Bures metric.

Theorem 1. The Bures metric is connected to the quantum
Fisher information matrix through the relation

Hij
c (ε) = Hij (ε) + 2

∑
pk (ε)=0

∂ijpk(ε). (13)

pk(ε) = 0 denotes that the sum goes over all values k such that
their respective eigenvalue pk vanishes at point ε. Defining the
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FIG. 2. The continuous quantum Fisher information of den-

sity matrix ρ̂ε = {ε4 sin2 1
ε

|0〉〈0| + (1 − ε4 sin2 1
ε

)|1〉〈1| ε �= 0
|1〉〈1| ε = 0.

The second

derivative ∂εε ρ̂ε exists everywhere, but it is discontinuous at point
ε = 0. Theorem 2 does not apply anymore and Hc does not
have to be continuous. An explicit computation shows Hc(ε) =
{

4(2ε sin 1
ε −cos 1

ε )2

1−ε4 sin2 1
ε

ε �= 0

0 ε = 0.

Hessian matrices as Hij

k := ∂ijpk we can also write Eq. (13)
in an elegant matrix form, Hc = H + 2

∑
pk=0 Hk .

Proof. See Appendix B.
Theorem 1 gives an explicit formula for the Bures metric

for both singular and nonsingular density matrices, and it
generalizes the result of [18] by including singular matrices. It
also shows that the (four times) Bures metric and the quantum
Fisher information matrix do not coincide only at certain points
ε at which an eigenvalue vanishes. When the density matrix ρ̂ε

is full rank (nonsingular), or when the change of the parameter
does not result in the change of purity, for example, when the
operation encoding ε is a unitary operation, the (four times)
Bures metric Hc and the quantum Fisher information matrix
H are identical. It is worth noting that the Hessian matrix
Hk(ε) is a positive or a positive semidefinite matrix because
pk reaches the local minimum at point ε for which pk(ε) = 0.
We can sum these findings in the following matrix inequality.

Corollary 1.

Hc � H, (14)

and Hc = H if and only if for all k and ε such that pk(ε) = 0,
Hk(ε) = 0.

Proof. The inequality comes from the fact that Hk(ε) is a
positive semidefinite or a positive definite matrix. The equality
condition comes directly from Eq. (13). �

Next we show that the quantity Hc is in a certain sense a
continuous version of the quantum Fisher information matrix.
The discontinuous points of the quantum Fisher information
matrix are redefined as the limits of the quantum Fisher
information matrix of nearby points.

Theorem 2. We denote a unit vector with number 1 at the
l’th position as el = (0, . . . ,0,1,0 . . . ,0). Then

Hij
c (ε) = lim

dε→0
Hij (ε + dε ei) = lim

dε→0
Hij (ε + dε ej ). (15)

Moreover, H
ij
c is a continuous function in parameter εi , εj ,

respectively, for any fixed parameters εk such that k �= i, k �= j ,
respectively.4

Proof. See Appendix C.
The next corollary will show that the quantum Fisher

information matrix is not in general a continuous function
even for density matrices that are analytical functions of its
parameters.

Corollary 2. If
∑

pk(ε)=0 ∂ijpk(ε) �= 0, then the element of
the quantum Fisher information matrix Hij is not continuous
at point ε.

Proof. Combining Theorem 1 and Theorem 2, we find

lim
dε→0

Hij (ε + dε ei) − Hij (ε) = 2
∑

pk (ε)=0

∂ijpk(ε) �= 0, (16)

which by definition means that Hij is not continuous in εi

at point ε and thus neither is it a continuous function at
point ε. �

Theorem 2 says when a single parameter ε is estimated, Hc

is a continuous function in this parameter. For that reason we
call Hc the continuous quantum Fisher information matrix. It
is important to point out that the assumption required in all of
our theorems, ρ̂ε ∈ C(2), is crucial for Theorem 2 to hold (see
Fig. 2). Also, similarly to the quantum Fisher information
matrix, the continuous quantum Fisher information matrix
is not in general continuous in the topology of multiple
parameters ε = (ε1,...,εn). This is precisely stated in the
following theorem.

Theorem 3. If there exists a unit vector u = (u1, . . . ,un)
such that

�ij
u (ε) := 2

∑
pk = 0,∑

s,t ∂st pkusut > 0

((∑
m ∂impkum

)( ∑
n ∂jnpkun

)
∑

s,t ∂stpkusut

− ∂ijpk

)
�= 0, (17)

4In the proof of this continuity property we also assume that the
number of eigenvalues is finite, which leads to

∑
pk=0 O(dε) =

O(dε). This assumption might be problematic, for example, when
estimating parameters encoded in Gaussian quantum states because
such states live in an infinite-dimensional Hilbert space. However,
we believe that this assumption might not be necessary, and it should

be possible to derive
∑

pk=0 O(dε) = O(dε) by showing that the
sum converges sufficiently fast. This would nevertheless come from
very careful considerations, and it could require expanding relevant
quantities up to the third order in dε.
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then the element of the continuous quantum Fisher in-
formation matrix H

ij
c is not continuous at point ε. We

can also write Eq. (17) in an elegant matrix form,
�

ij
u (ε) := 2

∑
pk=0,uT Hk u>0 ( (Hk u)i (Hk u)j

uT Hk u − Hij

k ) �= 0.
We denote a unit vector with number 1 at the l’th position

as el = (0, . . . ,0,1,0 . . . ,0). H
ij
c is continuous in εl at point ε

if and only if �
ij
el

(ε) = 0.
�

ij
u measures the jump of function H

ij
c at point ε when

coming from direction u,

�ij
u (ε) = lim

dε→0
Hij

c (ε + dε u) − Hij
c (ε). (18)

Proof. See Appendix D.
We illustrate the discontinuous behavior of the quantum

Fisher information matrix on the following example.
Example 2. Consider a quantum state depending on two

parameters,

ρ̂ε = 1
2 (sin2 ε1 + sin2 ε2)|0〉〈0| + 1

2 cos2 ε1|1〉〈1|
+ 1

2 cos2 ε2|2〉〈2|. (19)

We are going to study the first element of the quantum
Fisher information matrix H 11 which measures the mean
squared error in the estimating parameter ε1. While the
expression for the quantum Fisher information matrix (4)
assigns value H 11(0,0) = 0 to the problematic point ε = (0,0),
the continuous quantum Fisher information matrix assigns
value H 11

c (0,0) = 2. According to Theorem 2, this definition
of the problematic point makes the function H 11

c a continuous
function in ε1 but not necessarily in ε2.

Using Theorem 3, we are going to prove that Hc is not
continuous in ε2 at point ε = (0,0). To do that we will study
�11

u (0,0) from Eq. (17). The only relevant eigenvalue is the
first one because p1(0,0) = 0, while for others p2(0,0) =
p3(0,0) = 1

2 . The respective Hessian matrix is

H1(0,0) =
[

1 0
0 1

]
(20)

that gives

�11
u (0,0) = 2

(
u2

1

u2
1 + u2

2

− 1

)
. (21)

Setting u = e2 we have �11
e2

(0,0) = −2, which according to
Theorem 3 means that H 11

c is not continuous in ε2 at point
(0,0) and thus neither is it a continuous function of ε. Graphs
of H 11 and H 11

c are shown in Fig. 3.
Theorem 3 also states that it is not generally possible to

use the multiparameter Taylor’s expansion of the quantum
Fisher information matrix at problematic points ε at which
pk(ε) = 0 and Hk(ε) > 0. These are often exactly the points
around which we would like to do this expansion, for example,
when considering a state with a slight impurity that is almost
pure. For example, consider a task of estimating both phase
and temperature of a quantum state, ε = (θ,T ). Theorem 3
says it is not possible in general to approximate the quantum
Fisher information matrix by expanding this function in both
the phase parameter θ and the small temperature parameter
T at the same time. The directional Taylor’s expansion, for
example, in parameter θ

T
, has to be employed instead. An

FIG. 3. Graphs of the first element of the quantum Fisher
information matrix H 11 and the first element of the continuous
quantum Fisher information matrix H 11

c , for the estimation of
parameters of the density matrix (19). These graphs are identical
everywhere apart from point (ε1,ε2) = (0,0). Clearly, neither function
is a continuous function in both parameters at the same time; however,
H 11

c is guaranteed to be a continuous function in ε1 for any ε2.

example that utilizes a variation of this method in a quantum
field theory in curved space-time can be found in Ref. [33].
We will return to this in a moment.

We mentioned in the Introduction that it is often necessary
to use different expressions when calculating the quantum
Fisher information matrix for density matrices of different
ranks. However, we will design a method which will require
only one expression to obtain every other expression by
performing a certain limit. We are going to show that the
quantum Fisher information matrix of any state can be
calculated as a limit of the quantum Fisher information matrix
of a full-rank state. We call this process the regularization
procedure, in analogy with the result for Gaussian states [21].

Theorem 4. We define a density matrix

ρ̂ε,ν := (1 − ν)ρ̂ε + νρ̂0, (22)

where 0 < ν < 1 is a real parameter and ρ̂0 is any ε-
independent full-rank density matrix that is diagonal in the
eigenbasis of the density matrix ρ̂ε . Then the resulting matrix
ρ̂ε,ν is a full-rank matrix and

H (ε) = lim
ν→0

H (ρ̂ε,ν), (23)
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Hc(ε) = lim
ν→0

H (ρ̂ε,ν) + 2
∑

pk (ε)=0

Hk(ε). (24)

In finite-dimensional Hilbert spaces ρ̂0 can be defined as a
multiple of identity, ρ̂0 = 1

dimH Î .
Proof. ρ̂ε,ν has eigenvalues equal to (1 − ν)pk + νp0k > 0,

where p0k > 0 are eigenvalues of ρ̂0. Therefore the density
matrix is full rank, and the sum in Eq. (4) for evaluating
H (ρ̂ε,ν) goes over all terms. We evaluate this sum while
inserting ∂i ρ̂ε,ν = (1 − ν)∂i ρ̂ε and perform the limit ν → 0.
Limits of terms for which pk + pl = 0 are zero, and limits of
terms for which pk + pl > 0 are identical to terms in the sum
for H (ρ̂ε) ≡ H (ε). Therefore, performing such a limit gives
exactly the quantum Fisher information matrix H (ε). The rest
of the statement follows directly from Theorem 1.

Theorem 4 shows that the quantum Fisher information
matrix of a pure state can be calculated as a limit of the quantum
Fisher information matrix of mixed states, while obtaining all
of its possible discontinuities. These discontinuities reflect the
results of Corollary 2 and results of Theorem 3, with ν acting
as an additional parameter with the only difference that now ν

is not the parameter we estimate. It is, for example, possible
to use Eq. (18) to study directional limits in the extended
unit vector ũ = (u1, . . . ,un,uν), where uν denotes the amount
of direction in the mixedness parameter ν. Such expressions
can serve as a good substitute for a possibly nonexistent
multiparameter Taylor’s expansion: defining ε̃ = ε̃0 + dε ũ,
where ε̃0 = (ε(0)

1 , . . . ,ε(0)
n ,ν(0)) is the point around which we

expand, according to Eq. (18) the quantum Fisher information
matrix can be approximated to the zeroth order by

Hij
c (ε̃) ≈ Hij

c (ε̃0) + �
ij
ũ (ε0), (25)

where i,j = 1, . . . ,n. Of course, other parameters can be used
instead of ν, such as the previously mentioned temperature pa-
rameter T using the extended unit vector ũ = (u1, . . . ,un,uT ).
The above equation is then what we could call the zeroth order
of the directional Taylor’s expansion. In case the function Hc

is discontinuous at point ε0, the value of �
ij
ũ (ε0) is nonzero

and this value measures the amount of jump in function Hc in
the direction u from the point ε0.

Both the regularization procedure and the directional
Taylor’s expansion can be demonstrated on the following
example. We use the state from the first example, Eq. (10),
and study the quantum Fisher information of the respective
regularized state ρ̂ε,ν .

Example 3. Consider a density matrix dependent on pa-
rameter ε and the mixedness parameter ν,

ρ̂ε,ν = (1 − ν)(sin2 ε |0〉〈0| + cos2 ε |1〉〈1|) + ν

2
Î . (26)

The quantum Fisher information for estimating ε from this
state is

H (ρ̂ε,ν) ≡ H 11(ε,ν) = 4(1 − ν)2 sin2(2ε)

1 − (1 − ν)2 cos2(2ε)
. (27)

(The notation was taken from Theorem 4, where ε is the only
estimated parameter while ν is auxiliary at this point.) This
function is depicted in Fig. 4. It is undefined at points (ε,ν) =
(k π

2 ,0), k ∈ Z; however, as Theorem 4 shows, for ν → 0 this

FIG. 4. The quantum Fisher information of the regularized state,
Eq. (27). Clearly, as ν approaches zero, the function approaches the
(discontinuous) quantum Fisher information (12), as shown in Fig. 1.

function must converge to the quantum Fisher information
given by Eq. (12).

Now we illustrate how the approximation (25) performs
compared to the exact value (27). We will derive the quantum
Fisher information at point (ε,ν) = (0.1,0.04). Inserting this
point into Eq. (27) yields the exact value of the quantum Fisher
information for the estimation of ε,

H (ε) ≡ H 11(0.1,0.04) = 1.27. (28)

The extended unit vector for the approximation is de-
fined by ε̃ ≡ (ε,ν) = (0.1,0.04) = (0,0) + dε ũ, which gives
ũ = (0.1,0.04)−(0,0)

||(0.1,0.04)−(0,0)|| . All eigenvalues of ρ̂ε,ν are nonzero at
(ε,ν) = (0.1,0.04), which according to Corollary 1 means
that the quantum Fisher information and the continuous
quantum Fisher information are identical at this point. This
in combination with Eq. (25) yields

H (ε) = Hc(ε) = H 11
c (ε̃) ≈ H 11

c (0,0) + �11
ũ (0,0). (29)

Clearly H 11
c (0,0) = 4. The only relevant eigenvalue needed

for calculating �11
ũ (0,0) is p1(ε,ν) = (1 − ν) sin2 ε + ν

2 , for
which p1(0,0) = 0. The respective Hessian matrix is

H1(0,0) =
[

2 0
0 0

]
, (30)

from which we calculate �11
ũ (0,0) = 0. This results in

H (ε) ≈ 4, which is obviously not a good approximation.
To fix this problem we employ a simple trick: we substitute

ν1 := √
ν, which reparametrizes Eq. (27) and effectively

changes its graph, and then we perform the identical procedure
at point (ε,ν1) = (ε,

√
ν) = (0.1,0.2). The relevant Hessian

matrix is now

H1(0,0) =
[

2 0
0 1

]
, (31)

resulting in �11
ũ (0,0) = − 8

3 . Finally, we have

H (ε) ≈ H 11
c (0,0) + �11

ũ (0,0) = 4 − 8
3 = 1.33, (32)

which approximates the exact value very well.
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IV. DISCUSSION AND CONCLUSION

We presented a theory that describes discontinuities of
the quantum Fisher information matrix and we linked these
discontinuities to the discrepancy between two figures of merit
in quantum metrology, the quantum Fisher information matrix
and the (four times) Bures metric. Although we have shown
that the Bures metric represents in some sense a continuous
version of the quantum Fisher information matrix, both the
quantum Fisher information matrix and the Bures metric can
be discontinuous in the topology of multiple parameters. These
discontinuities and discrepancies appear at sets of measure
zero and therefore can be often ignored. They also appear only
when varying estimation parameters changes the rank of the
density matrix describing a quantum state. Specifically, these
problems never appear in the estimation of unitary channels
using quantum probe states.

However, in certain scenarios these problems show up and
can be a source of great confusion, as it it is not usual to see
discontinuous functions in physics. These scenarios involve
common tasks such as estimation of decoherence parameters,
space-time parameters, temperature, or simultaneous estima-
tion of multiple parameters. Moreover, it is often assumed that
common tools such as the Taylor’s expansion can be always
employed, especially when assumptions are difficult to check,
for instance, when using a perturbative quantum field theory.
But the Taylor’s expansion of the quantum Fisher information
cannot exist at points of discontinuity, and such points can
appear even when the density matrix is an analytical function
of its parameters.

It is not very clear how to interpret these discontinuities
from a physical point of view. Expressions for the quantum
Fisher information show that when the rank of the density
matrix changes, there is a sudden drop in the precision with
what we can estimate the parameter of interest. This can
be connected to the fact that in such scenarios ε is not
identifiable, i.e., ε and −ε produce exactly the same statistics
of measurement results and therefore cannot be distinguished
(remember example 1 in which ρ̂ε = ρ̂−ε). However, it is
possible to design scenarios where ε can be identified by
different means, for example, by simultaneously observing
the change in phase, but the drop in the quantum Fisher
information still does not disappear. It is clear, however, that
the sudden drop is always connected to the information that
can be extracted from the change of purity, since it always
depends on the derivatives of eigenvalues of the density matrix.
This drop might also be a demonstration of a quantum phase
transition which occurs at absolute zero. When temperature of
a quantum probe goes to zero, the thermal state describing this
probe suddenly becomes a pure state, resulting in a change
of the rank of the density matrix, and consequently resulting
in a discontinuity of the quantum Fisher information for the
estimation of parameter of interest. A similar type of behavior
has been reported in several papers [6,8,44,45]. The physical
meaning of these discontinuities, also in scenarios of bosonic
systems, is discussed in more detail in Ref. [46].

The quantum Cramér-Rao bound holds for the possibly
discontinuous quantum Fisher information matrix. The last
open question is whether such a bound can be derived
for the Bures metric and under what circumstances is this

possible. We leave answering these questions for future
work.
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APPENDIX A: INFINITESIMAL BURES DISTANCE
FOR SINGULAR DENSITY MATRICES

In this Appendix we are going to show that the logic used in
paper [19] to derive the infinitesimal Bures distance d2

B(ρ̂,ρ̂ +
dρ̂) leads to a different result than the one stated in that paper.
At the same time we argue that other papers based on this
result are not usually affected in large part. This is because an
expression similar to the one published in [19] can be obtained
by considering d2

B(ρ̂ε,ρ̂ε+dε) from Eq. (8) instead of d2
B(ρ̂,

ρ̂ + dρ̂). In other words, the right (expected) result comes from
a different starting point. Moreover, when ρ̂ is nonsingular
these two approaches lead to the same results.

To derive the correct expression for d2
B(ρ̂,ρ̂ + dρ̂), we are

going to redo the proof from [19] in detail using the same
argumentation. By the same argumentation we mean that we
will inherently assume that dρ̂ is the first-order correction to
ρ̂. This assumption also means that the starting point d2

B(ρ̂,

ρ̂ + dρ̂) cannot be used for the derivation of the Bures metric
gij , because the proof we are going to show will be applicable
only for dρ̂ linearly proportional to the estimation parameters,
dρ̂ ∼ dε, and will not be applicable in case of dρ̂ ≈ dε + dε2.
We will also use a notation similar to [19] so the reader can
easily see the differences.

We are going to compute the Bures distance d2
B(ρ̂A,ρ̂B)

between two infinitesimally close density matrices of size N .
Let us set ρ̂A = ρ̂, ρ̂B = ρ̂ + dρ̂:√

ρ̂
1/2
A ρ̂Bρ̂

1/2
A = ρ̂ + X̂ + Ŷ , (A1)

where the operator X̂ is of order 1 in dρ̂, while Ŷ is of order 2.
Squaring this equation we obtain the first and the second order

ρ̂1/2dρ̂ρ̂1/2 = X̂ρ̂ + ρ̂X̂, −X̂2 = Ŷ ρ̂ + ρ̂Ŷ , (A2)

or in the basis {|k〉} in which ρ̂ is diagonal with eigenvalues
pk , ρ̂ = ∑

k pk|k〉〈k|, for pk + pl > 0 we obtain

〈k|X̂|l〉 = 〈k|dρ̂|l〉p
1/2
k p

1/2
l

pk + pl

, 〈k|Ŷ |l〉 = −〈k|X̂2|l〉 1

pk + pl

.

(A3)

We point out that the above equation also gives 〈k|X̂|l〉 = 0
and 〈k|Ŷ |l〉 = 0 for either pk > 0,pl = 0 or pk = 0,pl > 0.
(Now we start to differ from the proof in [19].) Because the
left-hand side of Eq. (A1) belongs to the subspace L(H>0),
where H>0 is the Hilbert space spanned by the eigenvectors
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associated with nonzero eigenvalue pk , also the right-hand side
belongs to the same subspace. Hence for pkpl = 0 we have

〈k|X̂|l〉 = 0, 〈k|Ŷ |l〉 = 0. (A4)

Combining Eqs. (A3) and (A4) we obtain

X̂ =
∑

pk>0,pl>0

〈k|dρ̂|l〉p
1/2
k p

1/2
l

pk + pl

|k〉〈l|. (A5)

Applying the trace on this operator we find

trX̂ = 1
2 tr

[
P̂H>0dρ̂

] = 1
2 tr[(Î − P̂0)dρ̂] = − 1

2 tr[P̂0dρ̂],

(A6)

where P̂H>0 = Î − P̂0 is the projector onto the previously
mentioned subspace H>0 and P̂0 is the projector onto the
kernel of the density matrix ρ̂. The last inequality is due to
the fact that trρ̂ = 1, and hence tr[dρ̂] = 0. Using the spectral
decomposition of the density matrix ρ̂ = ∑

k pk|k〉〈k| we have

tr[P̂0dρ̂] = tr

[
P̂0

(∑
k

dpk|k〉〈k| + pk|dk〉〈k|

+ pk|k〉〈dk|
)]

= 0. (A7)

The above expression vanishes because in every term
(1) either pk = 0 and then also dpk = 0 because pk

achieves a local minimum,
(2) or pk > 0 and then by definition P̂0|k〉 = 0.
Combining Eqs. (A6) and (A7) we have

trX̂ = 0. (A8)

Using Eqs. (A3), (A4), and (A5) we obtain

trŶ = −
∑
pk>0

〈k|X̂2|k〉
2pk

= −
∑

pk>0,pl>0

1

4

|〈k|dρ̂|l〉|2
pk + pl

. (A9)

Using definition (7) we find d2
B(ρ̂,ρ̂ + dρ̂) = −2(trX̂ + trŶ ),

which gives the result for the infinitesimal Bures distance,

(ds)2
B = d2

B(ρ̂,ρ̂ + dρ̂) = 1

2

∑
pk>0,pl>0

|〈k|dρ̂|l〉|2
pk + pl

. (A10)

Note that in contrast to the results of Sommers and
Zyczkowski [19], who arrived at (ds)2

B = d2
B(ρ̂,ρ̂ + dρ̂) =

1
2

∑
pk+pl>0

|〈k|dρ̂|l〉|2
pk+pl

, by applying the same argumentation in
detail we arrived at the result where mixed terms for which
either pk > 0,pl = 0 or pk = 0,pl > 0 are missing. Such a
result does not seem to give the result for the metric tensor gij

that we would expect to obtain: we would expect something
similar or identical to the quantum Fisher information matrix
(4). In fact, plainly inserting dρ̂ = ∑

i ∂i ρ̂dεi into Eq. (A10)
yields

gij (ε) = 1

2

∑
pk>0,pl>0

Re(〈k|∂i ρ̂ε |l〉〈l|∂j ρ̂ε |k〉)
pk + pl

, (A11)

which is not compatible with the quantum Fisher information
matrix (4) as long as ρ̂ is singular. However, we are getting this
unexpected result because we misused the inherent assumption
that dρ̂ ≈ dε is the first-order correction, while the defining
relation for the Bures metric (8) is defined by the second-
order terms in dε. A simple fix by expanding dρ̂ into the
second order, dρ̂ = ∑

i ∂i ρ̂dεi + 1
2

∑
ij ∂ij ρ̂dεidεj , also does

not work and leads to the same result (A11). This result for
gij is, however, incorrect. This is simply because the proof
in which we derived an expression for d2

B(ρ̂,ρ̂ + dρ̂) is not
applicable for deriving the expression for the Bures metric gij .
This is because if we wanted to expand ρ̂B up to the second
order in dε there would be extra terms in the second expression
in Eq. (A2). These extra terms can be found in an equivalent of
this equation, in Eq. (B10). Considering these extra terms then
leads to the correct expression for the Bures metric as given
by Theorem 1,

gij (ε) = 1

4
Hij (ε) + 1

2

∑
pk(ε)=0

∂ijpk(ε)

= 1

2

∑
pk+pl>0

Re(〈k|∂i ρ̂ε |l〉〈l|∂j ρ̂ε |k〉)
pk + pl

+ 1

2

∑
pk(ε)=0

∂ijpk(ε). (A12)

APPENDIX B: PROOF OF THEOREM 1

Proof. We generalize the proof from Ref. [18] to include
singular density matrices. By combining the defining relation
for the Bures metric (8), the definition of the Bures distance
(7), and the definition of the Uhlmann fidelity (6) we obtain
an expression for the Bures metric,

∑
i,j

gij (ε)dεidεj = 2(1 − tr[
√√

ρ̂ε ρ̂ε+dε

√
ρ̂ε]). (B1)

We define the operator Ô(dε) := √
ρ̂ε ρ̂ε+dε

√
ρ̂ε . Because

operator Ô(dε) is given by applying
√

ρ̂ε = ∑
k

√
pk|k〉〈k| on

both sides of ρ̂ε+dε , it can be written as

Ô(dε) =
∑

pk>0, pl>0

okl(dε)|k〉〈l|. (B2)

(We omitted writing the explicit dependence on ε.) As a result,
this operator clearly belongs to the subspace of linear operators
acting on the Hilbert space spanned by eigenvectors associated
with nonzero eigenvalues pk , i.e., Ô ∈ L(H>0), whereH>0 :=
span{|k〉}pk>0. Now we define its square root Â(dε),

Â(dε)Â(dε) = Ô(dε). (B3)

Because Ô ∈ L(H>0), also Â ∈ L(H>0) together with all of
its derivatives. To show that, we assume that Ô has a spec-
tral decomposition5 Ô(dε) = ∑

m o
diag
m (dε)Pm(dε), where

Pm(dε) = ∑
pk>0, pl>0 c

(m)
kl (dε)|k〉〈l|. Such an expression is

5Spectral decomposition exists, because Ô is a Hermitian operator.
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valid because operator Ô lies in the previously mentioned
subspace L(H>0). The square root is then given by

Â(dε) =
∑
m

√
o

diag
m (dε)Pm(dε)

=
∑

pk>0, pl>0

(∑
m

√
o

diag
m (dε)c(m)

kl (dε)

)
|k〉〈l|. (B4)

Clearly, any derivatives of Â(dε) with respect to dεi will
change only the factors, so the resulting operator will still
remain in the same subspace L(H>0).

From Eq. (B1) we obtain∑
i,j

gij (ε)dεidεj = 2(1 − tr[A(dε)]), (B5)

which gives an expression for elements of the Bures metric,

gij (ε) = −tr
[
∂dεidεj

A(0)
]
, (B6)

if the second derivatives exist. For that reason we assume
that ρ̂ ∈ C(2), i.e., the second derivatives of ρ̂ exist and
are continuous.6 To obtain these second partial derivatives
we rewrite Eq. (B3) while expanding ρ̂ε+dε around point ε,

Â(dε)Â(dε)

=
√

ρ̂

(
ρ̂ +

∑
k

∂kρ̂ dεk + 1

2

∑
k,l

∂kl ρ̂ dεkdεl

)√
ρ̂. (B7)

By differentiating this equation with respect to dεi and setting
dε = 0 we obtain

∂dεi
Â(0) ρ̂ + ρ̂ ∂dεi

Â(0) =
√

ρ̂∂i ρ̂
√

ρ̂, (B8)

where we used Â(0) = ρ̂. By applying 〈k| |l〉 for pk > 0 and
pl > 0 we obtain the matrix elements of ∂dεi

Â(0),

〈k|∂dεi
Â(0)|l〉 =

√
pkpl〈k|∂i ρ̂|l〉

pk + pl

. (B9)

Elements 〈k|∂dεi
Â(0)|l〉 such that pk = 0 or pl = 0 are

identically zero, because as we proved earlier all derivatives
of Â lie in the subspace L(H>0). Differentiating Eq. (B7) for
the second time and setting dε = 0 yields7

∂dεidεj
Â(0) ρ̂ + {

∂dεi
Â(0),∂dεj

Â(0)
} + ρ̂ ∂dεidεj

Â(0)

=
√

ρ̂∂ij ρ̂
√

ρ̂, (B10)

6Actually, this assumption can be slightly weakened. We can
assume that the second derivatives exist but may not be necessarily
continuous. But the continuity of the second derivatives implies
∂ij ρ̂ = ∂ji ρ̂, which will be useful later in Theorem 2 when discussing
the continuity of the Bures metric.

7This is where our proof starts to effectively differ from finding the
expression for d2

B (ρ̂,ρ̂ + dρ̂). In both [18,19] the right-hand side of
Eq. (B10) is set to zero as a result of a not explicitly stated (and easy
to miss) assumption that dρ̂ can be linear only in dε, dρ̂ ≈ dε.

where { ,} denotes an anticommutator. Now, restricting our-
selves to the subspace L(H>0), the density matrix has the
inverse matrix ρ̂−1 in this subspace. We multiply the above
equation by this matrix and perform the trace on this subspace,

trL(H>0)
[
ρ−1

{
∂dεi

Â(0),∂dεj
Â(0)

}] + 2trL(H>0)
[
∂dεidεj

Â(0)
]

= trL(H>0)[∂ij ρ̂]. (B11)

Because all derivatives of Â lie in the subspace L(H>0), traces
of such operators are identical on both the subspace and the
full space, trL(H>0)[∂dεidεj

Â(0)] = tr[∂dεidεj
Â(0)]. However,

that is not necessarily true for the last element for which
trL(H>0)[∂ij ρ̂] = tr[P̂H>0∂ij ρ̂], where P̂H>0 denotes the projec-
tor on the Hilbert space H>0. Because tr[∂ij ρ̂] = 0, this term
can be equivalently written as tr[P̂H>0∂ij ρ̂] = −tr[P̂0∂ij ρ̂],
where the projector P̂0 := Î − P̂H>0 projects onto the subspace
spanned by the eigenvectors of the density matrix ρ̂ associated
with the zero eigenvalue. Therefore combining Eqs. (B6)
and (B11) yields

gij = 1
2

(
trL(H>0)

[
ρ−1

{
∂dεi

Â(0),∂dεj
Â(0)

}] + tr[P̂0∂ij ρ̂]
)
.

(B12)

The first term of the right-hand side can be readily computed
from Eq. (B9) while the antisymmetric part vanishes under the
sum,

trL(H>0)
[
ρ−1{∂dεi

Â(0),∂dεj
Â(0)

}]
=

∑
pk>0, pl>0

Re(〈k|∂i ρ̂|l〉〈l|∂j ρ̂|k〉)
pk + pl

. (B13)

Now we compute the second term. The second derivative of ρ̂

is given by

∂ij ρ̂ =
∑

k

∂ijpk|k〉〈k| + pk(|∂ik〉〈∂j k| + |∂j k〉〈∂ik|)

+pk(|∂ij k〉〈k| + |k〉〈∂ij k|) + ∂jpk(|∂ik〉〈k| + |k〉〈∂ik|)
+ ∂ipk(|∂jk〉〈k| + |k〉〈∂j k|). (B14)

We stress out that the summation goes over all values of k, even
over those for which pk = 0. When using the above equation
to calculate tr[P̂0∂ij ρ̂] we find that many terms vanish because

(1) for k such that pk > 0, P̂0|k〉 = 0,
(2) for k such that pk = 0, also ∂ipk = ∂jpk = 0, because

pk reaches the local minimum at point ε such that pk(ε) = 0.
Only parts of the first two terms of Eq. (B14) remain,

tr[P̂0∂ij ρ̂] =
∑
pk=0

∂ijpk + 2
∑

pk>0,pl=0

pk Re(〈l|∂ik〉〈∂j k|l〉)

=
∑
pk=0

∂ijpk + 2
∑

pk>0,pl=0

Re(〈k|∂i ρ̂|l〉〈l|∂j ρ̂|k〉)
pk + pl

.

(B15)

Combining Eqs. (B12), (B13), and (B15), and the ex-
pression for the quantum Fisher information matrix (4)
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we derive

gij = 1

2

∑
pk+pl>0

Re(〈k|∂i ρ̂|l〉〈l|∂j ρ̂|k〉)
pk + pl

+ 1

2

∑
pk=0

∂ijpk

= 1

4

⎛
⎝Hij + 2

∑
pk=0

∂ijpk

⎞
⎠, (B16)

which considering the definition of Hc, Eq. (9), proves the
theorem.

APPENDIX C: PROOF OF THEOREM 2

Proof. First we will study the neighborhood of the quantum
Fisher information matrix, i.e., we will study the function
Hij (ε + dε), where we define dε = (dε1, . . . ,dεn). Then we
show that the (four times) Bures metric Hc is given by the
limits stated in the theorem. Finally, we prove the continuity
property stated in the theorem.

Equation (4) gives

Hij (ε + dε) = 2
∑

pk ε+dε+pl ε+dε>0

Re(〈kε+dε |∂i ρ̂ε+dε |lε+dε〉〈lε+dε |∂j ρ̂ε+dε |kε+dε〉)
pk ε+dε + pl ε+dε

= 2
∑

pk ε+pl ε>0

Re(〈kε |∂i ρ̂ε |lε〉〈lε |∂j ρ̂ε |kε〉 + O(dε))

pk ε + pl ε + O(dε)

+ 2
∑

pk ε + pl ε = 0,

pk ε+dε + pl ε+dε > 0

Re(〈kε+dε |∂i ρ̂ε+dε |lε+dε〉〈lε+dε |∂j ρ̂ε+dε |kε+dε〉)
pk ε+dε + pl ε+dε

. (C1)

O(dε) (the big O notation) denotes the remainder after expanding pk ε+dε + pl ε+dε . In the above equation we have chosen dε

small enough such that |O(dε)| < pk ε + pl ε for pk ε + pl ε > 0.
Using ρ̂ε ∈ C(2) (which is assumed in all theorems in this paper) we can write the following expansions:

pk ε+dε = pk +
∑
m

∂mpkdεm + 1

2

∑
m,n

∂mnpkdεmdεn + O(dε3),

ρ̂ε+dε = ρ̂ +
∑
m

∂mρ̂dεm + 1

2

∑
m,n

∂mnρ̂dεmdεn + O(dε3), (C2)

|kε+dε〉 = |k〉 +
∑
m

|∂mk〉dεm + 1

2

∑
m,n

|∂mnk〉dεmdεn + O(dε3).

O(dε3) denotes the remainder that consists of sums of multiples of three or more elements of vector dε. Using these expansions
and Eq. (B14), for k, l such that pk ε + pl ε = 0 we have ∂ipk ε + ∂ipl ε = 0 and

pk ε+dε + pl ε+dε = 1

2

∑
m,n

(∂mnpk + ∂mnpl)dεmdεn + O(dε3),

〈kε+dε |∂i ρ̂ε+dε |lε+dε〉 =
∑
m

(〈∂mk|∂i ρ̂|l〉 + 〈k|∂i ρ̂|∂ml〉 + 〈k|∂imρ̂|l〉)dεm + O(dε2)

= δkl

∑
m

∂impkdεm + O(dε2), (C3)

where we used 〈k|∂ij 〉 = −〈∂ik|j 〉, which comes from the orthonormality condition. Inserting Eq. (C2) for pk + pl > 0 and
Eq. (C3) for pk + pl = 0 into Eq. (C1) yields

Hij (ε + dε) = 2
∑

pk+pl>0

Re(〈k|∂i ρ̂|l〉〈l|∂j ρ̂|k〉) + O(dε)

pk + pl + O(dε)
+ 2

∑
pk = 0,∑

s,t ∂st pkdεsdεt > 0

( ∑
m ∂impkdεm

)( ∑
n ∂jnpkdεn

) + O(dε3)∑
s,t ∂stpkdεsdεt + O(dε3)

.

(C4)

By setting dε = dεei and performing the limit we find

lim
dε→0

Hij (ε + dεei) = Hij (ε) + 2
∑

pk(ε) = 0,

∂iipk(ε) > 0

∂ijpk(ε) = Hij (ε) + 2
∑

pk (ε)=0

∂ijpk(ε),
(C5)

which is equal to H
ij
c (ε) according to Theorem 1. The second equality in Eq. (C5) is due to the Sylvester’s criterion for positive

semidefinite matrices [47], which gives ∂iipk(ε)∂jjpk(ε) − ∂ijpk(ε)2 � 0, i.e., for pk(ε) = 0 and ∂iipk(ε) = 0 also ∂ijpk(ε) = 0.
The same equality holds for dε = dεej , which proves the first part of the theorem.

052320-10



DISCONTINUITIES OF THE QUANTUM FISHER . . . PHYSICAL REVIEW A 95, 052320 (2017)

Now we are going to prove the continuity property stated in the theorem. We set dε = dεu, where u = (u1, . . . ,un) is a unit
vector. Using

x + O(dε)

y + O(dε)
= x

y
(
1 + O(dε)

y

) + O(dε)

y + O(dε)
= x

y

(
1 − O(dε)

y

)
+ O(dε)

y + O(dε)
= x

y
+ O(dε), (C6)

which holds for any y �= 0, and Eq. (C4) while assuming the number of eigenvalues pk is finite we derive

Hij (ε + dεu) = Hij (ε) + 2
∑

pk = 0,∑
s,t ∂st pkusut > 0

( ∑
m ∂impkum

)( ∑
n ∂jnpkun

)
∑

s,t ∂stpkusut

+ O(dε). (C7)

By definition, the function H
ij
c is continuous in εi at point ε when

(∀γ > 0)(∃δ > 0)(∀dε,|dε| < δ)
(∣∣Hij

c (ε + dεei) − Hij
c (ε)

∣∣ < γ
)
. (C8)

Setting u := ei , using Theorem 1, and Eq. (C7) we derive

∣∣Hij
c (ε + dεei) − Hij

c (ε)
∣∣ =

∣∣∣∣∣∣Hij (ε + dεei) − Hij (ε) + 2
∑

pk (ε+dεei )=0

∂ijpk(ε + dεei) − 2
∑

pk (ε)=0

∂ijpk(ε)

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
2

∑
pk(ε) = 0,

∂iipk(ε) > 0

∂iipk(ε)∂jipk(ε)dε2

∂iipk(ε)dε2 + O(dε) − 2
∑

pk (ε)=0

∂ijpk(ε)

+ 2
∑

pk (ε+dεei )=0

(∂ijpk(ε + dεei) − ∂ijpk(ε)) + 2
∑

pk (ε+dεei )=0

∂ijpk(ε)

∣∣∣∣∣∣∣∣∣
� 2

∑
pk (ε+dεei )=0

|∂ijpk(ε + dεei) − ∂ijpk(ε)| + 2
∑

pk (ε+dεei )=0

|∂ijpk(ε)| + |O(dε)| <
γ

3
+ γ

3
+ γ

3

= γ. (C9)

The first inequality is the triangle inequality. ∂ijpk(ε) = ∂jipk(ε) follows from ρ̂ε ∈ C(2) (pk ∈ C(2), i.e., the second derivative is
continuous). The same property also implies 2

∑
pk (ε+dεei )=0 |∂ijpk(ε + dεei) − ∂ijpk(ε)| <

γ

3 for small enough dε (i.e., for all
dε such that |dε| < δ where δ > 0 is some sufficiently small radius). 2

∑
pk (ε+dεei )=0 |∂ijpk(ε)| <

γ

3 holds for small enough dε

because
(1) either pk(ε) = 0 and then from 0 = pk(ε + dεei) = pk(ε) + 1

2∂iipk(ε)dε2 = 1
2∂iipk(ε)dε2 follows ∂iipk(ε) = 0. Using

the Sylvester’s criterion again we have ∂ijpk(ε) = 0, i.e., the corresponding term in the sum is zero.
(2) or pk(ε) > 0, and then the continuity of pk implies that for small enough dε also pk(ε + dεei) > 0, i.e., the corresponding

term does not appear in the sum.
At last, |O(dε)| <

γ

3 comes from the definition of O(dε), which can be made arbitrarily small, i.e., we can choose δ such that
for all dε, |dε| < δ, |O(dε)| <

γ

3 , which proves the theorem.

APPENDIX D: PROOF OF THEOREM 3

Proof. We are going to prove Eq. (18) first. Other statements of the theorem will follow easily. To do that we generalize the
second part of the proof of Theorem 2. Combining Theorem 1, Eq. (C7), and definition (17) yields

∣∣Hij
c (ε + dε u) − Hij

c (ε) − �ij
u (ε)

∣∣ =

∣∣∣∣∣∣∣∣∣
2

∑
pk (ε+dεu)=0

∂ijpk(ε + dεu) − 2
∑

pk (ε) = 0,∑
s,t ∂st pk(ε)usut = 0

∂ijpk(ε) + O(dε)

∣∣∣∣∣∣∣∣∣
� 2

∑
pk (ε+dεu)=0

|∂ijpk(ε + dεu) − ∂ijpk(ε)|

+ 2

∣∣∣∣∣∣
∑

pk(ε+dεu)=0

∂ijpk(ε) −
∑

pk (ε) = 0,∑
s,t ∂st pk (ε)usut = 0

∂ijpk(ε)

∣∣∣∣∣∣ + |O(dε)| <
γ

3
+ γ

3
+ γ

3
= γ,

(D1)
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which proves Eq. (18). 2
∑

pk(ε+dεu)=0 |∂ijpk(ε + dεu) − ∂ijpk(ε)| <
γ

3 in Eq. (D1) comes from the continuity of second
derivatives. 2|∑pk (ε+dεu)=0 ∂ijpk(ε) − ∑

pk (ε) = 0,∑
s,t ∂st pk(ε)usut = 0

∂ijpk(ε)| <
γ

3 because

(1) either pk(ε) = 0 and then from 0 = pk(ε + dεu) = pk(ε) + 1
2

∑
s,t ∂stpk(ε)usutdε2 follows

∑
s,t ∂stpk(ε)usut = 0. In

this case the element ∂ijpk(ε) in the first sum
∑

pk(ε+dεu)=0 ∂ijpk(ε) is compensated by the element ∂ijpk(ε) in the second sum.
(2) or pk(ε) > 0 and then the continuity of pk implies that for small enough dε also pk(ε + dεu) > 0, i.e., for small enough

dε term ∂ijpk(ε) does not appear in the first sum. The corresponding term also does not appear in the second sum because only
terms for which pk(ε) = 0 are counted.

In total we have

2

∣∣∣∣∣∣∣∣∣
∑

pk (ε+dεu)=0

∂ijpk(ε) −
∑

pk(ε) = 0,∑
s,t ∂st pk(ε)usut = 0

∂ijpk(ε)

∣∣∣∣∣∣∣∣∣

� 2

∣∣∣∣∣∣∣∣∣
∑

pk (ε) = 0,

pk (ε + dεu) = 0

∂ijpk(ε) −
∑

pk (ε) = 0,∑
s,t ∂st pk(ε)usut = 0

∂ijpk(ε)

∣∣∣∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣∣∣∣
∑

pk (ε) > 0,

pk (ε + dεu) = 0

∂ijpk(ε)

∣∣∣∣∣∣∣∣∣
� 0 + γ

3
. (D2)

|O(dε)| <
γ

3 comes from the definition of O(dε), which can
be made arbitrarily small.

By definition, Hc is continuous in εl if and only if
limdε→0 H

ij
c (ε + dε el) − H

ij
c (ε) = 0, which together with

Eq. (18) proves the second part of the theorem.
The function Hc is continuous at point ε if and only if

(∀γ > 0)(∃δ > 0)(∀dε,||dε|| < δ)

× (∣∣Hij
c (ε + dε) − Hij

c (ε)
∣∣ < γ

)
. (D3)

By negating this statement we obtain

(∃γ > 0)(∀δ > 0)(∃dε,||dε|| < δ)

× (∣∣Hij
c (ε + dε) − Hij

c (ε)
∣∣ � γ

)
. (D4)

Equation (18) yields

∣∣Hij
c (ε + dε u) − Hij

c (ε) − �ij
u (ε)

∣∣ <

∣∣�ij
u (ε)

∣∣
2

, (D5)

for all dε such that |dε| < δ1, where δ1 > 0 is some sufficiently
small radius. To show the validity of Eq. (D4) we choose γ :=
|�ij

u (ε)|
2 and dε := dεu with dε any such that |dε| < min{δ,δ1}.

Then∣∣Hij
c (ε + dε) − Hij

c (ε)
∣∣

�
∣∣∣∣�ij

u (ε)
∣∣ − ∣∣Hij

c (ε + dε u) − Hij
c (ε) − �ij

u (ε)
∣∣∣∣

�
∣∣�ij

u (ε)
∣∣ −

∣∣�ij
u (ε)

∣∣
2

=
∣∣�ij

u (ε)
∣∣

2
= γ, (D6)

where the first inequality is a version |a − b| � ||a| − |b|| of
the triangle inequality. This proves the first part of the theorem.
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