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We study the implementation of quantum channels with quantum computers while minimizing the experimental
cost, measured in terms of the number of controlled-NOT (CNOT) gates required (single-qubit gates are free). We
consider three different models. In the first, the quantum circuit model (QCM), we consider sequences of
single-qubit and CNOT gates and allow qubits to be traced out at the end of the gate sequence. In the second
(RandomQCM), we also allow external classical randomness. In the third (MeasuredQCM) we also allow
measurements followed by operations that are classically controlled on the outcomes. We prove lower bounds
on the number of CNOT gates required and give near-optimal decompositions in almost all cases. Our main result
is a MeasuredQCM circuit for any channel from m qubits to n qubits that uses at most one ancilla and has a low
CNOT count. We give explicit examples for small numbers of qubits that provide the lowest known CNOT counts.
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I. INTRODUCTION

Quantum channels, mathematically described by com-
pletely positive, trace-preserving maps, play an important role
in quantum information theory because they are the most gen-
eral evolutions quantum systems can undergo. The ability to
experimentally perform an arbitrary channel enables the simu-
lation of noisy channels. For example, this is useful to test how
a new component (e.g., a receiver) will perform when subjected
to noise in a more controlled environment. Moreover, experi-
mental groups can show their command over quantum systems
consisting of a small number of qubits by demonstrating the
ability to perform arbitrary quantum channels on them (see for
example Ref. [1] and references therein). Instead of building
a different device for the implementation of each quantum
channel, it is convenient to decompose arbitrary channels into
a sequence of simple-to-perform operations. In this paper we
work with a gate set consisting of CNOT and single-qubit gates,
which is universal [2]. The implementation of a CNOT gate is
usually more prone to errors than the implementation of single-
qubit gates. For example, the lowest achieved infidelities are
by a factor of more than 10 smaller for single-qubit gates than
for two qubit gates [3,4]. This motivates using the number of
CNOT gates to measure the cost of a quantum circuit.1

In this work we consider the construction of universal
circuit topologies comprising gates from this universal set. A
circuit topology [5,6] corresponds to a set of quantum channels
that have a particular structure but in which some gates may
be free or have free parameters. Our aim is to find circuit
topologies that minimize the CNOT count but are universal in
the sense that any channel from m to n qubits can be obtained
by choosing the free parameters appropriately.
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1Certain experimental architectures only allow nearest neighbor

CNOT gates. Here we assign the same cost to each CNOT gate regardless
of its interaction distance. However, our circuit constructions for
channels are based on decompositions of isometries, which are
straightforward to adapt to the nearest neighbor case [14,16].

In this paper, we work with three different models. In the
first we consider the quantum circuit model (QCM), in which
we allow a sequence of CNOT, single-qubit gates and partial
trace operations on the qubits and any ancilla. In the second
(RandomQCM) we allow the use of classical randomness in
addition. In the third (MeasuredQCM), we allow the operations
of the QCM as well as measurements and operations that are
classically controlled on the measurement outcomes.

A task that is related to the construction of a circuit topology
is that of minimizing the CNOT count for a given quantum chan-
nel (on a channel-by-channel basis). Although this appears
quite different, we show that it is related in the sense that our
lower bounds on the number of CNOT gates for circuit topolo-
gies that are able to generate all quantum channels of Kraus
rank K are also lower bounds for almost all (in a mathematical
sense) quantum channels of Kraus rank K individually, where
the Kraus rank of a channel is defined as the smallest number
of Kraus operators required to represent the channel and is
equal to the rank of the corresponding Choi state [7].

It is worth emphasizing that there is a (measure zero)
set of channels for which our lower bounds do not apply
individually, and this set contains experimentally interesting
channels. In other words, there are circuits of lower cost than
those given in this paper if the channel has a simple or special
form. Nevertheless, our constructions could still be used as a
starting point to find a low-cost circuit in such cases. Further
optimizations could then be performed with algorithms such
as, for example, the one given in Ref. [8].

For certain special cases, the theory of decomposing
operations is quite developed. Considerable effort has been
made to reduce the number of CNOT gates required in the QCM
for general unitary gates [9–14] and state preparation [13,15],
which are both examples of a wider class of operations,
isometries. Recently, it was shown that every isometry from
m to n qubits can be implemented by using about twice the
CNOT count required by a lower bound [16]. This leads to a
method to implement quantum channels by using Stinespring’s
theorem [17], which states that every quantum channel from
m to n qubits can be implemented by an isometry from
m to m + 2n qubits, followed by tracing out m + n qubits.
The isometry can be decomposed into single-qubit gates and
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TABLE I. Asymptotic upper and lower bounds on the number of
CNOT gates for m to n channels in the three different models (Model 1:
QCM, Model 2: RandomQCM, and Model 3: MeasuredQCM). The
total number of qubits required for the constructions is also indicated.

Model Lower bound Upper bound Qubits

1 [16] 1
4 4m+n 4m+n m + 2n

2 1
2 22m+n 22m+n m + n

3 (m < n) 1
6 (2m+n+1 − 22m) m22m+1 + 2m+n n

3 (m � n) 1
6 22n n22m+1 m + 1

4m+n CNOTs to leading order [16]. Working in the quantum
circuit model this CNOT count is optimal up to a factor of about
four to leading order [16]. However, one can significantly
lower this CNOT count and the required number of ancillas in
more general models.

Quantum operations beyond isometries have been in-
vestigated in Ref. [18]. Although Ref. [18] did not focus
on a decomposition into elementary gates, combining the
decomposition in Ref. [18] with an idea given in Ref. [19]
and with the circuits for isometries given in Ref. [16] leads
to low-cost decompositions of quantum channels into single-
qubit and CNOT gates in the MeasuredQCM using only one
ancilla qubit. The combination of Refs. [18] and [19] was
fleshed out in Ref. [20] where several applications are also
discussed.

In this work, we give a decomposition and proof that also
leads to near-optimal circuits for quantum channels. In contrast
to the work mentioned above, we consider channels that map
between spaces with different dimensions. Our decomposition
can be used for arbitrary channels from m to n qubits (if
m = 0 our channels allow the preparation of arbitrary mixed
states). In spite of the different proof technique, the form of
decomposition has similarities with the one based on Ref. [18],
which we discuss later.

Previously, the task of minimizing the number of required
CNOT gates for the implementation of quantum channels in
the MeasuredQCM has been studied in the case of channels
on a single qubit [21]. In the special case of a single-qubit
channel, we recover a circuit topology (consisting of only one
CNOT gate) similar to that given in Ref. [21]. We also note
that Ansätze for decompositions of arbitrary channels have
been considered in Refs. [22,23]. One of these, Ansatz 1 in
Ref. [23], is based on applying the Cosine–Sine decomposition
to the Stinespring dilation isometry of the channel, and hence
will always work [16]. Our results imply that the Ansatz
given in Ref. [22] (which is designed for the RandomQCM)
cannot work in general because it does not have enough
parameters.2 Further Ansätze are given in Ref. [23], but it
is not proven whether these work. In contrast, our constructive
decompositions are proven to always work.

In the following we describe how to construct circuit
topologies for quantum channels in the two aforementioned

2Note that some of the phrasing in Ref. [22] gives the impression
that this Ansatz is proven to work in all cases; however, the authors
confirmed that this is not intended.

generalizations of the quantum circuit model. Our asymptotic
results are summarized in Table I. First, we show that in
the QCM with additional classical randomness (for free) the
number of required ancillas can be reduced to m and the CNOT

count to 22m+n to leading order. Moreover, we derive a lower
bound in this model, which shows that m ancillas are necessary
and that our CNOT count is optimal up to a factor of about two
to leading order.

Second, we show that the MeasuredQCM offers further
improvement. Our main result is a decomposition scheme for
arbitrary m to n channels, which leads to the lowest known
CNOT count of m22m+1 + 2m+n if m < n and of n22m+1 if
m � n (to leading order). Moreover, our construction shows
that we can implement m to n � m channels using only m + 1
qubits (i.e., one ancilla), and m to n > m channels using n

qubits (which is clearly minimal, because the output of the
channel is an n-qubit state).

Our construction also leads to low-cost implementations of
m to n channels for small m and n (as does the construction
resulting from the combination of Refs. [18], [19], and [16]).
We give the explicit MeasuredQCM topologies for m to n

channels for 1 � m,n � 2 in Appendix A. These circuits
are most likely to be of practical relevance for experiments
performed in the near future. In particular, they show that
every one to two channel can be implemented with 4 CNOT

gates, every two to one channel with 7 and every two to two
channel with 13. These counts are lower than those achieved
by working in the QCM or the RandomQCM. For example,
the best-known implementation of a two to two channel in the
quantum circuit model requires about 580 CNOTs.3 Allowing
classical randomness reduces this count to 54 CNOTs,4 which
is over four times our CNOT count of 13 when measurement
and classical control are also allowed.

In future work, it would be interesting to generalize our
circuit constructions for other universal gate sets. This could
be achieved by finding circuits for isometries and then applying
our construction for channels in the MeasuredQCM described
in Sec. III A, which works independently of the chosen gate
set. The ultimate goal would be to design an algorithm that
takes as input a given set of gates, a noise model, an accuracy
tolerance, and a desired operation, and that gives as output a
circuit composed of gates from the set that would approximate
the desired operation to within the accuracy tolerance (if this is
possible), with the number of gates in the circuit being close to
minimal. Note that the constructions introduced in this paper
could be used as a subroutine in a version of this algorithm, and
could serve as a starting point to which further optimizations
(to remove gates where possible) are applied.

II. DECOMPOSITION ALLOWING CLASSICAL
RANDOMNESS

In the following, we consider the implementation of
quantum channels in the RandomQCM, i.e., we allow classical
randomness for free. Since the set of all quantum channels

3This is an an upper bound based on the column-by-column
decomposition for isometries [16].

4This corresponds to the CNOT count for a two to four isometry [16].
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from m to n qubits is convex, every m to n channel E can be
decomposed into a (finite) convex combination of extreme m

to n channels Ej .5

Physically this means that, allowing classical randomness,
the channel E = ∑J

j=1 pjEj can be implemented by perform-
ing the channel Ej with probability pj (and forgetting about
the outcome j ).

A. Upper bound

By Remark 6 of Ref. [7],6 every extreme channel from m to
n qubits has Kraus rank at most 2m. Stinespring’s theorem [17]
then implies that in order to implement every extreme channel
it suffices to be able to implement arbitrary isometries from m

to m + n qubits. Decompositions of such isometries use 22m+n

CNOT gates to leading order [16]. In the following section,
we derive a lower bound on the number of CNOT gates and
ancilla qubits required for m to n channels allowing classical
randomness, which shows that the CNOT count stated above is
optimal up to a factor of two in leading order and optimal in
the number of required ancillas.

B. Lower bound

Because extreme channels cannot be decomposed into a
convex combination of other channels, classical randomness
cannot help implement them. Hence, a lower bound for
extreme channels in the QCM is also a lower bound for
channels in the RandomQCM. Since the set of extreme
channels of Kraus rank 2m is nonempty [25], at least m ancillas
are required (using fewer ancillas, we could only generate
channels of smaller Kraus rank).7 To find a lower bound
on the number of CNOT gates required for a quantum circuit
topology for m to n extreme channels, we can use a parameter
counting argument, similar to the argument used to derive a
lower bound for unitaries [5,6] or for channels in the quantum
circuit model [16].

First, we count the number of (real) parameters required
to describe the set of all extreme channels.8 Every quantum
channel E from m to n qubits with Kraus rank K can be
represented by Kraus operators Ai ∈ MatC(2n × 2m) such
that

∑K
i=1 A

†
i Ai = I and E(X) = ∑K

i=1 AiXA
†
i [for all X ∈

MatC(2m × 2m)] [7]. By Theorem 5 of Ref. [7],5 a channel E is
extreme if and only if all elements of the set {A†

i Aj }i,j∈{1,2,...,K}
are linearly independent. Each m to n channel E of Kraus

5For a bound on the number of channels required see Ref. [24].
6In particular, Theorem 5 (and Remark 6) of Ref. [7] characterizes

the extreme points of the set of all completely positive, unital maps.
But the theorem (and the remark) can be adapted to trace preserving
(completely positive) maps by considering the adjoint map (see
Ref. [25] or [24] for more details).

7By a similar argument, one can see that the implementation of
channels in the quantum circuit model requires m + n qubits.

8A rigorous mathematical approach of the parameter counting
(using the dimension of a differentiable manifold) can be found in
Ref. [24] and confirms the naive count described here. Note that
a parameter count derived within the framework of semi-algebraic
geometry was first given in Ref. [25].

rank K = 2m can be described by K 2n × 2m (complex)
matrices Ai , which satisfy 4m independent (note that the matrix∑K

i=1 A
†
i Ai is Hermitian) conditions (over R). However, the

Kraus representation is not unique. Two sets of Kraus operators
{Ai}i∈{1,2,...,K} and {Bi}i∈{1,2,...,K} describe the same channel
if and only if there exists a unitary U ∈ U (2m), such that
Ai = ∑K

j=1(U )i,jBj [7]. Since a 2m × 2m unitary matrix is
described by 4m parameters, we conclude that the set of
all extreme channels form m to n qubits is described by
22m+n+1 − 22m+1 parameters. Note that the condition that the
elements in {A†

i Aj }i,j∈{1,2,...,K} must be linearly independent
is an open condition for K = 2m and can therefore be ignored
for the parameter counting.

A quantum circuit topology for extreme m to n channels
must therefore introduce at least 22m+n+1 − 22m+1 parameters.
Since CNOT gates cannot introduce parameters into a circuit
topology, all the parameters have to be introduced by the
single-qubit gates. We work with the following single-qubit
rotation gates

Rx(θ ) =
(

cos[θ/2] −i sin[θ/2]
−i sin[θ/2] cos[θ/2]

)
, (1)

Ry(θ ) =
(

cos[θ/2] − sin[θ/2]
sin[θ/2] cos[θ/2]

)
, (2)

Rz(θ ) =
(

e−iθ/2 0
0 eiθ/2

)
. (3)

For every unitary operation U ∈ U (2) acting on a single
qubit, there exist real numbers α, β, γ , and δ such that

U = eiαRz(β)Ry(γ )Rz(δ). (4)

A proof of this decomposition can be found in Ref. [26].
Note that (by symmetry) Eq. (4) holds for any two orthogonal
rotation axes. The statement above can be represented as a
circuit equivalence as follows:

The wire represents a qubit and the time flows from left to
right. We ignore the global phase shift, because it is physically
undetectable.

Let us consider l qubits, l − m of which start in a fixed
(not necessarily product) state. We can act with a single-qubit
gate on each qubit at the beginning of the quantum circuit
topology (introducing 3l parameters). To introduce further
(independent) parameters, we have to introduce CNOT gates.
Naively, one would expect that every CNOT gate can introduce
six new parameters by introducing a single-qubit gate after the
control- and one after the action-part of it. But by the following
commutation relation:

each CNOT gate can introduce at most four parameters.
Since we trace out l − n qubits at the end of the circuit,
the single-qubit gates on these qubits cannot introduce any
parameters into the circuit topology [which removes 3(l − n)
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parameters]. We conclude that by using r CNOT gates we
can introduce at most 4r + 3n parameters into the circuit
topology. By the parameter count above, we require 4r + 3n �
22m+n+1 − 22m+1 or equivalently r � 22m−1(2n − 1) − 3

4n for
a quantum circuit topology that is able to perform arbitrary
extreme channels from m to n qubits.

Remark 1 (Lower bound for nonexact circuits). The derived
lower bound can be strengthened and made more general
(see Ref. [24]): the set of all quantum circuit topologies that
have fewer than �22m−1(2n − 1) − 3

4n� CNOT gates, together,9

are not able to approximate every m to n extreme channel
arbitrarily well. In fact, they can only generate a closed set
of measure zero10 in the smooth manifold of m to n extreme
channels of Kraus rank 2m. Therefore, the lower bound holds
for almost every m to n extreme channel of Kraus rank 2m

individually.

III. DECOMPOSITION ALLOWING MEASUREMENT
AND CLASSICAL CONTROL

We now move to the consideration of quantum circuit
topologies in the MeasuredQCM where we allow measure-
ments (of single qubits in the computational basis) and
classical control on the measurement results (and an arbitrary
number of ancillas). This generalizes the model used above,
since classical randomness can be generated by preparing
ancilla qubits in a certain state (by acting with single-qubit uni-
taries on them), performing measurements and then controlling
the parameters of a circuit topology on the measurement
results. In the following section we describe how to construct
circuit topologies for arbitrary m to n channels of Kraus rank
K . Applying this to extreme channels (which have Kraus rank
at most 2m) leads to the CNOT counts given in Table I. A similar
result could be found by using the decomposition described in
Ref. [18] using binary search [19].

A. Upper bound

Let E be a channel from m to n qubits with Kraus rank K =
2k and Kraus operators {Ai}i∈{1,2,...,K}, Ai ∈ MatC(2n × 2m).
We define the matrix V = [A1; A2; . . . ; AK ] ∈ MatC(2n+k ×
2m), by stacking the Kraus operators.11 Since V †V =∑K

i=1 A
†
i Ai = I , we can consider the matrix V as an

isometry from m to n + k qubits (which corresponds to
a Stinespring dilation of the channel E). If n + k = m or
k = 0, we can perform E by implementing V and tracing
out k qubits afterwards. In all other cases,12 we consider

9By combinatorial arguments, there are only finitely many different
quantum circuit topologies consisting of a fixed number of CNOT

gates (without loss of generality we can consider circuit topologies
in which we perform single-qubit gates on all qubits at the start of the
circuit and two after each CNOT gate).

10Nevertheless, many interesting operations lie in this set. This is
similar to the case of isometries, where, for example, the operation
required to implement Shor’s algorithm [27] lies in (the analog of)
this set [16].

11For example, we have [A1; A2] :=
(

A1
A2

)
.

12Note that for all channels from m to n qubits of Kraus rank K = 2k

we have that n + k � m (cf. Lemma 6 of Ref. [25]).

each half of the matrix V separately and define B0 =
[A1; A2; . . . ; AK/2] and B1 = [AK/2+1; AK/2+2; . . . ,AK ]. By
the QR-decomposition (for rectangular matrices), we can
find unitary matrices Q0,Q1 ∈ U (2n+k−1) and R0, R1 ∈
{[T ; 0; . . . ; 0] ∈ MatC(2n+k−1 × 2m) : T ∈ MatC(2m × 2m) is
upper triangular}, such that Q0R0 = B0 and Q1R1 = B1.
Note that Q0 and Q1 are not unique: indeed only the first
2m columns are determined and the others are free (up to
orthonormality). We can therefore consider Q0 and Q1 as
isometries from m to n + k − 1 qubits. To summarize, we have
(Q0 ⊕ Q1)[R0; R1] = V and hence, R := [R0; R1] = (Q0 ⊕
Q1)†V is an isometry. We can represent this decomposition
as an equivalence of circuit topologies on n + k qubits, where
the first n + k − m start in the state |0〉 via

where the backslash stands for a data bus of several (in this
case m) qubits and V ′ = {Q0,Q1} is a placeholder for two
isometries in MatC(2n+k−1 × 2m). The unfilled square denotes
a uniform control.13 In the case above, we implement Q0 if the
most significant qubit is in the state |0〉 and Q1 if it is in the
state |1〉. Note that the gate R only acts nontrivially on the most
significant and the m least significant qubits. In particular, the
second to (n + k − m)th qubits are still in the state |0〉 after
applying R (the lack of action of a gate on a particular qubit is
indicated by use of a dotted line for that qubit). We can apply
the same procedure to the isometries Q0 and Q1. We repeat
this k̃ times, until we end up with a quantum circuit topology
of the form

where Ṽ ∈ MatC(2m+l × 2m) is an isometry and where each
gate Ri acts nontrivially only on the ith and the m least
significant qubits. If m < n, we set l = n − m and k̃ = k and
if m � n, we set l = 1 and k̃ = n + k − m − 1. Recall that we
can implement the channel E by applying the isometry V and
tracing out the first k qubits afterwards (which we can think
about as performing measurements on them and forgetting
the result). Since measurements commute with controls, we
conclude that the following MeasuredQCM topology is able

13The notation of “uniform control” was introduced in Ref. [12].
Some authors also call these gates “multiplexed” (for example, see
Ref. [14]).
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to perform all channels from m to n qubits of Kraus rank at
most K ,

where we also measure the first k − k̃ of the l + m least signif-
icant qubits. Note that the circuit above can be implemented
with only one ancilla qubit by resetting it to the state |0〉
after the measurements and saving the measurement outputs
in classical registers

(5)

where the second symbol means that a NOT is performed on
the first classical register if the output of the first measurement
is one.

The construction above can be implemented on a system
consisting of l + m qubits. The number of CNOT gates
N (m,n,k) required for the MeasuredQCM topology above is
k̃NIso(m,m + 1) + NIso(m,m + l). Working out the different
cases, we conclude that the number of CNOT gates required
for a quantum channel from m to n qubits of Kraus rank 2k

is N (m,n,k) = NIso(m,n) if k = 0, N (m,n,k) = NIso(m,m) if
n + k = m, and otherwise

N (m,n,k) �
{
kNIso(m,m + 1) + NIso(m,n) if m < n

(k + n − m)NIso(m,m + 1) if m � n
,

where NIso(m,n) denotes the number of CNOT gates required
for an m to n isometry. If n is large, we have NIso(m,n) � 2m+n

(for a more precise count, see Ref. [16]). Note that the gates Ri

are isometries of a special form, which could in principle be
implemented by using fewer CNOTs than an arbitrary isometry.
For simplicity, we have not accounted for this in our CNOT

counts. The structure of the gates Ri could be significant when
comparing our decomposition to that of Ref. [18], which has

a similar form to (5) but where the isometries Ri are general
(rather than upper triangular).14

Note that the main idea behind our construction and the
requirement of at most one ancilla is general: any decompo-
sition scheme for isometries (including with other universal
gate sets; see, e.g., Ref. [28]) can be applied to R1,R2, . . . ,Rk̃

and Ṽ arising in the decomposition.

B. Lower bound

We expect that allowing measurement and classical controls
cannot help when implementing isometries. Since isometries
are special cases of channels, we expect further that a
MeasuredQCM topology for m to n channels requires �(2m+n)
CNOT gates if m < n and �(4n) CNOT gates if m > n [16].
Since the proof of this fact is quite technical and uses similar
arguments as used to derive the lower bound for extreme
channels above, we defer it to Appendix B. The result is
summarized in Table I. Note that the lower bound for the
case where m > n is quite weak and it would be interesting to
improve it in future work.
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APPENDIX A: CIRCUITS FOR m TO n CHANNELS
FOR 1 � m, n � 2

The decomposition scheme in the MeasuredQCM described
in Sec. III A also leads to low-cost circuits for extreme m to n

channels for small m and n. In the following, we demonstrate
how to find circuits for m to n channels in the cases where
1 � m, n � 2.

1 to 1 channels. An extreme channel from one to one qubit
(which is of Kraus rank at most two) can be implemented by
performing a one to two isometry followed by tracing out the
first qubit. We can use the circuit topology for one to two
isometries from Appendix B1 of Ref. [16]:

Noting that a unitary before a partial trace can be removed,
and that controls commute with measurements, we obtain the

14On a technical level, the reason for the lack of structure
corresponds to the use of the polar decomposition rather than the
QR-decomposition.
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following circuit for a one to one channel:

Therefore, any single-qubit channel can be implemented with
one CNOT gate. A similar circuit topology was derived in
Ref. [21].

1 to 2 channels. We do the decomposition exactly as
described in the general case in Sec. III A. This leads to a
circuit topology of the form

where V is a 1 to 3 isometry corresponding to a Stinespring
dilation of the implemented channel and R and V ′ denote 1
to 2 isometries. We use the circuit topology for one to two
isometries given in Appendix B1 of Ref. [16] (consisting of
two CNOT gates). Therefore, an extreme channel from one to
two qubits (of Kraus rank at most two) requires 2NIso(1,2) = 4
CNOT gates.

2 to 1 channels. A channel from two qubits to one qubit of
Kraus rank at most four can be implemented by an isometry
from two to three qubits and tracing out the first two qubits
afterwards. We do the first few steps of the decomposition of
a two to three isometry as in Appendix B2b of Ref. [16]. This
leads to the circuit topology

where A0 and B̃ are two qubit unitaries. We can use a technical
trick introduced in Appendix B of Ref. [14] to save one CNOT

gate: by Theorem 14 of Ref. [14], we can decompose the gate
A0 into a part (which we denote by Â0) consisting of two CNOT

gates (and single-qubit gates) and a diagonal gate �:

Note that we reversed the gate order of the circuit given
in Theorem 14 of Ref. [14] such that the diagonal gate is
performed after the gate Â0. We commute the diagonal gate
� to the right and merge it with the gate B̃ (and call the
merged gate B̂). Therefore, and since controls commute with
measurements, the circuit topology given above is equivalent
to the following:

We decompose the uniformly controlled Ry gates as described
in Theorem 8 of Ref. [14]. Noting that two CNOT gates cancel

out each other, we get the following circuit topology.

We can further save one CNOT gate in the decomposition of the
gate B̂. By Refs. [5,6], we have the following equivalence of
circuit topologies:

Since controls commute with measurements, we get the
following equivalence:

Substituting this circuit into the second-to-last one, we find a
circuit topology for channels from two qubits to one qubit of
Kraus rank at most four (and hence, in particular, for extreme
two to one channels) consisting of 7 CNOT gates.

2 to 2 channels. This case works similarly to the case of
two to one channels of Kraus rank at most four. We use the
CSD approach (cf. Ref. [16]) to decompose the isometries
arising from the decomposition scheme described in Sec. III A,
and apply the technical tricks introduced in the Appendix
of Ref. [14]. Indeed, decomposing the first two to three
isometry arising in the decomposition described in Sec. III A
as described above in the case of two to one channels, we
find the following circuit for (extreme) two to two channels of
Kraus rank at most four

where Ṽ denotes the second two to three isometry arising in
the decomposition described in Sec. III A. We can merge the
gate B̂ into Ṽ , which leads to

where V̂ is a two to three isometry. Therefore, we can again
apply the decomposition scheme described above for two to
one channels to V̂ . Since we do not measure the third qubit at
the end of the circuit, we use eight CNOT gates to decompose
the gate V̂ . We conclude that we can decompose any channel
from two to two qubits of Kraus rank at most four (and hence,
in particular, any extreme two to two channel) with at most 13
CNOT gates.
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APPENDIX B: LOWER BOUND FOR ISOMETRIES
ALLOWING MEASUREMENT AND CLASSICAL

CONTROL

We give a lower bound on the number of CNOT gates
required for a MeasuredQCM topology that is able to generate
all isometries from m to n qubits using the basic gate library
comprising arbitrary single-qubit unitaries and CNOT. A lower
bound for m to n isometries in the quantum circuit model
was already given in Ref. [16]. However, here we work in
a more general model than that of Ref. [16], since we allow
measurements and classical controls (and an arbitrary number
of ancillas, each of which start in the state |0〉).

Let us consider an arbitrary MeasuredQCM topology for m

to n isometries consisting of p � n qubits. The most general
sequence of operations that can be performed by such a circuit
topology is as follows: We perform a certain gate sequence
on the p qubits, before the first qubit is measured. Then we
perform a second gate sequence on p − 1 qubits, which may
be controlled on the measurement result of the first qubit.
Then we measure the second qubit. In the case where we
want to measure the first and second qubit together, the second
gate sequence can be chosen to be trivial. We go on like this
until we have measured p − n qubits. We then forget about the
measurement results at the end of the MeasuredQCM topology.
Note that the reuse of a qubit after a measurement can be
incorporated into the above procedure by adding an additional
ancilla qubit and copying the measurement outcome there.
We conclude that any MeasuredQCM topology for m to n

isometries consisting of p � n qubits can be represented in
the following form:

(B1)

where k := p − n and we can think of Qi as the set of (p + 1 −
i)-qubit unitaries that can be generated by the corresponding
quantum circuit topology. In other words, there is a first quan-
tum circuit topology (perhaps with free parameters), followed
by a measurement, then a classically controlled quantum
circuit topology conditioned on the outcome, followed by a
second measurement and so on.

Theorem 1 (Lower bound in the MeasuredQCM). A
MeasuredQCM topology that is able to generate all isometries
from m to n � m qubits using ancillas initialized in the state |0〉
has to consist of at least � 1

6 (2n+m+1 − 22m − max(2,3m) − 1)�
CNOT gates.

Remark 2. The lower bound given in Theorem 1 is by a
constant factor of 2

3 (to leading order) lower than the one for
isometries in the quantum circuit model of � 1

4 (2n+m+1 − 22m −
2n − m − 1)� CNOT gates [16]. Intuitively, the use of ancillas,

measurements, and classical controls should not be helpful for
implementing isometries. Therefore, we expect that the lower
bound given in Theorem 1 can be improved.

Since isometries from m to n qubits are special cases of m

to n � m channels, we get the following corollary:
Corollary 2. A MeasuredQCM topology that is able to

generate all channels from m to n � m qubits has to consist of
at least � 1

6 (2n+m+1 − 22m − max(2,3m) − 1)� CNOT gates.
Moreover, we find the following lower bound for m to

n < m channels.
Corollary 3. A MeasuredQCM topology that is able to

generate all channels from m to n < m qubits has to consist of
at least � 1

6 (4n − 3n − 1)� CNOT gates.
Proof. Assume to the contrary that there exists a Mea-

suredQCM topology consisting of fewer than � 1
6 (4n − 3n −

1)� CNOT gates that is able to generate all channels from
m to n < m qubits. Such a topology must, in particular, be
able to implement all n-qubit unitaries from the first n input
qubits to the n output qubits (independently of the state of
the other m − n input qubits). We can turn this topology into a
MeasuredQCM topology for unitaries on n qubits by fixing the
state of the last m − n input qubits to |0〉. But such a topology
cannot exist by Theorem 1. �

Before giving the proof of Theorem 1, we sketch the idea.
We start with a circuit topology of the form (B1) consisting of
p � n qubits, p − m of which are initially in the state |0〉, and
assume that it is able to generate all isometries from m to n

qubits. In principle, one would expect that a circuit topology
controlled on one (randomized) classical bit can introduce
twice as many parameters as the circuit topology itself, and
hence that controlling on measurement results can help to
reduce the CNOT count (as we saw in Sec. III A). However,
in the special case where we want to implement isometries,
the classical control cannot increase the number of introduced
parameters. The reason for this is related to the fact that the
distribution of the measurement outputs are independent of the
input state of the isometry. The precise statement is given in
the following lemma:

Lemma 4 (Independence of measurement results). Assume
that the whole circuit in (B1) performs an isometry from
m to n qubits for a certain choice of the free parameters
of the MeasuredQCM topology. Then the distribution of the
measurement outcomes is independent of the input state of the
isometry.

Proof. It suffices to show this for all nonorthogonal states.15

Take two nonorthogonal input states |ψ0〉 and |ψ1〉 and assume
to the contrary that there exists a measurement M in (B1),
whose output distribution is different depending on which of
these states is input. Let P be the distribution over the outcomes
for M if we choose the input state |ψ0〉, and Q be the analogous
probability distribution if we choose the input state |ψ1〉. Since
we are implementing an isometry, the output states |ψ ′

0〉 :=
V |ψ0〉 and |ψ ′

1〉 := V |ψ1〉 can be turned back into |ψ0〉 and
|ψ1〉. If we repeat this procedure t times, then the distribution
of outcomes for M is either the independent and identically

15If all nonorthogonal states have the same distribution, then all
states do, since the distribution for two orthogonal states |ψ0〉 and
|ψ1〉 must then agree with that of any third state |ψ〉 that is not
orthogonal with both.

052316-7



RABAN ITEN, ROGER COLBECK, AND MATTHIAS CHRISTANDL PHYSICAL REVIEW A 95, 052316 (2017)

distributed (i.i.d.) distribution P ×t or the i.i.d. distribution
Q×t . Since Q 	= P by assumption, these two distributions
can be distinguished arbitrarily well for large enough t . This
contradicts the fact that in any measurement procedure the
maximum probability of correctly guessing which of these
states is given as an input is 1

2 [1 + D(|ψ0〉〈ψ0|,|ψ1〉〈ψ1|)] < 1,
where D is the trace distance. �

To handle the independence of the measurement distri-
butions on the input state, it is useful to introduce the
concept of postselection (see also Ref. [29]). We introduce
the postselected quantum circuit model (PostQCM for short)
as a modification of the QCM to include also single-qubit
projectors onto the states |0〉 and |1〉 at the end of the circuit.16

Note that the single-qubit projectors correspond to linear maps
that are not unitary. We say that a PostQCM topology with
associated total linear map C implements the isometry V , if
C = cV , where c 	= 0 is some complex number.

We say that a PostQCM topology corresponds to a Mea-
suredQCM topology of the form (B1), if it can be obtained
from (B1) by using the following procedure: First, every
measurement is replaced by a single-qubit projector (onto
either |0〉 or |1〉). Then all classical controls are removed.
Finally we move the single-qubit projectors to the end of the
circuit. Note that the number of single-qubit gates and CNOTs
of a circuit topology of the form (B1) is the same as that of the
PostQCM topology formed by making these replacements.

Lemma 5. The set of isometries that can be generated by a
MeasuredQCM topology of the form (B1) is a subset of the set
of isometries that can be generated by all the corresponding
PostQCM topologies together.

Proof. Assume that an isometry V can be generated by a
MeasuredQCM topology of the form (B1) for a certain choice
of its free parameters. Hence, by Lemma 4, the distribution of
the measurement outputs is independent of the input state of
the isometry. Therefore, the circuit must perform the isometry
regardless of the measurement outputs and hence we can
choose and fix an arbitrary output which occurs with nonzero
probability. In other words, we can replace each measurement
in (B1) with a single-qubit projector onto |0〉 if the probability
of measuring 0 is nonzero, and with a single-qubit projector
onto |1〉 otherwise. Note that this circuit can still perform
the isometry V . Removing the classical controls, which does
not change the action performed by the whole circuit, we
obtain a corresponding PostQCM topology that is able to
generate V . �

Lemma 6. A PostQCM topology that has fewer than
2n+m+1 − 22m − 1 free parameters can only generate a set of
measure zero of the set of all m to n isometries (where we
identify isometries that only differ by a global phase).

Proof. The argument works similarly to the arguments
used in Refs. [5,6,24]. Let us denote by C the linear map
corresponding to the PostQCM topology. We can think of
this map as sending a certain choice of d real parameters
(θ1, . . . ,θd ) of the PostQCM topology to the corresponding
2n × 2m matrix C(θ1, . . . ,θd ), which describes the whole
action of the circuit. We restrict the domain of the free
parameters to the set D ⊂ Rd , such that for all (θ1, . . . ,θd ) ∈ D

16Note that this is equivalent to a measurement in the {|0〉,|1〉} basis
and postselecting on one of the outcomes.

there exists an isometry V and a complex number c 	= 0, such
that C(θ1, . . . ,θd ) = cV . We denote the set of one dimensional
unitaries by U (1) and define the orbit space Vm,n/U (1),
which corresponds to the set of all m to n isometries, after
quotienting out the (physically undetectable) global phase.
We denote the corresponding (smooth) quotient map by
π : Vm,n �→ Vm,n/U (1) (see Ref. [24] for more details). Then,
we define the smooth map

T (θ1, . . . ,θd ) := π ◦ C(θ1, . . . ,θd )√
2−mtr C(θ1, . . . ,θd )†C(θ1, . . . ,θd )

: D �→ Vm,n/U (1).

By Sard’s theorem, T (D) is of measure zero in Vm,n/U (1) if
d < dim (Vm,n/U (1)) = 2m+n+1 − 22m − 1. �

Lemma 7. A PostQCM topology that consists of fewer
than � 1

6 (2n+m+1 − 22m − max(2,3m) − 1)� CNOT gates (and
an arbitrary number of ancilla qubits initialized in the state
|0〉) can only generate a set of measure zero of the set of all m

to n isometries.
Proof. We may assume n > 1 (for n = 1 the statement of

the lemma is trivial). By Lemma 6, we have left to show that
a PostQCM topology consisting of fewer than � 1

6 (2n+m+1 −
22m − max(2,3m) − 1)� CNOTs cannot introduce 2m+n+1 −
22m − 1 or more (independent) real parameters. Since single-
qubit projections do not introduce parameters into the circuit,
all parameters must be introduced by single-qubit gates. To
relate the number of single-qubit rotations to the number of
CNOT gates, we use similar arguments to those used in Sec. II B
to derive the lower bound for channels allowing classical
randomness. We again use the commutation properties of
CNOT gates and single-qubit rotations, which show that a
CNOT can introduce at most four parameters. However, in
contrast to Sec. II B, we commute all single-qubit rotations
to the left (instead of to the right) and use the fact that the
first single-qubit rotation on an ancilla can introduce at most
two parameters (because an ancilla qubit always starts in
the state |0〉 and two parameters are enough to describe an
arbitrary single-qubit pure state). Note that, in general, the
single-qubit rotations performed directly before a single-qubit
projection have a nontrivial effect on the operation performed
by the whole circuit. Thus, a PostQCM topology with q

CNOT gates and consisting of p � n qubits can introduce
at most 4q + 2(p − m) + 3m parameters. Note that we may
assume q � min(p − m,p − 1), since otherwise, there exists
a collection of ancilla qubits and output qubits (which are not
input qubits) that are not quantum-connected to the m input
qubits.17 Any unconnected output qubits that are not input
qubits start in the state |0〉 and always remain product with
the other output qubits.18 For n > 1, the set of isometries for
which the output state always has a product form has fewer
parameters than the set of arbitrary isometries, and is hence

17This follows from a simple statement in graph theory, that a
connected graph must have at least V − 1 edges, where V denotes
the number of vertices of the graph.

18If all output qubits are not quantum connected to the input
qubits, the PostQCM topology can generate only a fixed output state
independent on the input state and hence is not able to perform any
isometry.
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of measure zero. In the case that all the unconnected qubits
are ancilla qubits, they have a trivial effect on the performed
circuit and can be removed without affecting the action of the
circuit. Therefore, a PostQCM topology with q CNOT gates
can introduce at most 6q + max(2,3m) parameters and hence,
a circuit topology consisting of fewer than � 1

6 (2n+m+1 − 22m −
max(2,3m) − 1)� CNOTs cannot introduce 2m+n+1 − 22m − 1
(or more) parameters. �

Proof of Theorem 1. Consider a MeasuredQCM topology
of the form (B1) consisting of fewer than � 1

6 (2n+m+1 − 22m −

max(2,3m) − 1)� CNOT gates. Since each of the corresponding
PostQCM topologies consists of the same number of CNOT

gates, each can only generate a set of measure zero in the set
of all m to n isometries by Lemma 7. Since the MeasuredQCM
topology (B1) has at most 2k corresponding PostQCM
topologies, the set of isometries that can be generated by all
corresponding PostQCM topologies together is still of measure
zero. The theorem then follows from Lemma 5 and the fact
that a subset of a set of measure zero is again of measure
zero. �
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