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A (quantum) random access code ((Q)RAC) is a scheme that encodes n bits into m (qu)bits such that any of
the n bits can be recovered with a worst case probability p > 1

2 . We generalize (Q)RACs to a scheme encoding
n d-levels into m (quantum) d-levels such that any d-level can be recovered with the probability for every wrong
outcome value being less than 1

d
. We construct explicit solutions for all n � d2m−1

d−1 . For d = 2, the constructions
coincide with those previously known. We show that the (Q)RACs are d-parity oblivious, generalizing ordinary
parity obliviousness. We further investigate optimization of the success probabilities. For d = 2, we use the
measure operators of the previously best-known solutions, but improve the encoding states to give a higher
success probability. We conjecture that for maximal (n = 4m − 1,m,p) QRACs, p = 1

2 {1 + [(
√

3 + 1)m − 1]−1}
is possible, and show that it is an upper bound for the measure operators that we use. We then compare (n,m,pq )
QRACs with classical (n,2m,pc) RACs. We can always find pq � pc, but the classical code gives information
about every input bit simultaneously, while the QRAC only gives information about a subset. For several different
(n,2,p) QRACs, we see the same trade-off, as the best p values are obtained when the number of bits that can
be obtained simultaneously is as small as possible. The trade-off is connected to parity obliviousness, since high
certainty information about several bits can be used to calculate probabilities for parities of subsets.

DOI: 10.1103/PhysRevA.95.052315

I. INTRODUCTION

The fundamental limits for how information can be encoded
into a physical system and then retrieved again lie at the
core of quantum information theory. Due to the Holevo
bound [1], n qubits cannot transfer more than n classical bits
of information faithfully. However, interesting possibilities
arise if we allow a limited chance for transmitting the wrong
message. Quantum random access codes (QRACs) exploit
this. An (n,m,p) QRAC encodes n bits into m qubits,
such that any one bit can be retrieved with a worst case
success probability p > 1

2 . The original QRACs [2] include
the (2,1,0.85) and (3,1,0.79) QRACs. These QRACs were
experimentally realized in 2009 [3]. It has been shown that
(4m,m,p) QRACs are impossible [4], and that (n,m,p) QRACs
are possible for all n < 4m [5]. Much of the research has also
concentrated on maximizing the average success probability. If
the communicating parties have access to shared randomness,
the average success probability effectively becomes the worst
case probability [6]. Shared entangled states allow even more
effective entanglement assisted random access codes [7].
Entangled pairs also allow the superdense coding protocol [8]
and quantum teleportation [9], where a qubit is used to send
two bits faithfully in the first case and the other way around in
the latter.

We will neither consider shared randomness nor shared
entanglement in this paper, but stick with the original idea
of a QRAC. We use inherently parity-oblivious constructions
and seek to optimize the worst case success probability for
all n that are possible in an (n,m,p) QRAC. We provide an
explicit construction of QRACs for all n < 4m which can also
be employed for their classical counterparts, RACs, for all
n < 2m. The construction for QRACs was discovered in [5],
but we improve it by using better encoding states. We
generalize the problem to d-level quantum systems, encoding
n d-levels in such a way that every wrong outcome has a
probability less than 1

d
. The constructions used for two-levels

are generalized to answer this problem as well.

This paper has the following structure. We first give a proper
definition of QRACs. Then we present a naïve numerical
approach to find (n,2,p) QRACs for n up to 12. This
approach uses only pure encoding states and projection-valued
measures. A more general approach uses mixed states based
on the understanding of the geometry of density matrices.
We review this geometrical interpretation and then use this
picture throughout the text to derive very general QRACs. The
classical RACs can be seen as QRACs with diagonal density
matrices. We discuss the optimality of the derived codes and
show that they are parity oblivious. We then compare (n,m,pq)
QRACs with (n,2m,pc) RACs.

II. QRACs

An (n,m,p) QRAC consists of two parts: an encoding
scheme and a set of measurements. The encoding scheme e

can be viewed as a function that takes a bit string a of n bits
as input and returns a quantum state ρ̂a:

a
e→ ρ̂a. (1)

The input string a will be represented by a binary number
0 � a < 2n and the ith digit of a is the ith input bit. The
quantum state ρ̂a describes a physical state in a system of m

qubits. For every bit of a, the QRAC specifies a measurement
fi that can be performed on the state ρ̂a , measuring the value
of the ith bit of a to be a′

i :

ρ̂a

fi→ a′
i . (2)

The outcome of the measurement fi is probabilistic and will
not always give the correct bit value. For the QRAC to be valid,
we require that

p(ai = a′
i) � p = 1 + α

2
>

1

2
(3)

for all input strings a and all bit positions i. We will sometimes
refer to the value α in Eq. (3) as the bias of p. We will assume
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FIG. 1. Geometric overview of a [2,1, 1
2 (1 + 1

2

√
2)] QRAC. An

input string a is encoded by Alice as a spin- 1
2 particle with spin

in the direction indicated by ρa in the figure. Bob will measure the
spin in the x(y) direction if he is interested in the first(second) bit.
A positive{negative} result will then occur with probability 1

2 (1 +
1
2

√
2) if the bit value is 0{1}. A third bit can also be encoded if the z

direction is also used for measurements and the spin configuration of
the encoding states are corners on a cube.

that a standard basis is agreed upon and we represent operators
acting on the physical system by matrices. The communication
between the canonical participants Alice and Bob performing
a QRAC can now be described by the chain

a
e→ ρa

fi→ a′
i . (4)

Alice obtains the string a, encodes it in the physical system
described by the density matrix ρa , and sends the system to Bob
who performs a measurement and obtains the correct value for
the ith bit with a probability at least p. The {2,1, 1

2 [1 + 1
2

√
(2)]}

QRAC is illustrated in Fig. 1. Its basic principle generalizes to
all the Bloch geometry based QRACs that we present after the
review in Sec. IV.

III. PURE STATE (n,2, p) QRACs

The original and optimal (n,1,p) QRACs use only pure
states [2]. Mixed states become useful for quantum systems
of dimension higher than two. It is interesting all the same to
investigate how large n can be if only pure encoding states
are allowed. To achieve this, we have performed numerical
searches focusing on (n,2,p) QRACs.

A pure state (7,2,0.54) QRAC was proposed in [4]. We find
that n can be at least 12. It is still an open question if 13, 14,
or even 15 is possible.

We have performed numerical searches with the following
setup:

B = {Bi |i ∈ {1, . . . ,n}} (5)

is a set of n orthonormal bases for C4, representing the Hilbert
space of m = 2 qubits. The ith basis defines the measurement
fi of the ith bit such that projecting onto one of the two first

TABLE I. Numerically obtained (n,2,p) QRACs. p̄ is the average
success probability over all input states and measured bits.

n 7 8 9 10 11 12

p 0.68412 0.65249 0.60319 0.53919 0.52468 0.50054
p̄ 0.72839 0.71653 0.70268 0.66544 0.66177 0.65562

basis vectors corresponds to the bit being 1 and the other two
to the bit being 0.

Further, we define

R = {|a〉|a ∈ {0, . . . ,2n − 1}} (6)

as the encoding states. The encoding states must be chosen
such that if ai is 0(1), then the projection of |a〉 onto the
two first (last) basis vectors of Bi has absolute square greater
than 1

2 .
With a fixed set of bases, any randomly drawn state vector

will encode an input string with a worst case probability greater
than 1

2 unless both outcome probabilities for a measurement
are exactly 1

2 . This is however highly unlikely when drawing
random state vectors. One possible approach is therefore to
draw random bases and then draw random state vectors until,
hopefully, all input states are represented by a state vector.
This approach will not give optimal QRACs, but will, if
successful, show that a QRAC is possible for a given n. We
find that QRACs up to n = 9 are found within minutes on
a desktop computer with this method when drawing ≈ 102

random bases and 106 state vectors for each basis. This method
also quickly found an n = 7 QRAC with worst case p > 0.58,
which improves the result in [4].

We may make several improvements to this approach.
First, we may search for optimal encoding states for each
input using a random walk algorithm. Secondly, we may
also make small, random adjustments to the measurement
bases, and keep the changes if the worst case p is improved
after a round of optimizing encoding states. Finally, we may
set some conditions on the initial measurement bases. Each
measurement basis consists of two planes that correspond
to 0 and 1, respectively. If one such plane has a very small
overlap with another plane, then the combination of bits that
they represent will be less likely. Therefore, we want the
planes to exhibit a certain degree of mutual unbiasedness.
One way to ensure this is to draw random starting bases until
the worst case overlap between planes is over a threshold
value.

The state vectors and measurement bases obtained using
numerical searches are available as Supplemental Mate-
rial [10]. The average and worst case probabilities are listed
in Table I.

IV. DENSITY-MATRIX GEOMETRY

General encoding states are described by density matrices,
and these can be understood geometrically in terms of their
Bloch vectors. We will now briefly review this. For more
details, see Refs. [11,12].
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The density matrix of a qubit in a pure state can be
expressed as

ρ = 1
2 (1 + r · σ ), (7)

where σ = (σx,σy,σz) are the Pauli matrices, obeying
{σk,σk′ } = 2δkk′ , and the Bloch vector r ∈ R3 with |r| = 1.
This gives a one to one correspondence between the Bloch
sphere and pure states in a two-level system. Mixed states
are weighted averages of pure states, and they fill the sphere,
creating the Bloch ball. Thus a general density matrix has a
Bloch vector obeying |r| � 1. If ρ and ρ ′ are two density
matrices, with corresponding Bloch vectors r and r ′, then the
expectation value for the overlap can be expressed in terms of
the Bloch vectors as

Tr(ρρ ′) = 1
2 (1 + r · r ′). (8)

The Bloch vectors can be generalized to N -level systems,
and describe the set of N × N density matrices. We denote the
set of such Bloch vectors by BN ⊂ RN2−1. The Bloch vectors
of pure states are a part of this set with topology CPN−1. We
define σ ≡ (σ1, . . . ,σN2−1) as the generalized N × N Gell-
Mann matrices, all obeying

Tr(σkσk′) = 2δkk′ . (9)

They span the set of traceless Hermitian matrices, so if ρα is a
density matrix, then there is a vector α ∈ RN2−1 such that

ρα = 1

N
1 + 1

2

N2−1∑
k=1

αkσk. (10)

The converse is, however, not true. A density matrix must have
non-negative eigenvalues, and only the convex subset BN of
RN2−1 corresponds to density matrices.

The condition (9) gives the overlap of two density matrices
the simple form

Tr(ραρβ) = 1

N
+ 1

2
α · β. (11)

It follows that

Tr(ρ2
α) = 1

N
+ 1

2
|α|2 =

N∑
k=1

p2
k , (12)

where pk are the eigenvalues of ρα . This gives the length of a
Bloch vector,

|α| =
√√√√2

(
− 1

N
+

N∑
k=1

p2
k

)
. (13)

The length is maximized if exactly one eigenvalue is nonzero,
or equivalently the density matrix corresponds to a pure state.
This gives the radius of the outsphere of the Bloch space,

RN =
√

2(N − 1)

N
. (14)

All the pure states lie on this sphere, but they only make a
2(N − 1)-dimensional subspace of the (N2 − 2)-dimensional
sphere. For N = 2, they coincide, but for N > 2, the outsphere
is mainly invalid Bloch vectors. The radius of the insphere
also follows from Eq. (13). The insphere is the largest sphere

that is contained in the Bloch space. The radius is given by
the smallest length of any Bloch vector on the surface of
BN . A density matrix has a surface Bloch vector iff it has
at least one eigenvalue which is zero, making it infinitesimally
close to a non-non-negative matrix. If we assume that at
least one eigenvalue is 0, then (13) is minimized when all
other eigenvalues are (N − 1)−1. This gives the radius of the
insphere,

rN =
√

2

N (N − 1)
. (15)

Any Bloch vector with radius at most rN corresponds to a
density matrix.

It follows from non-negativity of overlaps that

cos[∠(α,β)] � −1

N − 1
(16)

if α and β correspond to pure states [11]. Equality occurs
when the state vectors are orthogonal. This also means that
an orthogonal basis corresponds to the corners of a simplex in
Bloch space.

When two Bloch vectors are orthogonal, Eq. (11) shows that
the overlap of the density matrices is 1

N
. The density matrices

are said to be mutually unbiased in this case. Likewise, we
say that two state vectors are mutually unbiased if they have
mutually unbiased density matrices. Two orthonormal bases
for CN are mutually unbiased if the basis vectors of one of the
bases are mutually unbiased with the basis vectors of the other.
A set of bases where all pairs of bases are mutually unbiased
is a set of mutually unbiased bases (MUB). In terms of Bloch
space, MUB are vertices of simplexes lying in perpendicular
subspaces. Since an N -simplex is an (N − 1)-dimensional
object and the Bloch space has dimension N2 − 1, the maximal
number of mutually unbiased bases is at most N2−1

N−1 = N + 1.
It is known [13] that for powers of a prime N , N + 1 MUB can
be constructed. Surprisingly, it is not known for any composite
numbers of distinct primes whether this is the case or not. Only
three MUB have been found in dimension 6, but it is not even
proven that the maximal number is less than 7 [13].

We round off this section with a remark on quantum
measurements. A positive operator-valued measure (POVM)
is a set of operators with non-negative eigenvalues that sum
up to the identity. In this article, we will be interested in a set
of n such measures and each measure will have d different
outcomes. The ith measure is denoted by

Fi = {F̂ij |j ∈ {0, . . . ,d − 1}}. (17)

Performing the ith measurement on a state ρ̂ gives the
probability

pij = Tr(F̂ij ρ̂) (18)

for the j th outcome. The operators F̂ij do not in general have
unit trace, but since they have non-negative eigenvalues, they
are proportional to density operators, and we may use Eq. (11)
to calculate probabilities. We will associate a measure operator
with the Bloch vector

β(F̂ ) = β :
1

Tr(F̂ )
F̂ = ρ̂β (19)
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and the overlap with a state ρ̂α is then

Tr(F̂ ρα) = Tr(F̂ )

(
1

N
+ 1

2
α · β(F̂ )

)
. (20)

Projection-valued measures (PVMs) are a special case of
POVM. Their operators have eigenvalues that are all either 0
or 1. Since they are projection operators, we will denote them
by

�i = {π̂ij |j ∈ {0, . . . ,d − 1}}. (21)

Now, if Tr(F̂ ) = Tr(π̂) ∈ Z, then (13) implies that

|β(F̂ )| � |β(π̂ )|, (22)

where equality only occurs if F̂ is in fact a PVM operator.
Because of this, we will prefer PVMs, whenever we can find
them with the Bloch vector directions that we need.

V. (n,m, p) QRACs

We now explicitly construct (n,m,p) QRACs for all

n < 4m. A (4m − 1,m,
1+ 1

(2m−1)
√

2m+1

2 ) QRAC was demonstrated
in [5]. This construction can also be used for all n < 4m and
generalizes the original (n,1,p) QRACs, but utilizes mixed
states in order to place the encoding states on a hypercube.
We give a detailed description of this solution and adjust it to
the more general n < 4m. We first give a solution with both
encoding states and measure operators based on the insphere
of Bloch space. Subsequently, we make improvements and
arrive at the solution found in [5]. We improve the solution
further in Sec. IX.

A. Insphere-based solution

The dimension of the Hilbert space for m qubits is N = 2m.
Let σ = ∑N2−1

k=1 σkek be the generalized Gell-Mann matrices
and define n, up to N2 − 1 = 4m − 1 POVM matrices with
d = 2 different outcomes as

Fij = N

2
ρ(−1)j rN ei

= 1

2
1 + (−1)j

1

2

√
N

2(N − 1)
σi. (23)

The bit strings that are encoded can be identified with
functions, β : {1, . . . ,n} → {0,1}. We now define the encoding
Bloch vectors for each such string,

β =
n∑

k=1

(−1)β(k)

√
2

N (N − 1)

1√
n

ek, (24)

with corresponding density matrices ρβ . The Bloch vector
length of rN ensures that all the states are valid. If we perform
the ith measurement, we get the probability

pij = Tr(ρβFij ) =
1 + (−1)β(i)+j 1

(N−1)
√

n

2
(25)

for the outcome j . If β(i) = j , then the result j has probability
pij > 1

2 . We conclude that the POVM Fi determines the value
of the ith bit with a success probability

p =
1 + 1

(N−1)
√

n

2
=

1 + 1
(2m−1)

√
n

2
. (26)

We see that this reproduces the well-known optimal results for
n = 2,3 and m = 1. This is because the insphere of the Bloch
sphere is the Bloch sphere itself. The success probability when
encoding the maximal number of n = 4m − 1 bits is

p(n = 4m − 1) =
1 + 1

(2m−1)
√

4m−1

2
. (27)

B. Improved QRACs

We now improve the insphere based solutions, reaching
the known solution arrived at in [5]. In order to improve
the solution, we must see if either the Bloch vectors of the
encoding states or those of the POVMs have nonmaximal
length and may be scaled up to the surface of BN . Since we
have only 2n POVM operators, in contrast to the 2n encoding
states, it may seem easiest to do this with the POVMs.

The POVM operators of the previous subsection were
proportional to density matrices with Bloch vectors in the
same directions as the generalized Gell-Mann matrices. The
requirement that

Fij = N

2

(
1

N
1 + (−1)j

1

2
|α|σi

)
(28)

has non-negative eigenvalues gives the restriction

|α| � 2

N × maxpi∈eigenvalues(σk )(|pk|) ∀σk. (29)

The generalized Gell-Mann matrices include a matrix with an

eigenvalue of −
√

2(N−1)
N

and this gives a worst case Bloch
vector length for the measurement operators of rN . It is
however possible to use matrices with different eigenvalues,
as long as they are linearly independent, traceless, and fulfill
Tr(σkσk′) = 2δkk′ . We will now define such matrices.

Let σ̃0 = 12, let σ̃1 = σx, σ̃2 = σy, σ̃3 = σz be the Pauli
matrices, and let ci(k4) be the ith digit from the right in the
representation of an integer k in base 4. An alternative set of
matrices is then given by the set{

σk = 2
1−m

2

m⊗
i=1

σ̃ci (k4)

}4m−1

k=1

. (30)

It is straightforward to check that they obey the require-
ment Tr(σkσk′) = 2δkk′ . The eigenvalues of each matrix are
2m−1-fold degenerate with the values ±2

1−m
2 . This gives

the restriction

|α| � 2
1−m

2 =
√

2

N
(31)

and we may choose equality here when constructing a QRAC.
Doing so allows us to improve the measurement operators of
Eq. (23) to

πij = N

2
ρ

(−1)j
√

2
N

ei
= 1

2
1 ± (−1)j

√
N

2
σi. (32)

The measure operators have eigenvalues that are all either 0 or
1, so the measurements are PVMs. Choosing encoding states
on the insphere as in the previous solution gives the success
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TABLE II. Improved success probabilities for QRACs encoding
n = 4m − 1 bits into m qubits.

m n Exact p p

1 3 1
2 (1 + 1√

3
) 0.78868

2 15 1
2 (1 + 1

3
√

5
) 0.57454

3 63 1
2 (1 + 1

21 ) 0.52381
4 255 1

2 (1 + 1
15

√
17

) 0.50808

5 1023 1
2 (1 + 1

31
√

33
) 0.50281

probability

p(m,n < 4m) =
1 + 1√

(2m−1)n

2
. (33)

For maximal n = 4m − 1, we have

p =
1 + 1

(2m−1)
√

2m+1

2
. (34)

The improved success probabilities are shown in Table II.
Each orthogonal measurement in the original (n,1,p)

QRACs did only give information about one chosen bit to be
measured. This is not the case for m > 1. If one is interested
in bit number i, then one makes a measurement in the σi

eigenbasis, but different σi may have common eigenbases. For
example, if we have

σi = σx ⊗ σy ⊗ σz, (35)

then the tensor products of the eigenbases for the Pauli matrices
make an eigenbasis for σi . But this basis is also an eigenbasis
for any of the six other σi ′ that one can obtain by substituting
any, but not all of the Pauli matrices in (35) with 12. If we make
a measurement in this basis, we can interpret it for any of seven
different bits. The probabilities we get then are however not
independent. We will look at the joint probabilities in Sec. VIII.

VI. (2m − 1,m, p) RACs

We now demonstrate that an (n = 2m − 1,m,
1+ 1

n

2 ) RAC
where m classical bits are transmitted is possible. This is done
using purely classical, local randomness. A set of classical bits
is equivalent to qubits if we demand the density matrices to
be diagonal. This gives a simplex-shaped Bloch space, with
density matrices on the form

ρα = 2−m1 + 1

2

2m−1∑
i=1

αiσi, (36)

where the σ matrices are limited to the 2m − 1 diagonal
matrices of the set (30). They are tensor products of 12 and σz.
The measurement operators and encoding density matrices are
chosen in the same way as for the improved QRACs and we
get the same worst case probability as for QRACs, but with a
smaller allowed n:

p(m,n < 2m) =
1 + 1√

(2m−1)n

2
. (37)

TABLE III. Success probabilities for RACs encoding n = 2m − 1
bits into m bits.

m n Exact p p

1 1 1 1
2 3 1

2 (1 + 1
3 ) 0.66667

3 7 1
2 (1 + 1

7 ) 0.57143
4 15 1

2 (1 + 1
15 ) 0.53333

5 31 1
2 (1 + 1

31 ) 0.51613

In the maximal case n = 2m − 1, this reduces to

p = 1 + 1
n

2
. (38)

We will see later that this success probability can also be
obtained for nonmaximal n. Comparing Tables II and III, we
see that the QRAC encodes 2m + 1 times as many bits as the
RAC, at the cost of a factor 1√

2m−1
in the bias.

The (3,2,p) case can be explained in simple terms without
density matrices. Alice gets to know the bit string and encodes
it in a RAC that she sends to Bob. They have agreed beforehand
that Alice will send two bits that signify the values on the two
first input bits. If Bob wants the third bit, then he will assume
that the bit sum of all the input bits is 0 modulo 2. If the input
bits have 0 sum modulo 2, then Alice will just send the two first
bits and Bob will make the correct assumption. If the bit sum
is odd, then Alice will use a randomness generator that sends
one of three messages, each with probability 1

3 . The messages
are either the two first bits, the first bit flipped and the second
bit unchanged, or the first bit with the second bit flipped.
The three different messages make Bob guess wrong on one
bit each, giving a worst case probability of 2

3 for any given
bit. In terms of Bloch geometry, the corners of a tetrahedron
correspond to even bit sum inputs and the midpoints on the
surfaces correspond to odd bit sum inputs. The measurement
directions are the midpoints of the edges. We have taken the
liberty to improve the solution by placing the even bit sum
inputs outside the insphere, giving an average probability of
5
6 if the input is uniform, but the same worst case p. The
unimproved solution has a 50% chance for flipping two bits if
the bit sum is already even, making the success probability 2

3
also in this case.

VII. GENERALIZATION TO QUANTUM d-LEVELS

We will now generalize the above results to d-level systems.
Such QRACs have been considered before [14,15], but only for
maximizing the average success rate with uniform input. We
need to define our generalization of the worst case problem
to d-level QRACs. For d = 2, the worst case probability is
required to be larger than 1

2 . The natural generalization is
to demand

p(ai = a′
i) � p >

1

d
(39)

for every choice of measuring bit number i as this is the limit
for beating a pure guess. However, this is not the only possible
generalization of the problem. For d = 2, we also have that
the probability for failure is less than 1

2 . We may generalize
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this to the stronger requirement

p(a′
i = j ) <

1

d
∀ j �= ai, (40)

where ai is the correct outcome and a′
i is the value indicated

to be correct for the ith d-level by the measurement. Con-
dition (40) implies also the weaker condition (39), as there
are d − 1 wrong outcomes with individual probabilities less
than 1

d
, and the last correct outcome must therefore have

a probability greater than 1
d

. We will choose this stronger
requirement, Eq. (40), for our d-level QRACs. If we had only
required the weaker condition, then a d ′-level QRAC could
be made into a d-level QRAC with d > d ′ by dividing the
d outcomes into d ′ groups of outcomes and then making
a guess inside the group. For example, a classical bit can
be used to guess an octet with probability p = 1

4 . With the
stronger condition (40), the angle between a wrong encoding
state and a measurement direction must be obtuse (> 90◦).
In order to fit d vectors with obtuse angles between them,
we need a (d − 1)-dimensional state space, so for classical
RACs, the transmitted system must be at least a d-level,
while a QRAC needs at least a quantum

√
d-level. With the

strong condition, the natural optimization problem would be to
minimize the largest wrong outcome probability. However, our
constructions make sure that all the wrong outcomes have the
same probability, and we can therefore maximize the worst
case success probability as before. The probabilities can be
written in terms of a bias, as in Eq. (3),

p = p(a′
i = ai) = 1 + α

d
(41)

and

p(a′
i = j �= ai) = 1 − 1

d−1α

d
, (42)

with the bias α > 0 for valid QRACs.

A. Insphere method

We generalize the insphere method of Sec. V A. The
measurement basis improvement that was possible for d = 2
is possible if d is a power of a prime, which we will show in
the next section.

The set of mixed states for m d-levels can be represented
by the Bloch vectors Bdm . The insphere has a radius

rdm =
√

2

dm(dm − 1)
(43)

and is the boundary of a solid (d2m − 1)-dimensional ball. To
fulfill (40), we need a (d − 1)-dimensional subspace for each
POVM. We choose n, up to d2m−1

d−1 , orthogonal hyperplanes of
dimension d − 1. We now pick vertices of a simplex on the
intersection of the ith plane and the insphere and name the j th
vertex αij . This gives POVM matrices

Fij = dm−1ραij
. (44)

We define the encoding states

ρa = ρβa
, βa = rdm√

n

n∑
i=1

αici (ad ), (45)

where ci(ad ) denotes the ith digit of a in base d. The success
probability follows from Eq. (11)

p =
1 + 1

(dm−1)
√

n

d
. (46)

For the maximal n = d2m−1
d−1 QRACs we have

p =
1 +

√
d−1

(dm−1)
√

d2m−1

d
. (47)

We can also construct classical RACs using the insphere of
a solid dm simplex. The success probability will be the same,
but the maximal number of input d-levels is dm−1

d−1 .

B. Dimension being a power of a prime

We will now make an improved version of the QRAC
presented in the previous section. It is guaranteed to work
if d is the power of a prime due to two fascinating results. We
will start by considering classical RACs. The generalization
to QRACs is straightforward when using mutually unbiased
bases.

Ideally, we want all the measure operators to have eigen-
values that are either 0 or 1, that is, they are PVM operators. A
PVM is described by a set of d diagonal matrices, each with
dm−1 1’s on the diagonal. Two PVM’s should also be mutually
unbiased, meaning that if i �= i ′, we have

Tr(πijπi ′j ′ ) = dm−2 ∀ j,j ′ ∈ {0, . . . ,d − 1}. (48)

This makes sure that the associated Bloch vectors of two
PVM’s span orthogonal subspaces. For d = 2, m = 2, two
mutually unbiased PVMs are

π10 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, π11 =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

(49)

and

π20 =

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠, π21 =

⎛
⎜⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠

(50)

and one more mutually unbiased PVM is also possible. Since
the matrices are all diagonal, and since the matrices of a single
PVM are nonoverlapping, we may represent the PVM’s in a
compact matrix form. We define the n × dm matrix

Mik =
d∑

j=1

πij,kkj, (51)

where πij,kk is the kth diagonal element of the matrix πij . The
measurement operators can then be read from the matrix,

πij,kk = δMik,j . (52)
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As an example, for d = 4, m = 2, we have the matrix

M =

⎛
⎜⎜⎜⎝

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2
0 1 2 3 3 2 1 0 1 0 3 2 2 3 0 1
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

⎞
⎟⎟⎟⎠. (53)

Each row corresponds to a PVM, and the kth element says
which of the d projection operator matrices that has a 1 in
the kth position on the diagonal. The mutual unbiasedness
of the PVM translates into the matrix property that for
every pair of rows, every ordered pair of numbers from the
same column occurs dm−2 times. Such a matrix is called
an orthogonal array, and is equivalent to n − m orthogonal
latin hypercubes of dimension m [16]. If d is a power of a
prime, then one can construct an orthogonal array with dm−1

d−1

rows [17]. Such an array gives us dm−1
d−1 mutually unbiased

PVMs. This is the maximal number, since each PVM spans
a (d − 1)-dimensional subspace of the (dm − 1)-dimensional
Bloch space and the subspace is orthogonal to the subspaces
spanned by other PVMs.

We can now define a classical RAC. We define the ath
encoding density matrix as

ρa = 1

n

n∑
i=1

d1−mπici (ad ), (54)

which gives a success probability

pici (ad ) = Tr
(
ρaπici (ad )

) = 1 + d−1
n

d
. (55)

We may improve some of the encoding states by extending
their Bloch vectors to maximal size, but there will always be
some encoding states that are already on the surface of the
Bloch space and the worst case probability is therefore given
by (55). An encoding state is on the surface if it has 0 as an
eigenvalue. If we read eigenvalues along the diagonal, then the
kth eigenvalue of ρa will be 0 if ci(ad ) �= Mik ∀i. For example,
with M as in (53), the first eigenvalue of ρa will be 0 iff none
of the digits of a are 0.

We can now go on to d-level QRACs. We use the fact that
there are dm + 1 MUB when d is a power of a prime. Then
for each basis, we use the RAC construction to get mutually
unbiased PVMs. We then get a total of (dm + 1) dm−1

d−1 = d2m−1
d−1

PVMs. We define the PVMs as follows.
Let ρh,k be the density matrix of the kth basis vector of the

hth basis. M is the same n by dm matrix as for the classical
RAC. The PVMs are defined by

πij =
dm∑
k=1

δMi%(dm+1);k ,j ρi//(dm+1),k, (56)

where // and % denote integer division and modulo. We have
separated the indices of M by a semicolon for clarity. Each πij

is diagonal in one of the MUB in a way given by a row of the
orthogonal array M .

We can define the encoding states in the same way as for
classical RACs (54) and, in this case, the success probability
is the same as for RACs (55).

Alternatively, we may place the encoding states on the
insphere. From the eigenvalues of πij and Eq. (13), we
find that

πij = dm−1ραij
, |αij | =

√
2d−m(d − 1), (57)

where αi is a Bloch vector. Each encoding state of (54) has
a Bloch vector which is the average of n orthogonal αij , and
therefore has length

ρa = ραa
, |αa| = 1√

n

√
2d−m(d − 1). (58)

On the other hand, the insphere radius is

rdm =
√

2

dm(dm − 1)
. (59)

The ratio is

rdm

|αa| =
√

n(d − 1)

dm − 1
(60)

and the success probability with encoding states on the
insphere can be obtained from Eq. (55)

p =
1 + rdm

|αa |
d−1
n

d
=

1 +
√

d−1
n(dm−1)

d
. (61)

The ratio in Eq. (60) indicates which encoding states to use
and we may merge (55) and (61) to obtain

p =
⎧⎨
⎩

1+
√

d−1
n(dm−1)

d
, n � (d − 1)(dm − 1),

1+ d−1
n

d
, n � (d − 1)(dm − 1).

(62)

This summarizes the worst case success probability for our
QRAC constructions so far, with classical RACs for all n �
dm−1
d−1 and QRACs for all n � d2m−1

d−1 . We have used maximal
sets of mutually unbiased PVMs as well as encoding Bloch
vectors with lengths that guarantee valid states. It is, however,
sometimes possible to use longer Bloch vectors. We will now
see that finding the encoding states that give the best worst
case probability can be formulated as an eigenvalue problem.

Equation (56) defines d2m−1
d−1 mutually unbiased PVMs. We

assume that the QRAC uses a subset of n PVMs and redefine
the indices such that they run from 0 to n − 1 for any choice
of subset. The encoding states can be defined as in Eq. (54),
but with a scaling factor on the traceless part:

ρa = K

(
1

n

n∑
i=1

d1−mπici (ad ) − d−m1

)
+ d−m1. (63)
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The Bloch vector length is proportional to the traceless part,
so we have the new success probability

p = 1 + K d−1
n

d
. (64)

We demand that all the eigenvalues of ρa lie between 0 and 1,
as it is a density matrix, and this gives

−1 � K

n
eigenvalue

(
n∑

i=1

(dπici (ad ) − 1)

)
� dm − 1. (65)

Both inequalities must hold for all eigenvalues, but the first
inequality implies the second, since the matrix is traceless.
We can therefore neglect the second and concentrate on
the first. We denote the most negative eigenvalue of all the∑n

i=1(dπici (ad ) − 1), where 0 � a < dn by −λ. We then have

K

n
� 1

λ
(66)

and we can write the worst case probability as

p = 1 + d−1
λ

d
. (67)

It is, however, not in general easy to find λ; we will consider
this problem in Sec. IX.

VIII. PARITY OBLIVIOUSNESS

Parity obliviousness is a cryptographic property that per-
tains to some QRACs. If S is a subset of input bits, then the
parity of this set is the bit sum modulo 2. A QRAC is parity
oblivious iff no information can be obtained about the parity of
any subset of at least two bits, when the input has been chosen
randomly from the uniform distribution.

It is known that for d = 2, 2n � m, a parity-oblivious
QRAC [18] exists with

p =
1 + 1√

n

2
(68)

and that this is the theoretical upper bound for parity-oblivious
QRACs.

We define a generalized parity obliviousness as follows.
Let I ⊂ {1, . . . ,n} be a set of at least two d-level indices. We
define the d-parity of the corresponding set of d-levels by

PI (a) =
∑
i∈I

ci(ad ) mod d. (69)

An encoding scheme is d-parity oblivious iff there exists
no index set I and parity values J,J ′ such that

d1−n
∑

a|PI (a)=J

ρa �= d1−n
∑

a|PI (a)=J ′
. (70)

Two-parity is then the same as ordinary parity. d-parity
obliviousness was also introduced in [19].

A. Parity obliviousness of codes

We now show that the encoding scheme in Eq. (54) is
d-parity oblivious. We let I be an index set and J ∈ Zd a

parity value. Now,

d1−n
∑

a|PI (a)=J

ρa = d2−n−m

n

n∑
i=1

∑
a|PI (a)=J

πici (ad )

= d2−n−m

n

n∑
i=1

d−1∑
j=0

∑
a|ai=j,PI (a)=J

πij

= d2−n−m

n

n∑
i=1

d−1∑
j=0

dn−2πij = d−m1,

(71)

where we used that every digit occurs equally often among
inputs with a given parity, and that

∑d−1
j=0 πij = 1. This shows

that a mixed state describing a uniform distribution of all states
with a specific d-parity is the maximally mixed state. Since
this state does not depend on the d-parity, the encoding scheme
given by Eq. (54) is d-parity oblivious. We also note that
d-parity obliviousness is conserved if we scale all the encoding
Bloch vectors with a common factor, as we do when we place
the encoding states on the insphere. The sum of all Bloch
vectors for the encoding states of inputs with a given parity
will then still sum up to the 0 vector, giving the maximally
mixed state.

We also note that no d-level value is special. We may
permute the values on the d-levels and still have d-parity
obliviousness. This gives additional equations for the joint
probabilities for d > 3.

B. Joint probabilities from parity obliviousness

We will now see that parity obliviousness allows us to
calculate some probabilities that we have neglected until now.
We focus on the d = 2 case. We know that a classical RAC
encodes n bits such that any bit can be retrieved correctly with
a probability p. Since a classical RAC involves no projective
measurements, every bit can be obtained simultaneously, each
with success probability p. A (4m − 1,m,p) QRAC allows
one to retrieve 2m − 1 bits, as this is the number of PVMs
that are diagonal in each of the MUB. In a general setting, we
may assume that we obtain ν bits in a parity-oblivious way,
each with an individual success probability p. An interesting
quantity is then the probability p(k,ν), the probability that
exactly k of the obtained bits are correct. This probability can
be calculated if we assume uniform input. Then, for 0 < ν ′ �
ν, we have

p(k,ν ′ − 1) = ν ′ − k

ν ′ p(k,ν ′) + k + 1

ν ′ p(k + 1,ν ′), (72)

since we may see the ν ′ − 1 bits as a random subset of ν ′ bits.
Parity obliviousness implies that the probability for obtaining
an odd number of correct bits is the same as the probability for
obtaining an even number of correct bits when the number of
bits is at least two:

ν ′∑
k=0

(−1)kp(k,ν ′) = 0, ν ′ � 2. (73)
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We know that

p(0,1) = 1 − p, p(1,1) = p. (74)

If we assume that p(k,ν ′ − 1) is known, then Eq. (72) gives
ν ′ linearly independent equations for the ν ′ + 1 unknown
probabilities p(k,ν ′). Equation (73) gives the final equation,
linearly independent from the others. Trying to write it as
a linear combination of the others leads to coefficients with
alternating signs, but the coefficient for the k = 0 equation
must be positive, while the coefficient for the k = ν ′ − 1
equation must have a sign (−1)ν

′
, giving a contradiction. The

probabilities can now be calculated inductively, giving

p(k,ν ′) = 2−ν ′
(

ν ′

k

)
[1 + (2k − ν ′)(2p − 1)]. (75)

Since p(0,ν) � 0, we get the upper bound

p �
1 + 1

ν

2
. (76)

For classical RACs, ν = n and we see that our constructions
give the optimal p for parity-oblivious RACs. This bound was
also given in [3,18], but then only considering the strategy of
encoding one bit perfectly, and guessing the remaining n − 1
bits. This gives the same average success probability as our
classical RACs gives when guessing any bit.

The (4m − 1,m,
1+ 1

(2m−1)
√

2m+1

2 ) QRACs do not reach the upper
bound (76), but we see that the bias has a factor 1

2m−1 = 1
ν
.

The additional factor of 1√
2m+1

is the relative component size
of the encoding Bloch vector in one of the 2m + 1 orthogonal
subspaces corresponding to the different MUB. It is however
not clear that multiplying these two constraining factors gives
the optimal p. We will now see that improvements are possible.

IX. OPTIMIZATION

We now discuss improvements of the QRACs. The classical
RACs are already optimized under parity-oblivious conditions.
We first look into the parity-oblivious possibilities for d = 2,
and divide into two cases, maximal and nonmaximal n. We
then discuss other potential improvements, including d > 2
and dropping parity obliviousness.

A. Worst case probability for maximal n

We now consider two-level (4m − 1,m,p) QRACs using
the PVM operators of Sec. V B. Our goal is to scale up the
encoding Bloch vectors to maximal length. Equation (67) gives
the worst case probability in terms of an eigenvalue λ, where
−λ is the most negative eigenvalue among the eigenvalues of
matrices on the form

�(β) =
4m−1∑
k=1

(−1)β(k)
m⊗

i=1

σci (k), (77)

where β can be any function β : {1, . . . ,4m − 1} → {0,1}. The
number of functions β is 24m−1, so calculating the eigenvalues
of all the possible matrices is very demanding already for
m � 3. We may however learn something from special cases.

TABLE IV. Results of drawing No. tries random �(β) matrices.
For m = 2 all matrices have been checked, while for m > 2 the
number of tries is very small compared to the number of encoding
states. −λ∗ is the most negative eigenvalue that is found and it is in
all cases less negative than 1 − (1 + √

3)m.

m No. tries No. tries
No. states 1 − (1 + √

3)m −λ∗
2 215 1 −6.4641 −6.4641
3 25 × 106 2.71 × 10−12 −19.392 −18.528
4 4 × 106 6.91 × 10−71 −54.713 −37.968
5 106 1.11 × 10−302 −151.21 −72.646
6 105 1.91 × 10−1228 −414.85 −137.63

The matrix

�(β : β(k) = −1∀k) = 12m − (1 + σx + σy + σz)
⊗m (78)

has
(
m

k

)
eigenvalues that are 1 − (

√
3 + 1)m(

√
3 − 1)m−k , but,

most importantly, one eigenvalue which is 1 − (1 + √
3)m.

This gives a lower bound to λ, and thereby an upper bound to
the worst case success probability:

p �
1 + 1

(1+√
3)m−1

2
. (79)

We could have replaced any of the tensor factors of (1 + σx +
σy + σz)⊗m in Eq. (78) with factors on the form 1 ±x σx ±y

σy ±z σz, and still obtained the same λ, meaning that at least
8m encoding states are surface states on the Bloch sphere if
we adjust a QRAC to have this success probability. We have
checked numerically that no �(β) has an eigenvalue less than
1 − [1 + √

(3)]m for m = 1,2. This means that we can obtain
equality in the bound (79) in these cases. We conjecture that
this is the case for all m, i.e.,∥∥∥∥∥

4m−1∑
k=1

(−1)β(k)
m⊗

i=1

σci (k)

∥∥∥∥∥ � (
√

3 + 1)m − 1, (80)

implying that p = 1+ 1
(1+√

3)m−1

2 . Our attempts at proving this
have not yet succeeded.

For m > 2, the state space is too vast to cover with a
numerical search. We have nevertheless performed random
numerical searches up to m = 6 to look for �(β) with an
eigenvalue more negative than 1 − (1 + √

3)m. The results
are shown in Table IV, and no such eigenvalue was found.
The random searches do, however, not say much about the
probability for such an eigenvalue to exist, since the number
of checked matrices is much lower than the total number. We
can increase the number of excluded matrices by noticing that
a sign flip on a term will not change an eigenvalue by more
than 2. For instance, in the case m = 6, we see that at least 139
signs must be flipped for an eigenvalue of any of the drawn
matrices to break −414.85. Because of this, each of the 105

drawn matrices excludes more than 10262 other matrices too,
but this is still only an unimaginably small portion of the total
set of states. We cannot exclude the possibility of encoding
states that break the conjecture (80), but the numerical searches
show that it is unlikely to randomly stumble upon such a state.
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B. Parity-oblivious QRACs for m = 2

In the case of maximal n, all the orthogonal measurement
directions are used, while some are omitted when a nonmaxi-
mal number of bits is encoded. Different subsets give different
worst case probabilities when we optimize the encoding states.
Finding the optimal subset is a complicated problem, but we
have some clues. The generators that we have used for SU(2m)
have the property that every pair of generators either commute,
or anticommute. Moreover, the generators are self-inverse. If
{σi}ni=1 is a set of n such generators that are all anticommuting,
then (

n∑
i=1

±iσi

)2

= n12m, (81)

and since
∑k

i=1 ±iσi is traceless, its eigenvalues must be
±√

n where the eigenvalues occur with equal multiplicity.
This means that we can obtain a worst case probability of

p =
1 + 1√

n

2
(82)

as long as we can find n anticommuting generators. This is
possible for n � 2m + 1 and gives exactly the optimal parity-
oblivious QRACs when there is no limitation on m [18]. One
such maximal set of generators is{

σ⊗m
x

} ∪ {
σ⊗k

x ⊗ (σy,σz) ⊗ 12m−k−1

}m−1
k=0 . (83)

On the other hand, if {σi}ni=1 all commute, then we may find
a set of signs {±i}ni=1 such that

∑n
i=1 ±iσi has an eigenvalue

that is −n. This suggests that the best subset of σ matrices
contains relatively few commuting pairs.

For m = 2, we have tried every possible combination of n

PVM’s to find the combinations that give the best worst case
probability. For n = 1 to n = 5, we get sets of anticommuting
matrices, and a worst case probability according to Eq. (82);
the results for n = 6 to n = 15 are shown in Table V. For

TABLE V. Improved success probabilities compared to the
insphere success probabilities. The closed-form expressions for 12
and 14 are omitted due to casus irreducibilis.

n p pinsphere

6
1+ 1√

6+√
12

2 ≈ 0.6625 0.6179

7
1+ 1√

7+√
32

2 ≈ 0.6405 0.6091

8
1+ 1√

8+√
44

2 ≈ 0.6307 0.6021

9
1+ 1√

17
2 ≈ 0.6213 0.5962

10
1+ 1√

10+√
84

2 ≈ 0.6142 0.5913

11
1+ 1√

3+
√

2(4+√
3)

2 ≈ 0.5977 0.5870
12 0.5917 0.5833

13
1+ 1√

7+
√

2(3+√
7)

2 ≈ 0.5832 0.5801
14 0.5800 0.5772

15
1+ 1

3+2
√

3
2 ≈ 0.5774 0.5745

FIG. 2. Success probabilities for composite d = 2, m = 2 QRACs.

n = 6 to n = 10, the optimal subsets contain no triples of
mutually commuting generators. This means that only up to
two bits can be recovered simultaneously. Also, −λ can be
found from squaring the traceless part of �2 in these cases. For
n = 11 to n = 15, there must always be some triples of bits that
can be obtained simultaneously. We have plotted the success
probability in Fig. 2. We see that p drops significantly from
n = 5 to n = 6 and from n = 10 to n = 11, indicating that the
number of possible bits that can be obtained simultaneously
has a significant impact on p. This is not surprising since we
have seen that simultaneous knowledge of several bits restricts
p under parity obliviousness.

C. Other parity-oblivious possibilities

We have so far considered optimizing parity-oblivious
QRACs for d = 2. We have performed numerical optimization
for d > 2 also, but the complexity of the problem limits the
numerics. For d = 4, n = 5, m = 1 we find that encoding
states can be improved such that

p =
1 + 1√

5

4
= 0.36180 → p = 0.41350. (84)

For d = 3, 5, 7, m = 1 and with maximal n, we find that
some of the encoding states have singular density matrices,
and therefore cannot be improved. In particular, we find that
d2 of the encoding states have d−1

2 eigenvalues that are 0 and
d+1

2 eigenvalues that are 2
d+1 . This might well be true for all

odd primes or even powers of an odd prime d, and may provide
a clue to solving the problem of improving the encoding states
in general. It is not surprising if there is a distinction between
even and odd primes, since the recipes for constructing MUB
are different for even and odd primes [13].

An attempt to find a solution could use other sets of
mutually unbiased PVM operators than the ones we have
used until now. So far, we have used MUB in conjunction
with mutually orthogonal arrays. There are, however, some
alternatives. First, it is not clear if every possible way to
create MUB gives the same QRAC properties. Maximal sets
of MUB that are not unitarily equivalent exist [20]. Secondly,
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TABLE VI. Numerically obtained (n,2,p) QRACs with average
success probabilities p̄ and analytical (n,2,pmix) QRACs.

n 7 8 9 10 11 12

p 0.68412 0.65249 0.60319 0.53919 0.52468 0.50054
p̄ 0.72839 0.71653 0.70268 0.66544 0.66177 0.65562
pmix 0.6405 0.6307 0.6213 0.6142 0.5977 0.5917

at least for d = 2, we may make alterations to the PVMs
that maintain mutually unbiasedness and projection valued
measure properties, but mix up the commutation relations.
Our choice so far of generators of SU(2m) have the property
that each pair either commute or anticommute. If we choose
a subset of generators, {σi}ki=1 that all anticommute, then we
may create a new set {σ ′

i = ∑k
j=1 Oijσj }ki=1, where Oij is

a rotation matrix. The new set still contains anticommuting
matrices and the eigenvalues are unchanged. If we put them
together with the rest of the generators, then the generators
still give a maximal set of mutually unbiased PVMs, but the
unaltered and altered generators will no longer always either
commute or anticommute.

It remains to investigate this direction thoroughly. As
an initial test, for d = m = 2, n = 15, we have grouped
together five triples of mutually anticommuting generators
and applied random rotation matrices to each triple. This
gave a worse worst case success probability in all tests, but
we cannot say that a systematic scheme will not improve
the probability instead. However, the idea may be more
fruitful for nonmaximal n, where the encoding scheme is less
symmetric. For n = 15, every measure operator commutes
with six other operators, while for n = 10, every operator
commutes with three other operators, but for other values
larger than n = 5, this symmetry is not present, and this may
encourage alterations to the measure operators.

D. Dropping parity obliviousness

More possibilities arise if we neglect parity obliviousness.

For instance, a (6,2,
1+ 1√

3

2 ) QRAC can be constructed as

two (3,1,
1+ 1√

3

2 ) QRACs. Adding together smaller QRACs
in this way may also favor using QRACs with rectangular
encoding schemes, i.e., QRACs with varying Bloch component
sizes in the different measurement directions. A (4,3,0.898)
arises from constructing three rectangular one-qubit QRACs,
encoding the three first bits into separate qubits with a success
probability 0.898, and encoding the fourth bit into each qubit
with a success probability 0.802. The probability for success
in two or three out of three when measuring the fourth bit is
then also 0.898. This type of composite QRAC requires more
general solutions than we have presented so far and may be
subject for future research.

Composite QRACs can only be made if n is small enough
to be covered by two or more separate QRACs sharing the
total number of qubits or quantum d-levels m. But non-parity-
oblivious codes can also improve the worst case success
probability in other ways. The numerical solutions that we
obtained for d = 2, m = 2 with only pure states beat the mixed
states solution for low values of n, as we see in Table VI. The

cases n = 7,8 do not allow composite QRACs, so there must
be a different scheme that optimizes these cases.

The parity-oblivious hypercube solutions use encoding
states that only span n out of the 22n − 1 dimensions of Bloch

space, while the encoding states of the (3m,m,
1+ 1√

3

2 ) QRAC
that consists of m cubic QRACs do however span the whole
of Bloch space. It is therefore not surprising if non-parity-
oblivious solutions give better worst case probabilities than
the hypercube solutions for low values of n, as they may take
advantage of more directions in Bloch space. On the other
hand, the maximal n hypercube solution uses all the state
space dimensions, and it seems that parity obliviousness and
optimal worst case probability coincide in this case.

X. RACs vs QRACs

A recurring theme in quantum information theory is the
correspondence between two bits and one qubit, or in general
between m quantum d-levels and 2m classical d-levels. This
occurs because the dimensions of the state spaces coincide. It
has been shown [21] that m qubits can be used to send at most
2m bits of information, using previously shared resources.
The superdense coding protocol [8] achieves this, using m

maximally entangled pairs. Since additional resources are
necessary in order to use one qubit to transmit two bits, one may
be lead to believe that the two bits contain more information
than a qubit. However, an entangled pair is also necessary in
order to send a qubit using two bits. This means that the two
different information carriers both have advantages over each
other. This is also the case in the setting of QRACs. We will
restrict the discussion to powers of a prime d, since these are
the cases where we have some understanding of the optimized
solutions.

In the most basic example, one qubit versus two bits, we
have that both can encode one bit faithfully. Sending two bits
with a qubit only allows the receiver to get one of the bits with

a success probability of
1+ 1√

2

2 , while two bits of course can

send two bits faithfully. The (3,1,
1+ 1√

3

2 ) QRAC do however
beat the (3,2, 2

3 ) RAC.
We saw in Sec. VIII B that, for d = 2, with parity-

oblivious QRACs, the number of bits ν that can be retrieved
simultaneously restricts the success probability. This gives
a fundamental understanding of the differences between a
(4m − 1,2m,p) RAC and a (4m − 1,m,p′) QRAC. The RAC
allows the receiver to recover information about every bit, as
opposed to the QRAC, where a subset of bits must be chosen,
while all information about the rest of the bits is erased fol-
lowing the measurement. This loss of information is however
necessary for the QRAC to give a better success probability
than the RAC. This is if we assume parity obliviousness, but
this is a consequence of orthogonal measurement directions
in Bloch space, which seems hard to do without if we want
an optimal worst case QRAC for maximal n. The success
probabilities for some bits will otherwise depend on the value
of other bits.

The QRACs we have presented allow the receiver to obtain
information about a subset of up to dm−1

d−1 of the n � d2m−1
d−1

d-levels, but we can also construct a POVM that obtains

052315-11



O. LIABØTRØ PHYSICAL REVIEW A 95, 052315 (2017)

information about every d-level, making the QRAC similar
to a classical RAC. This is done by using measure operators
that are proportional to the encoding states:

Fa = dm−nρa,
∑

a

Fa = 1. (85)

The probability for measuring the ith d-level to the correct
value ai is then

p = Tr

⎛
⎝ρa

∑
b|bi=ai

dm−nρb

⎞
⎠ = 1

d
+ 1

2n
r2
a , (86)

where ra is the Bloch vector length of the states ρa . The
maximal value ra = √

2(d − 1)d−m occurs when ρa has dm−1

nonzero eigenvalues that are all d1−m. In this case we retrieve

the classical RAC probability p = 1+ d−1
n

d
. In general, the

encoded message of a (n,m,p) QRAC can be interpreted to
give a success probability

pq→c = 1 + (dp−1)2

d−1

d
, (87)

such that the same information about every d-level is obtained.
For d = 2 QRACs, pq→c is coinciding with the classical

RAC probability for up to n = 2m + 1 bits. This coincides

with the range where optimal p = 1+ 1√
n

2 parity-oblivious
QRACs are available. For large values of n, the QRAC will
give a higher p than the classical RAC, which again gives a
higher success probability than the QRAC measured with the
measure (85). For instance, encoding 15 bits in two qubits
gives p = 0.5774, with pq→c = 0.5120, while the classical
RAC using four bits has p = 0.5333.

XI. DISCUSSION AND OUTLOOK

We have explained Bloch space geometry and used it to
construct a previously known class of mixed state QRACs
that encode the maximal number of bits (n = 4m − 1) into m

qubits in such a way that any single bit can be recovered with
a probability greater than 1

2 . The previously known codes use
projection valued measures that are orthogonal in Bloch space,
both of which seem necessary for an optimal code. We have
improved the encoding states of the codes to give a higher worst
case success probability. We also saw that up to n = 2m − 1
bits can be encoded into m classical bits under the same worst
case requirements. This means that 2m bits and m qubits can
encode the same number of bits. The correspondence between
one qubit and two classical bits is frequently seen and this is
because the dimensions of state spaces coincide. The classical
and quantum random access codes both exhibit advantages
over the other. We have found that the probability of success
is higher for the quantum case, but in the classical case, there
is no projective measurement and we do not have to choose
which bits to obtain information about. We have seen that these

QRAC and RAC constructions are parity oblivious, and that
this implies that the worst case success probability is at most
1+ 1

ν

2 , where ν is the number of bits one can obtain with this
success probability simultaneously. The loss of information
during a projective measurement is therefore a necessity for the
QRAC to outperform the RAC in terms of worst case success
probability. We also saw that one can obtain information about
every bit from the QRAC too, but this gives a worse success
probability than for the classical RAC for n > 2m + 1, while
the same probability is obtained when n � 2m + 1.

We have generalized the problem to a situation where n

classical d-levels are encoded in m quantum d-levels such
that the worst case probability for any wrong outcome when
decoding one d-level is less than 1

d
. The correspondence

between classical RACs and QRACs is also seen for d-levels.
The solution for d = 2 generalizes via mutually unbiased bases
in combination with mutually orthogonal arrays.

For the classical RACs, we have achieved the optimal

d-parity-oblivious success probability p = 1+ d−1
n

d
, while for

QRACs, the question of optimality is harder. For d = 2, we
have seen that improved encoding states allow an improved
success probability over what was previously known. For
n � 2m + 1, the optimal solution is already known, while
for maximal n = 4m − 1, we have conjectured that p =
1+ 1

(1+√
3)m−1

2 and tested that it holds for m < 3. The proof or
disproof of this depends on an eigenvalue problem that has an
appealingly simple description.

For 2m + 1 < n < 4m − 1, the optimization is less straight-
forward for general m. However, for m = 2, we have optimized
the subset of measure operators, and the results are candidates
for optimal parity-oblivious QRACs. The low n solutions are,
however, not optimal when non-parity-oblivious codes are
allowed, but it seems that the optimal solution for maximal n is
parity oblivious too. The parity-oblivious hypercube solutions
make use of n dimensions in Bloch space. How to utilize all
of the dimensions systematically for low values of n is an
interesting question that remains to be answered.

For d > 2, we have found for the solutions that are within
exhaustive search distance that the encoding states of our
solutions cannot be improved upon in the maximal n case.
It still remains to be shown if this is the case in general or
not. Also, as in the case for d = 2, the nonmaximal n cases
may be even harder to solve. It would be interesting to see if
an optimal d-parity-oblivious QRAC that generalizes [18] can
be found. This may, however, be difficult, since for d > 2, the
traceless parts of the measure operators do not always either
commute or anticommute.
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