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The discrete-variables (DV) time-frequency (TF) quantum key distribution (QKD) protocol is a BB84-like
protocol, which utilizes time and frequency as complementary bases. As orthogonal modulations, pulse position
modulation (PPM) and frequency shift keying (FSK) are capable of transmitting several bits per symbol, i.e.,
per photon. However, unlike traditional binary polarization shift keying, PPM and FSK do not allow perfectly
complementary bases. So information is not completely deleted when the wrong-basis filters are applied. Since
a general security proof does not yet exist, we numerically assess DV-TF-QKD. We show that the secret key rate
increases with a higher number of symbols per basis. Further we identify the optimal pulse relations in the two
bases in terms of key rate and resistance against eavesdropping attacks.
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I. INTRODUCTION

Quantum key distribution (QKD), the first applicable
quantum technology, is used to distribute a secret key to two
parties, which can then for example be used as a one-time
pad for absolute secure communication. In the conventional
implementation of the BB84 protocol for QKD either polar-
ization or phase of single photons is used to form the two
required nonorthogonal bases [1–3]. Yet, in various scenarios
modulation of polarization or phase may not be practicable. For
example for satellite communications polarization is usually
set to left- or right-handed circular [4,5]. Here we investigate
a BB84-like protocol where information is coded either via
time or via frequency modulations. More specifically pulse
position modulation (PPM) and frequency shift keying (FSK)
are used to form the two required complementary bases.
This protocol, namely the time-frequency (TF)-QKD protocol
is promising, because PPM and FSK rely on techniques in
classical communication, which makes this protocol easier to
implement in existing systems and networks.

The TF-QKD protocol was suggested by several authors
[6,7]. The security of embodiments of continuous variable
(CV)-TF-QKD was addressed [8–12] while a security proof
against general attacks for discrete variables (DV) is not yet at
hand. DV implementations using prepare-and-measure [13] or
entanglement [14] were reported. Recently DV-TF-QKD was
addressed with respect to a certain intercept-resend attack [15]
and turbulent free-space channels [16].

The main conceptual difference between DV-TF-QKD and
BB84 is the imperfect complementarity of the measurement
bases of DV-TF-QKD. In BB84, getting all information coded
in one basis completely deletes the information coded in the
other. However, in DV-TF-QKD not all information is deleted.

In [15] the performance of prepare-and-measure, DV-TF-
QKD is investigated. There, narrow pulses compared to bin
width and pulse separation are assumed. Using narrow pulses
was proposed in [12] for CV-, not DV-TF-QKD. In [15] the
protocol performance was calculated based on a variation of
the intercept-resend attack where the gaps between the pulses
are exploited by an eavesdropper to distinguish the bases.

In CV-TF-QKD narrow pulses are preferable since there are
no gaps and both bases can be made indistinguishable [12].
However, this is not the case for DV-TF-QKD, thus narrow
pulses might not be the optimal choice here.

In this paper we show that a larger overlap of the pulses,
although leading to more errors in the raw key, can be
preferable over narrow pulses. After introducing the basics of
the protocol we will investigate how the widths of the symbol
pulses affect the secret key rate of DV-TF-QKD. We will also
find the optimal pulse width of the conjugated pulses. Further,
we will calculate the number of secret bits per photon for the
optimal pulse width and show that a higher number of possible
symbols per basis increases the secret key rate regarding an
intercept-resend attack exploiting the unique probabilities of
DV-TF-QKD.

II. THE TIME-FREQUENCY PROTOCOL

In DV-TF-QKD, as in BB84, single photons coded in two
bases are used to distribute a secret key between sender Alice
and receiver Bob hidden from an eavesdropper Eve. Alice
and Bob choose their respective sending or measurement
basis randomly and afterwards discard all measurement results
where their bases differ. This is called sifting. Then they
compare a small fraction of the resulting sifted key which
they discard afterwards to measure the quantum symbol error
rate (QSER) and conclude on Eve’s knowledge of the key. If
Eve’s knowledge is low enough, it is possible to distill a secret
key using error correction and privacy amplification, otherwise
the QKD process needs to be repeated.

A. Pulse relationships

The modulations used as the two bases are M-PPM and
M-FSK as shown in Fig. 1. Here M symbol pulses in M

different time (resp. frequency) bins represent M different
symbols. In the conjugate basis, i.e., frequency for time pulses
and vice versa, the conjugate pulses spread out over all bins
and thus contain no information. Because each pulse contains
exactly one photon, the pulse energy densities represent the
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FIG. 1. PPM- and FSK-symbol and conjugated pulses in the time
and frequency domain for M = 4.

probability distributions to measure the photon in a certain
point in time (resp. frequency). Without loss of generality
we assume Fourier-limited Gaussian pulses. Each symbol can
contain up to N = log2(M) raw bits, i.e., one qu-N -it. In Fig. 1
we show the energy densities for M = 4 .σt (resp. σω) is half
the 1/e width of the energy density of a PPM (resp. FSK)
symbol pulse and �t (resp. �ω) is the symbol pulse separation.
The central frequency (resp. time) of the conjugated PPM
(resp. FSK) pulses is chosen such that they are centered with
respect to the FSK (resp. PPM) symbol pulses in the frequency
(resp. time) domain. The 1/e widths of the symbol pulses and
conjugate pulses are reciprocal. The pulse energy density is
given by

ρσ (z) ≡ |ψσ (z)|2 ≡
√

2

σ
φ
(√

2
z

σ

)
. (1)

Here φ(z) = 1/(2π )1/2exp{−z2/2} is the standard normal
distribution, σ is equal to σt (resp. σω) for the PPM (resp.
FSK) symbol pulse and σ−1

ω (resp. σ−1
t ) for the conjugated

FSK (resp. PPM) pulse. Furthermore z = t for time (resp.
z = ω for frequency) pulses.

In BB84 it is impossible to reveal any information of the
basis by a measurement. As pointed out in [12], in CV-TF-
QKD narrow symbol pulses are preferable because hereby it
is possible to make the symbol pulses indistinguishable from
a conjugated pulses of the complementary basis. This means
in the frequency (resp. time) domain all FSK (resp. PPM)
symbol pulses can perfectly overlap with all conjugate PPM
(resp. FSK) pulses when the symbol pulses rate is varied over
the frequency (resp. time) accordingly. In DV-TF-QKD this
is not possible for both bases. However, with optimized pulse
widths of symbol and conjugated pulses the overlap can be
improved significantly.

Additionally for BB84 the measurement in the wrong basis
deletes all information in the other (correct) basis. However,
in the TF protocol it is possible to extract information on the
encoded qu-N -it even if it is already filtered in the wrong

basis. For example, Eve could accomplish this by guiding the
photons through two successive time and frequency filters. To
hinder this approach, the first filtering process should make the
outcome of the second perfectly random. That means its time
distribution should be significantly broadened by projection
on any FSK symbol. In DV-TF-QKD this condition cannot be
achieved perfectly.

Both perfect overlap and information deletion can be
approached by applying the following pulse relations:

(i) �t ≈ 2σt : the 1/e width of the PPM symbol pulses is
similar to the pulse distance,

(ii) �ω ≈ 2σω: the 1/e width of the narrow FSK symbol
pulses is similar to the pulse distance,

(iii) 2σ−1
t ≈ M�ω: the conjugated PPM pulse is approx-

imately as wide as the M-FSK symbol pulses,
(iv) 2σ−1

ω ≈ M�t : the conjugated FSK pulse is approxi-
mately as wide as the M-PPM symbol pulses.

To extend these approximations to quantitative equalities
we define the normalized pulse widths

α ≡ 2σt

�t
= 2σω

�ω
(2)

and

β ≡ 2σ−1
ω

M�t
= 2σ−1

t

M�ω
, (3)

expecting the values for both parameters to be of the order
of 1 (analogous to i–iv). α is half the normalized 1/e width
of the amplitude �σ (z) of the symbol pulses and β of
the conjugated pulses. For simplicity, we assume the pulse
relations to be the same for PPM and FSK pulses with the
result that time and frequency will be interchangeable in the
following calculations. Further, we consider perfect single
photon sources and do not consider any noise, so that each
pulse is undistorted and contains exactly one photon. Because
there is only one photon per pulse, there is no ambiguity in the
determination of the received symbol. Classical PPM systems
generally have dead times between each symbol [17], thus we
neglect intersymbol interference.

It is convenient to define the pulse and bin positions at this
stage. With i = [1,M] the centers of PPM (resp. FSK) symbol
pulses, normalized to �t (resp. �ω), are defined as

c(i) = i − M + 1

2
. (4)

We assume rectangular bins for Bob and Eve, since it is
easy to calculate, but also since it prevents additional errors.
Each bin is defined by its lower blow(j ) and upper bound
bup(j ) which we normalize to �t (resp. �ω) for time (resp.
frequency):

blow(j ) =
{−∞ for j = 1,

j − 1
2M − 1 for j = 2,...,M,

(5)

bup(j ) =
{
j − 1

2M for j = 1,...,M − 1,

+∞ for j = M.
(6)

Outer bins (i.e., j = 1 or M) are considered infinitely wide
in order to maintain all photons. Figure 2 shows the bin and
symbol pulse positions for M = 4. The part of the pulse which
spills in neighboring bins is called the spill region.
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FIG. 2. Definition of bins for M = 4. Each symbol is associated
with a symbol pulse located in a given bin. Bins are defined in the
time and frequency domains by their lower and upper bounds blow(j )
and bup(j ). The centers of the symbol pulses sent by the sender Alice
are given by c(i). As an example a pulse sent in the second bin is
shown. The spill regions, namely the regions which spill in other bins,
are displayed in gray.

B. Mutual information

One tool for evaluating a QKD protocol is the mutual
information. For one basis the mutual information of one
qu-N -it in bits is

I ′
S,R =

M∑
s=1

M∑
r=1

P ′
S,R(s,r)log2

(
P ′

S,R(s,r)

P ′
S(s)P ′

R(r)

)
, (7)

where M is the number of symbols, s is a symbol out of the
alphabet S representing the sender, and r is a symbol out of the
alphabet R representing the receiver. s out of S is replaced by
a out of A for Alice being the sender, and r out of R is replaced
by b out of B for the receiver being Bob and e out of E for
it being Eve. P ′

S,R(s,r) is the joint probability of the sender
sending the sth and the receiver receiving the rth symbol.
P ′

S(s) [resp. P ′
R(r)] is the probability of the sender sending

(resp. the receiver receiving) the sth (resp. rth) symbol. Up
to N = log2(M) bits per photon are possible. In this paper
we want to calculate the mutual information considering that
two bases are used with equal probability and with symbols 1
to M being time symbols and M + 1 to 2M being frequency
symbols.

The formula for the mutual information needs to be
modified, because only half of the 2M symbols can be used to
create a secret key (only one basis is used at a time), so

IS,R =
2M∑
s=1

2M∑
r=1

PS,R(s,r)log2

(
PS,R(s,r)

PS(s)PR(r)

)
− 1

=
2M∑
s=1

2M∑
r=1

PR|S(r|s)PS(s)log2

(
PR|S(r|s)

PR(r)

)
− 1, (8)

which still results in up to N = log2(2M) − 1 = log2(M)
bits of information and can be rewritten with the relation
PS,R(s,r) = PR|S(r|s)PS(s), where PR|S(r|s) is the conditional
probability.

PS and PR are vectors with the 2M entries PS(s) resp.
PR(r). Analogously PR|S(r|s) is an entry in column s and row
r of the 2M × 2M matrix PR |S representing the transmission
from the sender to receiver. PR |S can be interpreted as follows:
the columns represent which symbol a receiver will measure
depending on the sent symbol represented by the rows. The
conditional-probability matrices PR |S will be created in the
following section. The probability of receiving the different
symbols can be calculated with

PR = PR|SPS, (9)

assuming that Alice sends every symbol of both bases with
the same probability, i.e., PA(a) = 1/(2M) for every a, PB(b),
and PE(e) can be calculated.

C. Conditional probability for Bob

Because of the sifting process Bob will always be in the
correct basis with respect to Alice. We begin with assuming
both being in the PPM basis and (as mentioned earlier)
perfectly rectangular filters of width �t for Bob:

P correct
R|A (r|a) =

∫ (bup(r)−c(a))�t

(blow(r)−c(a))�t

ρσt
(t)dt

=
√

2

σt

∫ (bup(r)−c(a))�t

(blow(r)−c(a))�t

φ

(√
2

t

σt

)
dt, (10)

and with the substitution t = �t x one finds

P correct
R|A (r|a) =

√
2�t

σt

∫ bup(r)−c(a)

blow(r)−c(a)
φ

(√
2
�tx

σt

)
dx

=
√

2

α

∫ bup(r)−c(a)

blow(r)−c(a)
φ

(√
2

2x

α

)
dx. (11)

With a similar substitution one finds the same for Alice and
Bob being in the frequency domain. Thus, considering both
bases, we get

PBob
B|A =

(
Pcorrect

B|A 0M,M

0M,M Pcorrect
B|A

)
(12)

where 0M,M represents M × M zero matrices.

D. Conditional probability for Eve

Eve uses rectangular filters of width �t in one basis, where
each filter output forwards the photons to a second set of
rectangular filters of width �ω in the other basis, whose output
forwards the photons to M2 detectors. Eve measuring in the
PPM basis first when Alice sent in the PPM basis is analogous
to Alice sending to Bob described by (11). The filtering taking
place in the wrong basis is not relevant here. Without loss
of generality, we assume that Eve always first filters in the
PPM basis. Thus Eve’s and Alice’s bases differ when Alice
sends FSK pulses, yielding a conditional probability for Eve’s
detected symbols of

P
wrong
E|A (e|a) =

∫ bup(e)�t

blow(e)�t

ρσ−1
ω

(t)dt

=
√

2

σ−1
ω

∫ bup(e)�t

blow(e)�t

φ

(√
2

t

σ−1
ω

)
dt. (13)
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With the substitution t = �t x one gets

P
wrong
E|A (e|a) =

√
2�t

σ−1
ω

∫ bup(e)

blow(e)
φ

(√
2
�tx

σ−1
ω

)
dx

=
√

2

βM

∫ bup(e)

blow(e)
φ

(√
2

2x

βM

)
dx. (14)

After the first filter the pulses will be broadened but still
centered at the same position. Eve wants to preserve as much
information as possible in the frequency domain without losing
information for her time measurement, thus rectangular filters
of width �t are already the optimal choice. Applying the
Fourier transform, noted F(◦)(ω), to conjugated FSK pulses
truncated in the time domain by the first filter leads to a
modified Gaussian function in the frequency domain described
by

gf (ω) =
∣∣∣∣F

(
ψσ−1

ω
(t)Hf

(
t

�t

))
(ω)

∣∣∣∣
2

= σω√
π

∣∣∣∣
∫ +∞

−∞
φ

(
t

σ−1
ω

)
Hf

(
t

�t

)
e−iωtdt

∣∣∣∣
2

(15)

with the rectangular filter function being

Hf

(
t

�t

)
=

{
1 for blow(f ) < t/�t < bup(f ),
0 otherwise. (16)

With the substitution t = xσ−1
ω and ω = wσω we get

gf (w) = 1√
π

∣∣∣∣
∫ +∞

−∞
φ(x)Hf

(
Mβx

2

)
e−iwxdx

∣∣∣∣
2

. (17)

Consequently

P 2ndcorrect
E|A (e|a) =

M∑
f =1

∫ (bup(e)−c(a))�ω

(blow(e)−c(a))�ω

gf (ω̃)dω̃, (18)

with the sum over all the truncated pulses going through all
time-filter outputs. Eve will save the information received in
the time and frequency domain until the sifting process, after
which she only keeps the information about the announced
bases. Consequently the conditional probability matrix for Eve
after the sifting process is

PEve
E|A =

(
Pcorrect

E|A 0M,M

0M,M P2nd correct
E|A

)
. (19)

III. OPTIMAL PULSE WIDTHS

A. Symbol pulses

In the assumed intercept-resend attack, Eve measures a
fraction ε of the photons sent by Alice and then resends a
photon for each measured one.

With the conditional probabilities calculated in Secs. II C
and II D and the corresponding mean probabilities, we can
calculate IA,B and IA,E from (8). Alice sends every symbol
with the same probability, thus PA(a) = 1/(2M) for a out of
A. Bob does not know which photons exactly Eve attacked
on. Thus Bob’s probability and conditional probability is the

mean of Eve attacking and not attacking:

P̄B|A = (1 − ε)Pno attack
B|A + εPattack

B|A , (20)

P̄B = (1 − ε)Pno attack
B + εPattack

B . (21)

If Eve is not attacking,Pno attack
B|A = PB|A and Pno attack

B =
PB|APA; see (12). If Eve is attacking, she resends the photon
symbol depending on what she has measured. Eve gets
information of both bases. We assume Eve sends in the basis
in which she potentially has more information, hence in which
she filters first (here in the PPM basis). Eve wants to mimic
Alice, so she uses the same pulse relations as her.

If Eve attacks, there are two possibilities: First, Eve is in
the correct basis compared to Alice and subsequently resends
a photon according to what she has measured. Thus the
symbol probability matrix for Bob is (Pcorrect

B|A )2 (the square
represents the matrix product with itself). Second, Eve is in
the wrong basis compared to Alice, consequently Bob will
be in the wrong basis compared to Eve. Thus the conditional
probability for him is Pwrong basis

B|A . Both scenarios happen with
equal probability, so the conditional probability of Bob if Eve
attacks is

Pattack
B|A = 1

2

(
Pmean

B|A 0M,M

0M,M Pmean
B|A

)
(22)

with Pmean
B|A = (Pcorrect

B|A )2 + Pwrong
B|A . Furthermore we get Pattack

B =
Pattack

B|A PA for Bob’s measurement outcome. With (8) we can
now calculate the mutual information of Alice and Bob:

IA,B =
2M∑
b=1

2M∑
a=1

P̄B|A(b|a)PA(a)log2

(
P̄B|A(b|a)

P̄B(b)

)
− 1. (23)

Eve’s measurement outcome is

PE = PEve
E|APA. (24)

She only gets information when she is eavesdropping, thus
the mutual information between Alice and Eve is

IA,E = ε

[
2M∑
e=1

2M∑
a=1

P Eve
E|A(e|a)PA(a) log 2

(
P Eve

E|A(e|a)

PE(e)

)
− 1

]
.

(25)

The secret capacity, thus the upper bound for the number of
secret bits per photon, for infinite keys (see for example [18])
is

C =
{
IA,B − IA,E for IA,B > IA,E,

0 for IA,B � IA,E.
(26)

Note that for M = 2, the secret capacity is the secret fraction
as used, for example, in [18]. C can become larger than 1 for
M > 2 and represents the secret bits per photon, thus is rather
a capacity than a fraction of bits.1

1The secret key rate S = KC of a realization of the protocol can be
derived from the sifted key rate K and C depending on α and β and
matching QSER = 1 − 1/(2M)tr(P̄B|A). For the correlation between
QSER and quantum bit error rate see [19].
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FIG. 3. Secret capacity C for M = 4 as a function of the
normalized pulse width α and conjugate pulse width β.

The parameters of our protocol should be chosen such
that C is maximized. Figure 3 provides an optimization as
a function of α and β. C strongly depends on α but hardly on
β (for α being near the optimum).

In the following section we will see how to still find an
optimal value of β for more general eavesdropping strategies.

B. Conjugated pulses

In the described intercept-resend attack, Eve does not
exploit the imperfect overlap of time and frequency symbols,
i.e., the partial available information on the used basis. One
example of such a strategy is described in [15]. Such an
attack benefits from the capability of Eve to perform a basis-
dependent attack which is only possible if she can discriminate
the bases. This is mainly depending on the conjugated-pulse
overlap with the symbol pulses.

In [12] the security of CV-TF-QKD is shown for a certain
pulse relation by showing that the equality∑

ρσt
(t) =

∑
ρσω

(t) (27)

holds for the sum over all possible pulses. In the DV case this
equation cannot be fulfilled. Our approach is to quantify the
deviation from (27) by evaluating the difference

∑
ρσt

(t) −∑
ρσω

(t), which in our case is not equal to zero. Considering
all pulses, the difference can be written as

Uα(β) ≡
∫ M∑

s=1

∣∣∣∣ρσt

(
t +

[
s − M + 1

2

]
�t

)
− ρσ−1

ω
(t)

∣∣∣∣dt.

(28)

Ua(β) can then be minimized numerically in order to find
and optimum normalized conjugated pulse width βopt.

C. Secret key rate

In the following, the results of maximizing (26) and
subsequently minimizing (28) are presented and discussed.

C, αopt, and βopt are plotted over M in the top of Fig. 4
for different ε. αopt approaches a value between 0.4 and 0.6
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FIG. 4. Top: αopt and βopt. Bottom: the secret capacity (secret bits
per photon) C for different M and ε calculated with the optimal pulse
widths αopt and βopt.

and βopt a value of roughly 0.7 for a higher number M of
symbols per basis. In the bottom of Fig. 4 the secret capacity
C is plotted as a function of M . While C becomes smaller
with a higher fraction ε of eavesdropped photons it increases
with a higher M . For ε � 0.9 the capacity vanishes for all
M . It is obvious that, when no eavesdropper is present, the
symbol pulses should be as narrow as possible to prevent
spill-region induced bit errors. With a higher eavesdropping
fraction ε the optimum symbol pulses get wider to prevent Eve
from obtaining information. The conjugated pulses follow the
symbol pulses in width to increase the overlap.

If ε approaches zero, α gets small which leads to C ≈
log2M . Comparing that to QKD protocols like BB84 (C ≈ 1
for low errors), TF-QKD can have a tremendous advantage
for repetition rates much smaller than 1/�t . For a 100 MHz
repetition rate M = 256 PPM-symbols fit (�t ≈ 39 ps) which
leads to up to eight times higher secret key rates (See dashed
lines in Fig. 4, assuming M = 256 FSK symbols.)

IV. CONCLUSION

In this paper we provided a detailed analysis of the DV-TF-
QKD protocol. We show that symbols with infinitesimal width
are not optimal; quite contrarily a certain width is preferable,
which contradicts [15].

We have discussed that a complete optimization of an even
slightly more advanced protocol against all possible attacks
under realistic conditions is very challenging. Our analysis
suggests that efforts on full numerical assessment of QKD
protocols are rewarding.

By a numerical approach assuming an intercept-resend
attack and a high overlap between pulses of both bases, the
optimal pulse widths were calculated. Although a security
proof against general attacks is still missing, these pulse widths
can be used as a good estimation on how to form the bases in a
real implementation of DV-TF-QKD. Additionally the secret
bits per photon were calculated for different parameters under

052312-5



JASPER RÖDIGER et al. PHYSICAL REVIEW A 95, 052312 (2017)

the assumptions above. Further, it was shown that a higher
number of symbols per basis increases the secret key rate.

Extending the implementation for M = 2 [13] to higher M

would be possible by cascading the used time and frequency
filters or by using detectors which can measure time respective
frequency directly.

The DV-TF-QKD protocol is a promising QKD protocol,
especially regarding the high number of possible bits per pho-
ton for lower repetition rates. Compared to its CV counterpart

it is easier to implement mostly using off-the-shelf telecom
components. PPM and FSK rely on standard techniques in
classical communication, which makes this protocol well
suited for both free-space and fiber based QKD.
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