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Casimir force and its relation to surface tension
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From energy considerations there is reason to expect that the work done by Casimir forces during a slow
displacement of the parallel plates reflects the free energy of the surface tension of the adjacent surfaces. We show
this explicitly, for a one-component ionic fluid or plasma with qc as ionic charge, where the particles are neutralized
by a uniform continuous oppositely charged background. For two equal half-planes, the surface-associated free
energy for one half-plane turns out to be just one half of the total Casimir energy for the conventional Casimir
setup. We also comment, from a wider perspective, on the intriguing possibility that knowledge about the
magnitude of the surface tension coefficient obtained from statistical mechanics or experiments may give insight
into the value of the conventional cutoff time-splitting parameter τ = t − t ′ occurring in quantum field theory. A
simple analysis suggests that the minimal distance τc is of the order of atomic dimensions, which is a physically
natural result.
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I. INTRODUCTION

As is known, there are many facets of the Casimir effect: the
standard transverse force between two parallel half-spaces (for
reviews, see Refs. [1,2]), the issue concerning the temperature
correction to the force (still unresolved [3–5]), the Casimir
friction force occurring when one plate slides against the other
with constant or variable velocity [6–13] (a recent review is
given in Ref. [14]), the complications that arise if the system
is at thermal nonequilibrium [15–18], and so on. In the present
paper we focus on one aspect of the problem complex that
has to our knowledge not received much attention so far,
namely, the association of the Casimir free energy with the
surface tension of the plane surfaces. A reason to make such
an association is energy balance. At large separation the two
adjacent surfaces of the half-planes represent an additional
energy as given by the surface tension, which is energy per
unit area. This extra energy is due to particles at the surface
that are less bound as they are surrounded by fewer neighboring
particles. In principle the two surfaces at large separation may
be created by performing work against the Casimir force.
Then the initial situation is with the surfaces in contact.
Physically, this is the same as one single system in bulk with no
interface. Now the Casimir force can perform work between
these two situations with the surfaces at infinite separation
and zero separation. When this work is performed at constant
temperature it is expected to be equal to the Helmholtz free
energy difference.

Uniform temperature is assumed, as well as a vacuum
gap between the surfaces. Specifically, we show this corre-
spondence when the two half-spaces contain a neutral ionic
fluid or plasma. This model prevents the Casimir energy from
diverging when the two surfaces come into contact with each
other. Such a simple, though physical, model thus makes one
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avoid the troublesome mathematical divergence that would
otherwise turn up in simple Casimir theory upon contact
of material surfaces. Physically, it is the Debye shielding
length around charge carriers that turns out to be an important
physical ingredient here. The idea of calculating the Casimir
force between parallel plates on the basis of a plasma model
has been presented earlier, from both a classical and a
quantum mechanical point of view (in the last case using a
path integral formalism) [19–21]. The statistical mechanical
approach opens new perspectives regarding the Casimir effect:
instead of quantizing the electromagnetic field, one can look at
the problem as one of polarizable particles that interact via the
electromagnetic field. It has been shown explicitly that these
two approaches are physically equivalent [19,22–24]. The idea
has actually been made use of even in drawing connections to
a Yukawa potential in a nuclear plasma [25]; there may be
a relationship between between Casimir forces and nucleon
forces mediated by mesons.

From a wider perspective, the study of the role of surface
tension may be important as it points to a link between this
concept and the cutoff parameter in quantum field theory.
As is known, there are several cutoff parameters, but we
only consider the simple case where there is a time splitting
of τ = t − t ′ between the two space-time points where the
Green function (or stress tensor) is evaluated. Characteristic
for field theory is that the medium is regarded to be contin-
uous, endowed with material parameters such as permittivity
and permeability, implying that the cutoff becomes only a
mathematical parameter introduced to avoid divergences. Now,
dimensionally the cutoff can be related to surface tension.
Thus, one can hope to get an idea about the magnitude
of the cutoff parameter by relating it to physically founded
surface tension found in microscopic theory combined with
experiments. We briefly return to this aspect of the problem at
the end of the paper.

We begin in the next section by surveying briefly the
essentials of the statistical mechanical formalism, hereunder
the Ornstein-Zernike equation. The potential involved in our
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low-density Debye-Hückel theory is the static potential �.
Key references in this overview are Refs. [21] and [26].
In Secs. III and IV we derive the pair correlation function
and the Casimir force and free energy. In Sec. V we turn
to surface considerations, showing via the internal energy
equation, Eq. (5.17), that the surface free energy, after the
infinitely large separation contribution has been separated off,
is the same as the Casimir free energy. In Sec. VI we highlight
some basic features of the entropy of the present kind of
system (essentially a classical gas) and calculate the entropy
connected with the previously calculated Casimir free energy.
In Sec. VII we discuss in terms of a concrete example the
mentioned possible relationship between the surface tension
and the cutoff parameter in quantum field theory.

II. GENERAL EXPRESSIONS

Consider the generalized Ornstein-Zernike equation in
statistical mechanics [26,27]:

h(r,r0) = c(r,r0) +
∫

c(r,r′)ρ(r′)h(r′,r0)dr′, (2.1)

where h(r,r0) is the (pair) correlation function, c(r,r0) the
direct correlation function, and ρ the particle number density.
The equation above can be taken as a definition of c(r,r0). The
generalization consists in letting the fluid be nonhomogeneous.
We recall that the pair correlation function is related to the pair
distribution function g(r,r0) via

ρ(r0)ρ(r)h(r,r0) = g(r,r0) − ρ(r0)ρ(r). (2.2)

If the particles are uncorrelated, g = ρ(r0)ρ(r). For a uniform
fluid, ρ(r) = constant, h → h(r − r0). The function h accord-
ingly expresses the deviation from the ideal gas value.

We limit ourselves to weak long-range forces in the classical
limit. Then, the direct correlation function is to leading
order simply related to the pair interaction ψ between the
particles [28,29],

c(r,r0) = −βψ(|r − r0|), (2.3)

where as usual β = 1/kBT . This is a result following from
the so-called γ ordering, where γ denotes the inverse range of
interaction and is assumed to be small, and conforms with the
Debye-Hückel theory for electrolytes. We consider only low
densities here. For high densities the inverse Debye shielding
length would be changed.

III. DERIVATION OF THE PAIR
CORRELATION FUNCTION

Consider a one-component ionic fluid or plasma where qc

is the ionic charge. The particles are neutralized by a uniform
continuous background of opposite charge. The fluid is located
in two half-planes separated by a vacuum gap of magnitude
a. As already mentioned, we consider the classical case of a
low-density plasma where Debye-Hückel theory is valid with
good accuracy. The pair correlation function h(r,r0) is then
determined via the electrostatic potential �,

∇2� − 4πβq2
c ρ(r)� = −4πδ(r − r0), h(r,r0) = −βq2

c �.

(3.1)

This follows from Eq. (2.1), since with Coulomb interac-
tion ψ = q2

c /|r − r0| and Eq. (2.3), one has ∇2c(r,r0) =
4πβq2

c δ(r − r0).
In the present case with parallel plates the particle number

density is

ρ(r) =

⎧⎪⎨
⎪⎩

ρ, z < 0,

0, 0 < z < a,

ρ, a < z,

(3.2)

with equal densities ρ = const on both plates. By Fourier
transform in the x and y directions Eq. (3.1) becomes

(
∂2

∂z2
− k2

⊥ − κ2
z

)
�̂ = −4πδ(z − z0), (3.3)

where k2
⊥ = k2

x + k2
y , the hat denoting Fourier transform. With

κ2 = 4πβq2
c ρ,

κ2
z = κ2

⎧⎪⎨
⎪⎩

1, z < 0,

0, 0 < z < a,

1, a < z.

(3.4)

The constant κ is the inverse Debye-Hückel shielding length
in the media. Solution of Eq. (3.3) can be written in the form

�̂ = 2πeqκz0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−2qκ z0eqκz/qκ + Beqκz, z < z0,

e−qκ z/qκ + Beqκz, z0 < z < 0,

Ce−qz + C1e
qz, 0 < z < a,

De−qκz, a < z,

(3.5)

where q = k⊥ and qκ =
√

k2
⊥ + κ2. We let z0 be situated in

the lower medium (thus z0 < 0).
The electrostatic boundary conditions at z = 0 and z = a

are continuous �̂ and ∂�̂/∂z. This gives four equations for
the unknown coefficients. By solution one may first solve for
C and C1 in terms of D. This is then substituted in the other
two equations to obtain the coefficients of interest:

D = 4qe(qκ−q)a

(qκ + q)2(1 − Ae−2qa)
,

A =
(

qκ − q

qκ + q

)2

= κ4

(qk + q)4
, (3.6)

B = B(a) = (qκ − q)(1 − e−2qa)

qκ (qκ + q)(1 − Ae−2qa)
. (3.7)

IV. CASIMIR FORCE AND CASIMIR FREE ENERGY

The Casimir force per unit area is given by Eq. (14) in
Ref. [21]:

f = ρ2

(2π )2

∫
z0<0, z>a

ĥ(k⊥,z,z0)ψ̂ ′
z(k⊥,z − z0) dkxdkydzdz0,

(4.1)

where the Fourier transform ĥ of the pair correlation function
h is

ĥ(q,z,z0) = −βq2
c �̂ = −2πβq2

c De−qκ (z−z0) (4.2)
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and the Fourier transform ψ̂ of the ionic pair interaction
ψ = q2

c /r (Gaussian units) is

ψ̂(q,z − z0) = 2πq2
c

e−q(z−z0)

q
. (4.3)

So one finds

f = − κ4

8πβ

∫ ∞

0

De−(qκ+q)a

(qκ + q)2
q dq

= − 1

2πβ

∫ ∞

0

Ae−2qa

1 − Ae−2qa
q2dq, (4.4)

where ψ̂ ′
z = ∂ψ̂/∂z = −qψ̂ and dkx dky = 2πq dq. It is

convenient to introduce new variables of integration

q = κ sinh t, dq = κ cosh tdt. (4.5)

With this qκ = κ cosh t and A = e−4t , and integral (4.4)
becomes [26]

f = − κ3

2πβ

∫ ∞

0

e−g(t)

1 − e−g(t)
sinh2 t cosh tdt, (4.6)

where g(t) = 4t + 2κa sinh t .
It can be noted that in the present case the Casimir force

contains only one polarization of the electromagnetic field. The
reason is that our derivations are limited to the zero frequency
case. Then the transverse magnetic (TM) mode reduces to
the electrostatic case where only Matsubara frequency zero
remains corresponding to the high-temperature classical limit.
Furthermore the transverse electric (TE) mode vanishes in the
electrostatic case of zero frequency, and it is thus not present
in expression (4.6) for the force. (It can be mentioned here
that this contrasts the usual Lifshitz formula for metals that is
ambiguous in this respect and has led to the controversy about
the temperature correction to the Casimir force [3–5].)

When the plates move the change in the Casimir free energy
per unit area Fc is dFc = −f da. So with Fc = 0 for a = ∞
one finds by integration

Fc = κ2

4πβ

∫ ∞

0
ln(1 − e−g(t)) sinh t cosh tdt. (4.7)

When the plates are at contact, i.e., a = 0, one should expect
that the Fc outweighs the surface tension of the two surfaces at
large separation. We investigate this in the following section.

V. SURFACE FREE ENERGY

There is reason to expect that the work done by the Casimir
force reflects the free energy or the surface tension connected to
the adjacent surfaces of the two half-planes. This requires that
the free energy Fc stays finite. For commonly used continuum
models of dielectric media this is not the case with a diverging
force when the media approach each other. To avoid this the
molecular structure has to be taken into account. It is seen
that the force given by (4.6) stays finite when a → 0 [26].
(Compared to the usual diverging high-temperature result the
separation a is replaced by a + 2/κ for large a.)

The task now is to perform a statistical mechanical
evaluation of the free energy of the two half-planes and
separate out the part due to the interaction between the two
adjacent surfaces and then try to verify it to be equal to

expression (4.7). To do so we go via the internal energy U

that can be computed from the known pair correlation function
ĥ = −βq2

c �̂; cf. (3.5). So first we compute the Uc that follows
from the free energy (4.7). And with standard thermodynamics
we find

βUc = β
∂(βFc)

∂β
= κ2 ∂(κFc)

∂κ2

= κ2

4π

∫ ∞

0

[
ln(1 − e−g) + κa

e−g

1 − e−g
sinh t

]

× sinh t cosh tdt, (5.1)

where g = g(t), κ2 ∼ β, and ∂κ/∂κ2 = 1/(2κ). By partial
integration of the logarithmic term one gets a term that cancels
the other term to obtain

βUc = − κ2

2π

∫ ∞

0

e−g(t)

1 − e−g(t)
sinh2 tdt. (5.2)

This is the Casimir internal energy calculated with thermo-
dynamics from the Casimir force via the corresponding free
energy; the influence from the gap a contained in g(t) =
4t + 2κa sinh t .

Next we obtain the internal energy by the statistical
mechanical method. To do so we can first calculate the internal
energy in bulk for the uniform system. Then the internal energy
for a system of the same size with the adjacent surfaces present
is found. The surface internal energy is the difference between
these two energies. Finally this is compared with the Casimir
internal energy (5.2) obtained from the corresponding Casimir
free energy (4.7).

The internal energy U per unit area due to the pair
interactions is (with z and z0 inside the half-planes)

U = ρ2

2(2π )2

∫
ĥ(k⊥,z,z0)ψ̂(k⊥,z − z0) dkxdkydzdz0. (5.3)

The factor 1/2 in front prevents double counting of configura-
tions. (As usual the very simple result for the kinetic energy
of classical particles per particle, 3/(2β), can be disregarded
here.)

To compute the internal energy from Eq. (5.3) we split
it into several contributions since the system is nonuniform,
consisting of two half-planes. The usual situation in fluid
theory is to apply classical statistical mechanics on uniform
systems where methods have been developed. Also the
additional problem with surfaces is disregarded. However, in
the present case with a low-density electron gas we have been
able to evaluate explicitly the pair correlation function also in
the nonuniform case.

So one contribution to the internal energy is the bulk one
for the uniform system. This is straightforward to obtain and
goes via integral (5.5) for L0 below. In the present case
this is modified due to a surface on each half-plane. Thus
the integral for L0 is modified into integral (5.7) for L1

where the integration of z is cut at the surface. In addition
there is a contribution with integral (5.8) for L2(a) due to
the modification of the pair correlation function close to
the surface. This is expressed via the coefficient B = B(a)
which also is influenced by the neighboring half-plane. The
last contribution comes from the mutual interaction between
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the two half-planes expressed via the coefficient D and
integral (5.11) for L3.

In bulk the �̂ of Eq. (3.5) simplifies to (z,z0 � 0)

�̂ = 2π

qκ

e−qκ |z−z0|. (5.4)

So for a plane of thickness d Eq. (5.3) together with Eq. (5.4)
and pair interaction (4.3) the z and z0 integrations of it give
the integral

L0 = 1

qκq

∫ 0

−d

∫ ∞

−∞
e−(qκ+q)|z−z0| dzdz0

= 2d

qκq(qκ + q)
. (5.5)

The limits z = ±∞ prevent surface effects. So inserting this
into Eq. (5.3) with κ2 = 4πβq2

c ρ, ĥ related to �̂ by Eq. (3.1),
and pair interaction (4.3), the bulk internal energy per unit area
Ub is (dkxdky = 2πqdq)

βUb = − 2π

2(2π )2

(
κ2

2

)2 ∫ ∞

0
L0qdq

= − κ3

8π
d

∫ ∞

0
e−t dt = − κ3

8π
d, (5.6)

where again the new variable of integration (4.5) is used.
Result (5.6) is the well-known one for the classical electrolyte
in the Debye-Hückel low-density limit.

Now consider one half-plane with B and D in Eq. (3.5)
neglected for simplicity. Again the half-plane is limited to the
thickness d, but now with z restricted to −∞ < z < 0. The
lower limit −∞ prevents surface effects at z0 = −d → −∞
as before. But the limit z = 0 preserves the surface effect at
this position. So now we get the modified result

L1 = 1

qκq

∫ 0

−d

[ ∫ z0

−∞
e(qκ+q)(z−z0)dz +

∫ 0

z0

e−(qκ+q)(z−z0)dz

]
dz0

= 2d

qκq(qκ + q)
− 1

qκq(qκ + q)2
. (5.7)

For the B term given by Eq. (3.7) we in a similar way have

L2(a) = B(a)

q

∫ 0

−d

[ ∫ z0

−∞
e(qκ+q)z+(qκ−q)z0dz

+
∫ 0

z0

e(qκ−q)z+(qκ+q)z0dz

]
dz0

= B(a)

qκq(qκ + q)
(5.8)

as the two integrals turn out to be equal, consistent with equal
contributions from z < z0 and z0 < z in this case.

Clearly, when comparing with Eq. (5.5), the first term
of expression (5.7) is the bulk contribution for a plane of
thickness d while the remaining part contributes to the surface
energy. If the other half-plane is taken away, i.e., a → ∞,
the whole contribution to the surface internal energy comes

from

L∞ = L1 − L0 + L2(∞) = − 1

q2
κ (qκ + q)2

= − 4q

κ4qk

e−4t

1 − e−4t
, (5.9)

with B given by Eq. (3.7) for a = ∞ and where the bulk
contribution has been subtracted.

Altogether the surface internal energy per unit area U∞ for
one surface will now be similar to integral (5.6) with the same
prefactor (q = κ sinh t, dq = qκ dt):

βU∞ = − 2π

2(2π )2

(
κ2

2

)2 ∫ ∞

0
L∞qdq

= κ2

4π

∫ ∞

0

e−4t

1 − e−4t
sinh2 tdt. (5.10)

This is precisely one half of minus the Casimir internal
energy (5.2) for a = 0. Thus we have shown and by that can
conclude that the Casimir energy can be identified with the
surface energy of both surfaces taken together.

It is also of interest to check the Casimir energy against
the net surface energy for finite separation a. Then the D term
is also needed. It connects the two half-spaces so half of it
with z > z0 may be considered to belong to one surface while
z < z0 belongs to the other. Thus for one surface we have
[again similar to (5.8)]

L3 = D

q

∫ 0

−∞

∫ ∞

a

e(qκ+q)(z−z0) dzdz0 = De−(qκ+q)a

q(qκ + q)2
. (5.11)

With this the surface internal energy per unit area Ua for
separation a modifies Eq. (5.9) into

La = L1 − L0 + L2(a) + L3. (5.12)

For the change in surface internal energy we need the
difference:

�La = La − L∞ = L2(a) − L2(∞) + L3 = E

qκq(qκ + q)2
,

(5.13)

E = (qκ + q)[B(a) − B(∞)] + qκDe−(qκ+q)a, (5.14)

where we recall that B(a) is the coefficient B for finite
plane separation a while B(∞) is this coefficient for infinite
separation a = ∞.

Inserting from expressions (3.6) and (3.7), we find

E =
(

1 − q

qκ

)[
1 − e−2qa

1 − e−g
− 1

]
+ 4qκqe−2qa

(qκ + q)2(1 − e−g)

=
(

1 − q

qκ

)
e−g − e−2qa

1 − e−g
+ (1 − e−4t )e−2qa

1 − e−g

= q

qκ

(1 − e−4t )e−2qa

1 − e−g
, (5.15)

with q = κ sinh t , qκ = κ cosh t , and g = g(t) = 4t + 2qa as
before (A = e−4t ). So we find

�La = 4q

κ4qκ

e−g

1 − e−g
. (5.16)
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Altogether the surface internal energy per unit area Ua minus
U∞ for one surface will be a straightforward extension of
expression (5.10) with L∞ replaced by �La:

β(Ua − U∞) = − κ2

4π

∫ ∞

0

e−g

1 − e−g
sinh2 tdt. (5.17)

Thus this surface internal energy difference for both half-
planes taken together is the same as the Casimir internal
energy (5.2). With equal internal energies the free energies
will also be the same as will follow by integration and is given
by expression (4.7).

VI. ENTROPY

Entropy has been a quantity of interest and dispute in
connection with Casimir interactions. Especially this has been
an issue concerning the temperature dependence of the Casimir
force between metal plates. The well-known Lifshitz formula
turns out to be ambiguous in this respect. Depending upon
how the limit of infinite dielectric constant is taken, violation
of the Nernst theorem in thermodynamics has been claimed,
i.e., negative entropy connected to the TE field is obtained at
T = 0 [5,30–34].

In view of this it can be of interest to study shortly the
entropy in the present case too. However, since the classical
electron gas is considered, the Nernst theorem is not an issue,
and there is no TE field.

The Nernst theorem was first found and established on
basis of observations. It turned out that it can be explained
by the quantum mechanical nature of matter since entropy
can be understood as the natural logarithm of the number of
microstates times Boltzmann’s constant. At T = 0 a system
is in its ground state, which means just one microstate and
thus zero entropy (unless degeneracy is present). The number
of possible microstates can only increase with temperature,
by which the total entropy of a system can never be negative.
For classical systems the entropy usually has no lower limit
when T → 0. (One may add a constant to the entropy, but this
does not change the property that it has a finite lower level
independent of other parameters like volume, etc., at T = 0
from which the Nernst theorem was formulated.)

So consider the various contributions to the entropy in our
case. According to thermodynamics the entropy is given by
(with derivatives at constant volume)

S = 1

T
(U − F ) = −∂F

∂T
= kBβ2 ∂F

∂β
. (6.1)

This is consistent with relation (5.1) between the internal
energy and the Helmholtz free energy.

First we may consider the bulk internal energy (5.6). With
relation (5.1) the corresponding bulk free energy is βFb =
−κ3d/(12π ) as κ2 ∼ β. The corresponding entropy is thus

Sb = −kB

κ3

24π
. (6.2)

The kinetic energy (3/2)kBT per particle also contributes to
the entropy. For our system the contribution Uk to the internal
energy per unit area is (disregarding the uniform background)

Uk = 3

2
kBTρd = 3

2β
ρd. (6.3)

The corresponding free energy Fk and the entropy Sk is then,
with relations (5.1) and (6.1),

βFk = 3
2ρd ln β(+const), (6.4)

Sk = − 3
2kBρd ln β(+const). (6.5)

(The “const” term in the entropy as well as the free energy
will also contain the volume or density dependence.) Thus
the classical entropy has no lower limit when T → 0, so
the Nernst theorem does not apply. It may be noted that the
classical electron gas is unstable as it will prefer to have
a phase transition to higher density → ∞. However, real
ionic particles have a hard core that prevents collapse. Thus
for low temperatures there will be a phase transition to a
finite density. Anyway, all the above is fully acceptable and
realistic for classical systems and there is no violation of the
thermodynamics for such systems.

Then consider the surface tension contribution to the
internal energy U∞. With expression (5.10) and κ2 ∼ β it
follows that it is independent of temperature in the present case.
As follows from relation (5.1) the corresponding free energy is
then F∞ = U∞, and it is independent of temperature too and
therefore does not contribute to entropy. So with relation (6.1),

S∞ = 0. (6.6)

Finally we have the contribution to the entropy from the
Casimir free energy Fc as given by (4.7). The corresponding
internal energy is given by (5.1) or (5.2), which is the same
as expression (5.17) obtained by the statistical mechanical
evaluation. With relation (6.1) one can subtract the free
energy (4.7) directly from the internal energy (5.1) to obtain
the Casimir entropy:

Sc = kB

aκ3

4π

∫ ∞

0

e−g

1 − e−g
sinh2 t cosh tdt. (6.7)

Alternatively, according to relation (6.1), one can differentiate
the free energy (4.7) to obtain the same (since κ2 ∼ β). One
can note that this classical Casimir entropy stays positive.

VII. FIELD THEORY APPROACH

As alluded to above, the possibility of relating the sur-
face tension—obviously a physical parameter—to the cutoff
parameter in quantum field theory (QFT) is an intriguing
possibility. Let us first recall how the stress tensor in QFT
is constructed: one starts from the two-point function for the
electromagnetic fields, where the two space-time points x and
x ′ are kept apart by a small cutoff parameter. The separation
can be chosen in various ways: in the time direction, in the
space direction, or a combination of both. Usually one takes
the splitting in the time direction, so that it implies a small time
difference τ = t − t ′. We do the same here. The purpose of
this splitting is to avoid divergences in the final expressions of
physical quantities, such as surface stress. After the calculation
is completed, one usually omits the cutoff term, regarding it
as a mathematical artifact. As the standard calculation of this
type makes use of a complex frequency rotation, the time-
splitting parameter becomes proportional to the difference in
imaginary time.
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As we see in a typical example, it is however possible to
obtain some insight in the physical meaning of this mathe-
matical trick by observing the fact that the surface tension
and the time-splitting parameter are related dimensionally in a
simple way.

Consider a nonmagnetic dielectric ball of radius a, at zero
temperature. The Casimir theory for it was worked out by
Milton [35]. We look only at the limit of low susceptibility,
ε − 1 << 1, as this case is simple to handle mathematically.
The surface force density was found to have the form

f = − (ε − 1)2h̄c

162πa4

[
16

δ3
+ 1

4

]
, δ = τc

a
, (7.1)

in dimensional units. Here δ is the cutoff parameter τ in
nondimensional form. Both terms in the expression above are
negative, corresponding to an inward directed force. Of interest
to us in the present context is the cutoff-dependent first term.
Let us equate this term to the hydrodynamic surface tension
stress on a compact fluid sphere of radius a,

(ε − 1)2

16πa4

h̄c

δ3
= 2σ

a
, (7.2)

with σ denoting the surface tension coefficient. It is seen that
for a ball with given permittivity the time-splitting parameter
is related to the surface tension simply as

τ ∝ σ−1/3, (7.3)

independently of the radius a.
We can also solve Eq. (7.2) in terms of τc, the dis-

tance moved by a photon during the time-splitting time,

to get

τc = 6.80 × 10−7

[
(ε − 1)2

σ

]1/3

cm. (7.4)

As an illustration, choose σ = 73 dyn/cm, the surface tension
for an air-water surface, and choose ε − 1 = 0.01. Then, we
get τc = 0.75 Å, corresponding to τ = 2.5 × 10−19 s. The
important point here is that the minimum distance τc turns out
to be of the same order as atomic dimensions.

We have to emphasize that the arguments above, indicating
a link between microscopic statistical mechanics and field
theory, are suggestive only. One might ask if physically
attractive relationships of the following sort,

τc ∼ 1 Å, τ ∼ 10−19 s, (7.5)

are typical in more general cases also. The answer to that is
however not known.

VIII. SUMMARY

We have considered the work done by the Casimir force
between parallel planes filled with a one-component ionic
fluid or plasma. The ionic fluid is at low density such that
the well known Debye-Hückel theory of classical statistical
mechanics for it can be applied with good accuracy. For this
system we show explicitly that the work done by the Casimir
force when the separation between the plates changes reflects
precisely the surface tension of the plates. A simple analysis of
a corresponding quantum field theory approach suggests that
its conventional time-splitting parameter τ corresponds to the
natural distance τc of atomic dimensions.
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