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Quantum-mechanical inclusion of the source in the Aharonov-Bohm effects
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Following semiclassical arguments by Vaidman [Phys. Rev. A 86, 040101(R) (2012)], we show that the
phase shifts arising in the Aharonov-Bohm (AB) magnetic or electric effects can be treated as due to the electric
force of a classical electron, respectively acting on quantized solenoid particles or quantized capacitor plates.
This is in contrast to the usual approach that treats both effects as arising from non-field-producing potentials
acting on the quantized electron. Moreover, we consider the problems of an interacting quantized electron and a
quantized solenoid or a quantized capacitor to see what phase shift their joint wave function acquires. We show,
in both cases, that the net phase shift is indeed the AB shift (for one might have expected twice the AB shift,
given the above two mechanisms for each effect). The solution to the exact Schrödinger equation may be treated
(approximately for the magnetic AB effect, which we show using a variational approach, exactly for the electric
AB effect) as the product of two solutions of separate Schrödinger equations for each of the two quantized
entities, but with an extra phase. The extra phase provides the negative of the AB shift, while the two separate
Schrödinger equations without the extra phase each provide the AB phase shift so that the product wave function
produces the net AB phase shift.
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I. INTRODUCTION

The Aharonov-Bohm (AB) magnetic effect [1–3] predicts
relative phase shifts of two electron wave packets moving
in alternative paths around the outside of a long cylindrical
solenoid. Classically, it appears impossible that there should be
a measurable effect in such circumstances, where the electron
moves in a region of non-field-producing potentials, i.e., in a
region where there is a vector and/or scalar potential, but no
electric or magnetic fields [4]. That such potentials can produce
physical effects is considered by many to be a prime example
of the marvelous novelty quantum theory reveals vis-à-vis
classical theory.

Recently, Vaidman [5] argued, using a semiclassical anal-
ysis of a model of the solenoid, that, under the influence of
the electric-field-producing vector potential of the electron
treated classically, the solenoid produces a relative phase shift
(depending upon the direction of traverse of the electron wave
packet) exactly equal to the standard magnetic AB phase shift.

The importance of the AB effect suggests that Vaidman’s
result should be carefully considered in the context of a fully
quantum mechanical treatment of the solenoid particles. We
do this in this paper and obtain Vaidman’s result.

However, given the radical interconnectedness implied by
quantum mechanics, it is natural to consider the problem where
both the electron and solenoid particles are quantized [6]. Does
one then get twice the AB phase shift, the sum of the usual and
Vaidman results? The answer is no: We consider that problem
here and find that, indeed, one gets the usual AB phase shift.
This occurs through a consistent treatment of the interaction
between the particles of the solenoid and the electron.

We model the solenoid as consisting of N particles. They
and the electron are considered to be described by well-defined
wave packets and the joint wave function is approximated as
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the product of such wave functions. Putting this approximate
wave function into the variational principle for the Schrödinger
equation results in N + 1 Schrödinger equations, where each
particle evolves under the vector potential of the other
particle’s mean positions and momenta, which are the positions
and momenta of the same classical problem.

However, there is an extra phase term in each Schrödinger
equation. By a phase transformation that does not change the
overall phase of the wave function, the extra phase term may be
removed from all Schrödinger equations but one. We choose
to put that extra phase term into the electron’s Schrödinger
equation. That extra phase turns out to be the time integral of
the interaction term in the Hamiltonian, when operators are
replaced by their classical counterparts. We then suppose that
the N + 1 particles are involved in an interference experiment
and show that the extra phase is the negative of the AB phase
shift. The Schrödinger equation for the electron (evolving in
the classical field of the solenoid), without the extra phase term,
gives the usual AB phase shift. Therefore, the Schrödinger
equation for the electron with the extra phase term gives zero
phase shift. The Schrödinger equation for the N solenoid
particles gives the AB phase shift. Thus, the net result for
the product wave function is the AB phase shift.

Although we do not bother to consider it here, the extra
phase might just as well have been eliminated from the
electron’s Schrödinger equation and distributed in any way
among the N solenoid particles. The result then is that the
joint wave function of the solenoid particles, including the
extra phases, produces zero phase shift in the interference
experiment. Then the AB phase shift is attributable solely to
the electron’s wave function, as in the usual description.

In the following paper [7], we point out that consideration
of all relevant quantum objects in this problem requires
quantizing the vector potential as well. A similar analysis of the
joint wave function of electron, solenoid, and vector potential,
approximated as a product wave function and governed by the
separate Schrödinger equations that arise from the variational
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principle, gives the usual AB phase shift. As in this paper,
depending upon which Schrödinger equation(s) get the extra
phase, the AB shift may be attributed solely to the wave
function of the electron, solely to the solenoid, solely to the
vector potential, or to a combination thereof.

Our analysis also shows why the usual phase shift due to
the electron and the phase shift due to the solenoid have to
be the same. To complete the story we spell out the details
of the model of the solenoid, show that the amplitude of the
interference term is essentially 1 for reasonable values of the
model parameters, and do the direct calculation of the AB
phase shift arising from the solenoid.

Next we turn to show that similar considerations apply in the
case of the electric AB effect. Vaidman proposed a simplified
physical setup wherein the electric potential of two classical
charges produces a zero-field environment for the electron and
thereby an electric AB phase shift. Then he argued for an
alternative treatment, where the electron is treated classically
and the charges are quantized, and showed that the electric
field of the electron produces the same electric AB phase shift
for the two charges.

We will consider here, not Vaidman’s simplified model,
but the standard AB electric phase-shift situation of an
electron passing over or under a charged capacitor. The usual
calculation attributes the phase shift to the electron packets
moving in regions of different constant scalar potential created
by a classical capacitor. We will show, as Vaidman did in
his quasiclassical analysis for his model, that this same AB
phase shift is obtained when the electron is treated classically
and the capacitor plates (more precisely, the plate’s center of
mass coordinates) are treated quantum mechanically, thereby
acquiring the AB phase shift in the electric field of the
electron. Again, these are two alternative, mathematically but
not conceptually equivalent, ways to calculate the same thing.
So we consider the situation where both the electron and
the capacitor plates have quantum dynamics. Similarly to the
magnetic AB effect, we show how the joint phase shift may be
attributed solely to the electron’s motion or may be attributed
solely to the capacitor plate motion simply by shifting a term in
the Hamiltonian to either the electron part of the Hamiltonian
or the capacitor plate part of the Hamiltonian or that other
splits may be made.

Thus, for both these classic examples of the AB effects,
there is support for an alternative (espoused by Vaidman)
to the usual views of these effects as due to the electron
moving in a non-field-producing potential. It is that the effects
may, with equal justification be viewed as due to motion of
charged objects due to forces exerted by the electron. However,
considerations other than ours may lead one to prefer one point
of view over the other.

The plan of this paper is as follows. In Sec. II we calculate
the amplitude and phase of a wave packet describing a charged
particle with well-localized position and momentum on a
one-dimensional predetermined path (e.g., moving in a tube
with high potential walls), under arbitrary time-varying (but
not space-varying) externally applied electric-field-producing
vector and scalar potentials, for a time interval T . We show
that the phase can be completely expressed in terms of the
classical motion of the particle (which is the mean motion of
the wave packet).

In Sec. III we generalize the result of the previous section
to calculate the amplitude and phase associated with a
wave packet in the more general case where the external
electromagnetic forces experienced by the particle depend not
only upon arbitrarily upon time, but also arbitrarily upon the
location of the particle as well. The approximate solution we
develop is for the case in which the particle’s mean position
follows the classical path.

In Sec. IV we first consider two quantized particles
interacting via their mutual vector and scalar potentials. As
described above, we approximate the wave function as the
product of localized wave packets for each particle. Using the
variational principle for the exact Schrödinger equation, we
derive Schrödinger equations for each particle. We show that
the Schrödinger equations describe each particle as moving
under the potentials of the other particle treated classically.
This allows us to use the results of Sec. III to calculate the
amplitude and phase of each particle. However, in addition,
each Schrödinger equation contains an extra phase term. By
adding a phase to one particle and subtracting it from the other,
so the overall phase of the wave function is not affected, the
extra phase is removed from one particle and belongs solely
the other.

It is shown that the extra phase is the time integral of the
interaction term in the Hamiltonian, where all operators have
been replaced by the corresponding classical variables; call this
−�. It is shown that the Schrödinger equation for the particle
without the extra phase and the other particle’s Schrödinger
equation with the extra phase also removed each produces
the same phase �. So the total phase is �. Further, in an
interference experiment involving the two particles moving on
two different paths, it is the value of � on one path minus the
value of � on the other path that provides the total phase shift.

We then extend these results to the case of N particles,
each interacting with one special particle we call the electron.
Again, the exact wave function is approximated as a product of
all N + 1 particle wave functions. Schrödinger equations are
obtained for each particle and each equation has an extra phase
term that may be eliminated from the N particles, leaving the
electron wave function with all the extra phase.

The resulting phase situation is as follows. The electron’s
extra phase term is −�, so the electron Schrödinger equation
produces zero phase. Then the net phase is that of the N

particles, which is �. Again, in a considered interference
experiment where there are two different paths for all particles,
the total net phase shift is the difference of this phase � for
the two paths.

Additionally, for this interference experiment, we obtain
an expression for the amplitude of the interference term,
expressed as a function of the N -particle classical positions
and momenta.

In Sec. V we present a fully-quantum-mechanical approach
to Vaidman’s semiclassical considerations. In particular, we
apply the argument given above to a detailed model of
the solenoid as a collection of N well-localized circulating
quantized particles, interacting with the electron. The results
of the preceding section immediately apply. The total net
phase shift, the difference of the net phase of the joint
electron-solenoid wave function for two different paths taken
by the electron, is the AB phase shift.
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Also, it is explained why the Vaidman scenario calculation
must produce the same phase shift as the usual calculation. For
further insight, we give an intuitive time-averaged derivation
of our result.

Furthermore, we consider the magnitude of the interference
term in this AB experiment, which experimentally [8] is 1.
In Vaidman’s semiclassical calculation of the magnetic AB
effect, it is necessary for the electron at the end of its traverse
to decelerate back to zero speed and thus cancel the initial
impulse that started the solenoid cylinders moving. This is
in order that each cylinder’s final motion be unchanged from
its initial (preacceleration) motion and its entanglement with
the electron packets be removed, else there would be no
interference [5]. In our case, there is no need for such a caveat.
We show in our model, despite the two different displacements
of each solenoid particle associated with the two different
electron paths, that the magnitude of the interference term is
close to 1 because the displacements are very small (since
each contributes only a very tiny amount to the phase shift).
This completes our presentation of the AB magnetic effect,
showing how the AB phase shift with interference amplitude 1
is obtained when considering both the quantized electron and
quantized solenoid.

Section VI applies the result of Sec. III to the electric AB
effect. We show that the electric case is exactly parallel to the
magnetic AB case. We consider the exact problem wherein
we have a quantized electron and quantized capacitor plates
(modeled as sheets of glued-together charges, so their centers
of mass are the plate dynamical variables). We explain how
the phase-shift expression can be written either as if it were
due to the electron moving in the non-field-producing potential
external to the capacitor or, alternatively, as if it were due to
the capacitor plates moving in the electric field of the electron,
or in some other equivalent way.

Section VII contains concluding remarks.
We set h̄ = 1. In order to avoid superfluous 4π factors, we

employ cgs units in all but Sec. VI and Appendix D, where we
employ rationalized mks units.

II. PARTICLE MOVING UNDER TIME-DEPENDENT
NON-SPATIALLY-VARYING FORCES

In this and the next section, we consider the general problem
of a particle well localized in position and momentum and
moving in one dimension under scalar and vector potentials
and calculate the magnitude and phase of its wave function.
The problem of a particle moving in one dimension is to
be considered as a limiting case of the three-dimensional
problem of a particle moving in a three-dimensional pipe.
This is relevant here, because we will model the solenoid as a
collection of particles moving in stacked tubes, i.e., the pipe is a
tube of toroidal shape. A bonus is that we can treat the orbiting
electron the same way, taking its motion to be in a circular
tube of its own, concentric with and outside the solenoid.

In cylindrical coordinates, the kinetic energy in the Hamil-
tonian is separable and so a tube may be modeled as providing,
say, a square-well potential in the radial and z directions
and supposing that the particle under consideration is in the
ground state in these directions. Thus, it has free motion in
the azimuthal direction. If the sides of the tube are allowed to

be as small as desired, the separation in energy between the
ground and lowest excited states gets as large as desired, so any
external field has negligible probability of exciting the radial
or z motion and just consists in a distortion of the ground state.
Thus, the only interesting motion is the free one-dimensional
particle motion.

Of course, this one-dimensional motion approximation to
describe a linearly constrained three-dimensional motion has
greater applicability than to just circular motion in cylindrical
coordinates. Immediately, one notes that this argument is just
as readily applied to motion along a constant parameter curve
in any of the 13 coordinate systems in which the Laplacian is
separable. It should also be applicable to motion along a larger
class of curves, along which one can choose local coordinates
so that the Laplacian is effectively separable, at least into the
one-dimensional linear motion and two-dimensional orthogo-
nal motion; we will not pursue here an analysis of the class of
curves for which the one-dimensional motion approximation
to constrained three-dimensional motion has validity.

Obviously, this is just one possible configuration for
the magnetic AB effect. In the only actually rigorously
performed experiment [8], the solenoid was replaced by a
small magnetized torus and, after one packet goes through
the torus hole and the other passes outside, the electron wave
functions were allowed to spread and overlap. While the results
obtained here really only apply to the configuration of our
model, they suggest that there should be counterparts when
other configurations are considered.

In this section we consider that the motion of the particle in
one dimension is under scalar and vector potentials associated
with forces that are solely time dependent (i.e., not space
independent). This is an exactly solvable problem and we find
the expression for the amplitude and phase acquired by the
particle’s wave function in this case. We do this before tackling
in the next section the more general but not exactly solvable
problem where the force depends upon the particle’s position
as well as upon time.

The result from this section, limited to solely time-
dependent (non-spatially-varying) forces, is however applica-
ble in Sec. VI, to the case of the quantized capacitor plates
moving under the electron’s classical Coulomb field. The
plates are assumed to be so massive that they do not displace
significantly during the electron’s traverse, which simplifies
the calculation.

A. Classical motion

First, consider the classical motion of a particle, of charge
q and mass m, under solely time-dependent electric forces
due to a vector and scalar potential. If the vector potential
is A(t), then its associated electric force −q d

cdt
A(t) has just

time dependence. Expand the potential energy qV (x,t) for
a particle that moves on the classical trajectory x = xcl(t)
about the particle’s position: qV (x,t) = qV (xcl(t),t) + [x −
xcl(t)]qV ′(xcl(t),t) + · · · , where x is the distance along the
path. Since the force experienced by the particle is to have no
spatial dependence, we assume no higher power of x − xcl(t)
than the first. Moreover, since all the problems of concern to
us are of first order in q and since xcl(t) = x0 + v0t + o(q)
(x0 is the particle’s initial position, v0 its initial velocity), we
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replace xcl(t) by x0 + v0t . Thus, we write the scalar potential
energy we will consider as qV (t) + (x − x0 − v0t)qV ′(t) ≡
qg(t) + qxV ′(t) [where g(t) ≡ V (t) − (x0 + v0t)V ′(t)], i.e.,
we define V (t) ≡ V (xcl(t),t) and V ′(t) ≡ V ′(xcl(t),t). The
classical Hamiltonian we consider is therefore

H = 1

2m

[
p − q

c
A(t)

]2

+ qxV ′(t) + qg(t), (1)

where x and p are the canonical coordinates. The equations of
motion follow from Hamilton’s Poisson bracket equations

d

dt
x = 1

m

[
p − q

c
A(t)

]
,

d

dt

[
p − q

c
A(t)

]
= −qV ′(t) − q

c

d

dt
A(t) (2)

and solution

vcl(t) = v0 − q

mc
[A(t) − A(0)] − q

m
U (t), (3a)

xcl(t) = x0 + v0t − q

mc
[A − A(0)t] − q

m
[tU (t) − W (t)],

(3b)

pcl(t) = mvcl(t) + q

c
A(t) = p0 − qU (t), (3c)

where A ≡ ∫ t

0 dt ′A(t ′),

∫ t

0
dt ′

∫ t ′

0
dt ′′V ′(t ′′) =

∫ t

0
dt ′[t − t ′]V ′(t ′) = tU (t) − W (t),

(3d)

p0 ≡ mv0 + q

c
A(0),

U (t) ≡
∫ t

0
dt ′V ′(t ′), (3e)

W (t) ≡
∫ t

0
dt ′t ′V ′(t ′).

(The subscript cl is to distinguish these classical variables
from the quantum variables to appear later.) Note that the
electric force only appears in these equations: A magnetic
force does not appear for motion constrained to one dimension
since that force is in the direction perpendicular to the velocity.

B. Wave function

The wave function in the momentum representation satisfies

i
∂

∂t
ψ(p,t)

=
(

1

2m

[
p − q

c
A(t)

]2

+ qg(t) + qV ′(t)i
∂

∂p

)
ψ(p,t) (4)

(we set h̄ = 1). It is initially taken to describe an object of
momentum p0 located at time 0 at x0:

ψ(p,0) = Ne−(p−p0)2σ 2
e−ipx0 . (5)

To solve Eq. (4) with the initial condition (5), we make the
ansatz

ψ(p,t) = Ne−(σ 2+it/2m)p2+β(t)p+iγ (t)−β2
R (t)/4σ 2

, (6)

where β = βR + iβI and γ is real. The last factor in the
exponent of (6) ensures

∫
dp|ψ(p,t)|2 = N2. From (5) and

(6), the initial conditions are γ (0) = 0 and β(0)=2p0σ
2−ix0.

In Appendix A we put (6) into (4) and equate coefficients
of p and 1, with the results

βR = 2σ 2pcl(t), βI = −xcl(t) + pcl(t)t

m
,

γ = −q

∫ t

0
dt ′V (t ′) + v0W (t). (7)

We then go to the position representation by taking the Fourier
transform of (6). The result (A12) is

ψ(x,t) = Ne−{[x−xcl (t)]2/4σ 2}eipcl (t)[x−xcl (t)]eip2
cl (t)t/2m

× e−iq
∫ t

0 dt ′V (t ′)+iv0W (t), (8)

under the assumptions that the mass of the object is large
enough so that there is negligible spreading of the wave packet
over time t and that the packet width σ is much larger than the
wavelength associated with the momentum, σ � h/mv, so
the momentum is well defined. Thus we see that it is a
consequence of quantum theory that the mean particle motion
follows the classical trajectory and that the phase shift is
expressed in terms of the classical variables as well.

III. PARTICLE MOVING UNDER GENERAL FORCES

We now consider the motion of a charged particle in one
dimension under externally applied potentials with arbitrary
space and time dependence. An exact solution of Schrödinger’s
equation cannot be obtained for this more general case. Instead,
we resort to an approximate method (which, as we will see,
gives the same result for the phase as above when the force is
restricted to be solely time dependent). We set the stage for the
approximation in Secs. III A and III B. The approximation,
consisting of expanding the exact Hamiltonian about the
classical trajectory of the particle, is presented in Sec. III C.
For a wave packet whose mean follows the classical trajectory,
this is an exactly soluble problem and the phase of the wave
function is obtained in Sec. III D.

A. Classical motion

The motion is governed by the classical Hamiltonian

H = 1

2m

(
pcl − q

c
A(xcl,t)

)2

+ qV (xcl,t), (9)

where xcl and pcl are the canonical coordinates. The equations
of motion follow from Hamilton’s Poisson bracket equations

d

dt
xcl(t) = 1

m

(
pcl(t) − q

c
A(xcl(t),t)

)
,

d

dt

(
pcl(t) − q

c
A(xcl(t),t)

)
= −qV ′(xcl(t),t) − q

c
Ȧ(xcl(t),t),

(10)
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where the overdot means ∂t , the prime means ∂x , and we
have used dF (xcl,pcl,t)/dt = [F,H ]PB + ∂F (xcl,pcl,t)/∂t .
Defining E(xcl(t),t) ≡ −V ′(xcl(t),t) − 1

c
Ȧ(xcl(t),t), the solu-

tion may formally be written

vcl(t) ≡ 1

m

(
pcl(t) − q

c
A(xcl(t),t)

)

= v0 + q

m

∫ t

0
dt1E(xcl(t1),t1),

xcl(t) = x0 + v0t + q

m

∫ t

0
dt1

∫ t1

0
dt2E(xcl(t2),t2). (11)

B. Quantum phase

For the comparable quantum problem, the Hamiltonian is

H = 1

2m

[
P − q

c
A(X,t)

]2

+ qV (X,t), (12)

where X and P are the conjugate operators. In this case we will
assume that the wave packet follows the classical trajectory,
supposing that it spreads negligibly over the time interval of
interest (i.e., t/2m � σ 2),

ψ(x,t) = e−[x−xcl (t)]2/4σ 2
eiθ(x,t), (13)

and see whether the phase θ (x,t) of the wave function can
be obtained from Schrödinger’s equation in some reasonable
approximation.

As is well known from de Broglie–Bohm theory, putting
(13) into Schrödinger’s equation results in two equations, the
imaginary part yielding conservation of probability, in the form
∂
∂t

ρ(x,t) + ∂
∂x

[ρ(x,t)v(x,t)], the real part yielding the Hamil-
ton Jacobi equation, modified by a quantum potential

0 = ∂

∂t
e−[x−xcl (t)]2/2σ 2

+ ∂

∂x

(
e−[x−xcl (t)]2/2σ 2 1

m

[
θ ′(x,t) − q

c
A(x,t)

])
,

−θ̇ (x,t) = 1

2m

[
θ ′(x,t) − q

c
A(x,t)

]2

+ qV (x,t)

− 1

2m
e[x−xcl (t)]2/4σ 2 ∂2

∂x2
e−[x−xcl (t)]2/4σ 2

. (14)

The conservation equation, the first of (14), becomes

0 = − 1

σ 2
[x − xcl(t)]

(
−vcl(t) + 1

m

[
θ ′(x,t) − q

c
A(x,t)

])

+ ∂

∂x

1

m

[
θ ′(x,t) − q

c
A(x,t)

]
, (15)

with solution

vcl(t) − 1

m

[
θ ′(x,t) − q

c
A(x,t)

]
= Ce[x−xcl (t)]2/2σ 2

. (16)

The expectation value of the momentum
∫

dx|ψ(x,t)|2θ ′(x,t)
will diverge unless C = 0 (since the integrand goes ∼C

for large x), so the conservation of probability provides the
condition

θ ′(x,t) = mvcl(t) + q

c
A(x,t). (17)

The quantum potential part of the second equation of (14) is

− 1

2m
e[x−xcl (t)]2/4σ 2 ∂2

∂x2
e−[x−xcl (t)]2/4σ 2

= − 1

8mσ 4
{[x − xcl(t)]

2 − 2σ 2}. (18)

Because the magnitude of the wave function keeps [x −
xcl(t)]2 of the order of σ 2, (18) is of magnitude 1/mσ 2.
This may be neglected compared to the kinetic energy term
in Eq. (14), mv2

cl/2, since we assume that there are many
wavelengths within σ , so the momentum of the packet is well
defined.

Thus, we have the classical Hamilton-Jacobi equation

− θ̇ (x,t) = 1

2m

[
θ ′(x,t) − q

c
A(x,t)

]2

+ qV (x,t). (19)

In order that these two equations (17) and (19) be integrable,
it must be that ∂t∂xθ (x,t) = ∂x∂t θ (x,t). From (17) we obtain

∂t∂xθ (x,t) = ∂t

[
mvcl(t) + q

c
A(x,t)

]
= d

dt
mvcl(t) + q

c
Ȧ(x,t)

= −qV ′(xcl(t),t) − q

c
[Ȧ(xcl(t),t) − Ȧ(x,t)],

(20)

where, in going from the first line to the second line in Eq. (20),
we have used the second of Eqs. (10). From (19), with use of
(17), we obtain

∂x∂t θ (x,t) = −∂x

m

2
v2

cl(t) − qV ′(x,t) = −qV ′(x,t). (21)

We see that the right-hand sides of (20) and (21) are not,
in general, identical, so these equations are not, in general,
integrable. The reason is that we have assumed the wave packet
to have a very specific trajectory, its center at x = xcl(t), with
specific initial conditions x0 and v0, whereas the Hamiltonian
dynamics is general, not specific to this trajectory.

While not integrable for this general case of the electric
force depending upon position and time, they are integrable in
the special case earlier dealt with, where the electric field only
depends upon time. That is, if V ′(x,t) = V ′(t) and A(x,t) =
A(t), the right-hand sides of (20) and (21) are identical.

C. Classical motion: Approximate Hamiltonian

Our procedure will be to construct an approximate Hamil-
tonian for which the problem is exactly soluble (i.e., for
which the phase angle is integrable). The Hamiltonian will
be designed so that the particular classical trajectory xcl(t),
with specified initial values of x0 and v0, which satisfies the
exact Hamiltonian’s equation of motion, now also satisfies
the approximate Hamiltonian’s equation of motion and that
neighboring classical trajectories stay close (to be made precise
at the end of this section) to xcl(t). The Hamiltonian we
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propose is

H ′ = 1

2m

[
Pcl − q

c
A(xcl(t),t)

]2

+ qV (xcl(t),t) + [Xcl − xcl(t)]qV ′(xcl(t),t) − q

c
vcl(t)[Xcl − xcl(t)]A

′(xcl(t),t), (22)

where now Xcl and Pcl are the canonical coordinates. Thus, one particular xcl(t) plays three roles: It is a solution of the exact
Hamiltonian dynamics, it is a crucial element in the approximate Hamiltonian (22), and, as we will see, it is a solution of the
approximate Hamiltonian dynamics.

The Poisson bracket equations of motion corresponding to the Hamiltonian (22) are then

d

dt
Xcl(t) = 1

m

[
Pcl(t) − q

c
A(xcl(t),t)

]
,

d

dt

[
Pcl(t) − q

c
A(xcl(t),t)

]
= −qV ′(xcl(t),t) + q

c
vcl(t)A

′(xcl(t),t) − d

dt

q

c
A(xcl(t),t). (23)

Upon combining these two equations, we obtain

d2

dt2
Xcl(t) = −qV ′(xcl(t),t) − q

c
Ȧ(xcl(t),t). (24)

Here Xcl(t) is the general solution with arbitrary initial conditions Xcl(0) and Vcl(0). We see from (10) that Xcl(t) = xcl(t) is a
solution of (24) [the solution with initial conditions Xcl(0) = xcl(0) and Vcl(0) = vcl(0)]. Moreover, d2[Xcl(t) − xcl(t)]/dt2 = 0,
so for an arbitrary solution Xcl(t),

Xcl(t) − xcl(t) = [Xcl(0) + Vcl(0)t] − [xcl(0) + vcl(0)t] + ot3.

Thus, two trajectories with the same initial speed and different initial positions only diverge to order t3 under this Hamiltonian.
This property, of neighboring classical trajectories staying close, might be expected of a soluble Hamiltonian because a quantum
wave packet that holds together as time increases might be expected to have its classical counterparts hold together, for at least
small times.

D. Quantum phase: Approximate Hamiltonian

For the comparable quantum problem, the Hamiltonian as usual is obtained by replacing in Eq. (22) the position and momentum
variables Xcl and Pcl with operators X and P :

H ′ = 1

2m

[
P − q

c
A(xcl(t),t)

]2

+ qV (xcl(t),t) + [X − xcl(t)]qV ′(xcl(t),t) − q

c
vcl(t)[X − xcl(t)]A

′(xcl(t),t). (25)

Assuming again the wave function form (13),

ψ(x,t) = e−[x−xcl (t)]2/4σ 2
eiθ(x,t),

we obtain the two equations (with neglect of the quantum potential as before)

θ ′(x,t) = mvcl(t) + q

c
A(xcl(t),t),

−θ̇ (x,t) = m

2
v2

cl(t) + qV (xcl(t),t) + q[x − xcl(t)]V
′(xcl(t),t) − q

c
vcl(t)[x − xcl(t)]A

′(xcl(t),t). (26)

From the first of Eqs. (26), using the second of Eqs. (10) again, we have

∂t∂xθ (x,t) = ∂t

[
mvcl(t) + q

c
A(xcl(t),t)

]

= −qV ′(xcl(t),t) − q

c
Ȧ(xcl(t),t) + q

c
[Ȧ(xcl(t),t) + vcl(t)A

′(xcl(t),t)]

= −qV ′(xcl(t),t) + q

c
vcl(t)A

′(xcl(t),t). (27)

We see from the second of (26) that this is equal to ∂x∂t θ (x,t), so θ (x,t) can be found.
By integrating the first of (26), we find that θ (x,t) has the form

θ (x,t) = x

[
mvcl(t) + q

c
A(xcl(t),t)

]
+ α(t), (28)
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where α(t) is an arbitrary function of t . Taking the time derivative of this and comparing it with the second of (22), we find

α̇(t) = −m

2
v2

cl(t) + xcl(t)

[
qV ′(xcl(t),t) − q

c
vcl(t)A

′(xcl(t),t)
]

− qV (xcl(t),t),

= − 1

2m

[
pcl(t) − q

c
A(xcl(t),t)

]2

− xcl(t)
d

dt
pcl(t) − qV (xcl(t),t),

= − 1

2m
p2

cl(t) + q

mc
pcl(t)A(xcl(t),t) −

[
d

dt
[xcl(t)pcl(t)] − vcl(t)pcl(t)

]
− qV (xcl(t),t),

= − 1

2m
p2

cl(t) + q

mc
pcl(t)A(xcl(t),t) − d

dt
[xcl(t)pcl(t)] + 1

m

[
pcl(t) − q

c
A(xcl(t),t)

]
pcl(t) − qV (xcl(t),t),

= 1

2m
p2

cl(t) − d

dt
[xcl(t)pcl(t)] − qV (xcl(t),t). (29)

Putting the integral of (29) into (28), we obtain the expression for the phase [up to an additive constant, in which xcl(0)pcl(0) has
been absorbed]:

θ (x,t) = pcl(t)[x − xcl(t)] +
∫ t

0
dt ′

1

2m
p2

cl(t
′) − q

∫ t

0
dt ′V (xcl(t

′),t ′). (30)

[As a check, it is shown in Appendix B that when the electric force only depends upon time, this expression for the phase is equal
to the phase in Eq. (8).]

IV. INTERFERENCE: EXTRA PHASE IN TWO-PARTICLE
AND (N+1)-PARTICLE CASES

We wish to consider an interference situation governed by
a Hamiltonian describing many particles interacting with a
single particle. The situation is such that each particle’s wave
function is expected to be well approximated as a spatially
localized packet with well-defined momentum and the total
wave function is expected to be well approximated as the
product of these wave packets or the linear combination of such
products. We turn now to show how to analyze this situation in
a consistent fashion. Our result (13) for the amplitude and (30)
for the phase associated with the motion of a single particle in
known space-time-dependent potentials will be utilized in this
endeavor.

In the next section we will consider the simplest problem,
an interference situation involving just two particles, which
however displays all the features of the more complicated
problem.

A. Two-particle interaction: Wave function

The Schrödinger equation for two particles moving under
their mutual vector and scalar potentials has the form

i
d

dt
|�,t〉 =

[
p2

1

2m1
+ p2

2

2m2
+ V (r12)

− q1q2

m1m2c2
S[p1 · D↔(r12) · p2]

]
|�,t〉. (31)

Here r12 ≡ |x1 − x2|, D↔(r12) is a dyad, and S[ ] is an
operation that makes the argument suitably Hermitian. In the
Lorenz gauge1 and the Coulomb gauge, V (r12) = q1q2/r12,

1Since the vector potential term is of order c−1, one might add the
term in the scalar potential to that order. However, since the Lorenz

while the dyads for these two gauges (the Darwin Hamiltonian
[9] in the case of the Coulomb gauge) are, respectively,

D↔(r12) = 1↔

r12
, D↔(r12) = 1

2

[
1↔

r12
+ r12r12

r3
12

]
,

so the vector potential, e.g., due to particle 2, is

A2 = q2

m2c
S

[
p2

r12

]
, A2 = q2

2m2c
S

[
p2

r12
+ r12r12 · p2

r3
12

]
,

(32)

the difference arising from the source of the vector potential
being respectively the current and the transverse component
of the current.

A general solution of (31) will be an entangled state
for the two particles. However, for the physical situations
we contemplate, we suppose the state vector is well ap-
proximated as a direct product of state vectors for each
particle. The associated wave functions are to be those we
have been considering, well-localized wave packets moving
under the vector and scalar potentials due to the other
particle, where the other particle’s operators are replaced by
their classical counterparts. How do we make a consistent
approximation?

Consider the variational principle for the Schrödinger
equation

δ

∫ T

0
dt〈�,t |

[
i

d

dt
− H

]
|�,t〉 = 0.

Inserting the approximate solution |�,t〉 = |ψ1,t〉|ψ2,t〉 and
varying separately for each particle state vector, we obtain for

gauge condition ∇ · A + c−1V̇ = 0 just uses the zeroth-order term in
the scalar potential, the extra term is not needed for that, nor does it
affect anything in our calculation, so it may be omitted.
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particle 1 (and similarly for particle 2)

i
d

dt
|ψ1,t〉 +

(
〈ψ2,t |

[
i

d

dt
− p2

2

2m2

]
|ψ2,t〉

)
|ψ1,t〉

=
[

p2
1

2m1
+ 〈ψ2,t |V (r12)|ψ2,t〉 − q1q2

m1m2c2
S[p1 · 〈ψ2,t |D↔(r12) · p2|ψ2,t〉]

]
|ψ1,t〉

≈
[

p2
1

2m1
+ V (|x1 − x2cl(t)|) − q1q2

m1m2c2
S[p1 · D↔(x1 − x2cl(t)) · p2cl(t)]

]
|ψ1,t〉, (33)

where the approximation in the last step uses the localized nature of packet 2 to replace the operators x2 and p2 by their mean
values x2cl(t) and p2cl(t).

Equation (33) is just the equation we have solved for the magnitude and phase of a localized packet moving in an external
vector and scalar potential except that there is an extra phase term on the left-hand side, which we define

φ̇j (t) ≡ 〈ψj ,t |
[
i

d

dt
− p2

j

2mj

]
|ψj ,t〉, j = 1,2. (34)

(That this is a real number may be seen by taking its complex conjugate and utilizing d〈ψj ,t |ψj ,t〉/dt = 0.)
Now the equations for |ψ1,t〉,|ψ2,t〉 are form invariant under the replacements |ψ1,t〉 = |ψ1,t〉′eiβ(t) and |ψ2,t〉 = |ψ2,t〉′e−iβ(t):

This is to be expected, since the product wave function is unchanged by this phase transformation. This gives the freedom to
choose β(t) to remove the extra phase term from, say, the equation for |ψ1,t〉. Given a solution for |ψ1,t〉 and |ψ2,t〉, choose
β(t) = φ2(t), so the transformed equations become

i
d

dt
|ψ1,t〉′ =

[
p2

1

2m1
+ V (|x1 − x2cl(t)|) − q1q2

m1m2c2
S[p1 · D↔(x1 − x2cl(t)) · p2cl(t)]

]
|ψ1,t〉′, (35a)

i
d

dt
|ψ2,t〉′ +

(
′〈ψ1,t |

[
i

d

dt
− p2

1

2m1

]
|ψ1,t〉′

)
|ψ2,t〉′

=
[

p2
2

2m2
+ V (|x2 − x1cl(t)|) − q1q2

m1m2c2
S[p2 · D↔(x2 − x1cl(t)) · p1cl(t)]

]
|ψ2,t〉′. (35b)

By subtracting p2
1

2m1
|ψ1,t〉′ from (35a) and taking the scalar product with ′〈ψ1,t |, we see that the extra phase in Eq. (35b) is

given by

φ̇′
1(t) ≡ ′〈ψ1,t |

[
i

d

dt
− p2

1

2m1

]
|ψ1,t〉′ = V (|x1cl(t) − x2cl(t)|) − q1q2

m1m2c2
p1cl(t) · D↔(x1cl(t) − x2cl(t)) · p2cl(t). (36)

That is, this phase is the time integral of the interaction energy term of the Hamiltonian, where all operators are replaced by their

classical values. We also note from (35b), by subtracting p2
2

2m2
and taking the scalar product with ′〈ψ2,t |, that

′〈ψ2,t |
[
i

d

dt
− p2

2

2m2

]
|ψ2,t〉′ +′ 〈ψ1,t |

[
i

d

dt
− p2

1

2m1

]
|ψ1,t〉′ = φ̇′

1(t), (37)

that is,

′〈ψ2,t |
[
i

d

dt
− p2

2

2m2

]
|ψ2,t〉′ = 0.

If we write |ψ2,t〉′ ≡ eiφ′
1(t)|ψ2,t〉′′, then |ψ2,t〉′′ satisfies (35b) without the extra phase term. Then it and the solution of (35a)

are both the solutions we have found for a localized packet moving in external potentials, where those potentials now are internal
potentials so to speak, potentials due to the other particle with operator values replaced by classical ones. So the wave function
that solves (31) approximately is the product of these two solutions, multiplied by the extra phase factor eiφ′

1(t).

B. Two-particle interaction: Interference

We will now show, in an interference experiment involving the two particles interacting, that each particle makes the same
contribution to the phase shift, each the negative of the contribution of (36), so the net phase shift is the negative of the time
integral of (36). Thus we see the germ here of what will be fleshed out later, that the motion of the electron (think particle 1)
in the vector potential of the solenoid and the motion of the solenoid (think particle 2) in the vector potential of the electron
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each make identical contributions to the phase shift. That would give twice the expected phase shift, except that the proper
approximation generates an additional phase shift that is the negative of these and so one ends up with the expected phase shift,
the shift due to either mechanism.

Consider an interference experiment where, at time zero, packets of the two particles split in two, with equal amplitude both
particles going on trajectories labeled A or on trajectories labeled B. The wave function at some time t < T may be written as

�(x1,x2,t) = 1√
2

[
ψ ′A

1 (x1,t)ψ
′′A
2 (x2,t)e

iφ′A
1 (t) + ψ ′B

1 (x1,t)ψ
′′B
2 (x2,t)e

iφ′B
1 (t)

]
. (38)

Here ψ ′
1(x1,t) = 〈x1|ψ1,t〉′ and ψ ′′

2 (x1,t) = 〈x2|ψ2,t〉′′ satisfy their respective Schrödinger equations, motion under potentials
where the position and momentum operators of the other particle have been replaced by their time-dependent classical values,
with no extra phase terms; φ

′A,B
1 (t) is the extra phase factor for trajectory A or B.

The packets finally come together at time T . We suppose that particle 2’s packets precisely overlap then and thereafter. We
suppose that particle 1’s packets meet at (the particle analog of) a half-silvered mirror, coming from opposite directions. If particle
1 had been on path A, it splits into two packets that go to the right or left with equal amplitude 1/

√
2. If particle 1 had been

on path B, one packet goes to the right with amplitude 1/
√

2 and the other to the left with amplitude −1/
√

2. The probability
of particle 1 being detected either at the left or the right is what is measured. The wave function at time T (trivially extended
thereafter) is therefore �(x1,x2,T ) = 1√

2
[�+(x1,x2,T ) + �−(x1,x2,T )], with

�±(x1,x2,T ) = 1√
2

[
ψ ′A

1 (x1,T )ψ ′′A
2 (x2,T )eiφ′A

1 (T ) ± ψ ′B
1 (x1,T )ψ ′′B

2 (x2,T )eiφ′B
1 (T )

]
, (39)

with the subscript + referring to what is measured to the right and − referring to what is measured to the left and the superscripts
A and B denoting the path. The individual particle wave functions in Eq. (39) are of the form (13), with phase (30), e.g.,

ψ ′A
1 (x1,T ) = Ne−[x1−xA

1,cl (T )]2/4σ 2
exp

[
i

(
pA

1,cl(T )
[
x1 − xA

1,cl(T )
] +

∫ T

0
dt

1

2m

[
pA

1,cl(t)
]2 − q1

∫ T

0
dt V1

(
xA

1,cl(t),t
))]

. (40)

The probabilities of the two outcomes are

P± ≡
∫

dx1dx2|�±(x1,x2,T )|2 = 1

4

[
2 ± ei[φ′A

1 (T )−φ′B
1 (T )]

∫
dx1ψ

′A
1 (x1,T )ψ∗′B

1 (x1,t)
∫

dx2ψ
′′A
2 (x2,T )ψ∗′′B

2 (x2,t) + c.c.

]
.

(41)

Using the expressions (40), the integrals in Eq. (41) are readily performed and give 1, since the packets completely overlap at
time T so xA

cl (T ) = xB
cl (T ) and pA

cl(T ) = pB
cl(T ). We are left then with the phase factors. From (40), the factor associated with

interference of each particle is (leaving off the primes)

ei(�A
i −�B

i ) ≡
∫ ∞

−∞
dxiψ

A
i (xi,T )ψ∗B

i (xi,T )

= exp

(
i

∫ T

0
dt

1

2mi

[
pA

i,cl(t)
]2 − i

∫ T

0
dt

1

2mi

[
pB

i,cl(t)
]2

)
exp

[
−iqi

( ∫ T

0
dt

(
V (xA

i,cl(t),t
) − V

(
xB

i,cl(t),t
))]

. (42)

Then the probabilities are

P± = 1
2

{
1 ± cos

[(
�A

1 + �A
2 + φ

′A
1

) − (
�B

1 + �B
2 + φ

′B
1

)]}
. (43)

In order to evaluate the phase in Eq. (42), we utilize Eq. (11). We find, for trajectory A or B,

pi,cl(t) = mivi,0 + qi

c
A(xi,cl(t),t) + qi

∫ t

0
dtE(xi,cl(t),t), (44a)

xi,cl(t) = xi,0 + vi,0t + qi

mi

∫ t

0
dt ′

∫ t ′

0
dt ′′E(xi,cl(t

′′),t ′′). (44b)

Since xA
i,cl(T ) = xB

i,cl(T ), it follows from (44b) that

∫ T

0
dt

∫ t

0
dt ′

[
E
(
xA

i,cl(t
′),t ′

) − E
(
xB

i,cl(t
′),t ′

)] = 0. (45)

052123-9



PHILIP PEARLE AND ANTHONY RIZZI PHYSICAL REVIEW A 95, 052123 (2017)

We may write the momentum-dependent phase for each particle that appears in Eq. (42), using (44a) and (45), as∫ T

0
dt

1

2mi

[
pA

i,cl(t)
]2 −

∫ T

0
dt

1

2mi

[
pB

i,cl(t)
]2

=
∫ T

0
dt

1

2mi

[
pA

i,cl(t) + pB
i,cl(t)

][
pA

i,cl(t) − pB
i,cl(t)

]

≈
∫ T

0
dtvi(0)

(
qi

c

[
A

(
xA

i,cl(t),t
) − A

(
xB

i,cl(t),t
)] + qi

∫ t

0
dt ′

[
E
(
xA

i,cl(t
′),t ′

) − E
(
xB

i,cl(t
′),t ′

)])

=
∫ T

0
dtvi(0)

qi

c

[
A

(
xA

i,cl(t),t
) − A

(
xB

i,cl(t),t
)] ≈

∫ T

0
dt

(
vA

i,cl(t)
qi

c
A

(
xA

i,cl(t),t
) − vB

i,cl(t)
qi

c
A

(
xB

i,cl(t),t
))

=
∫ T

0
dt

(
vA

i,cl(t) · qi

c
A

(
xA

i,cl(t),t
) − vB

i,cl(t) · qi

c
A

(
xB

i,cl(t),t
))

. (46)

In the approximations made in the second and third lines of (46), we have used vi(0) = vi,cl(t) + 0(q) from (11) and dropped
terms in the square of the charges, as has been done throughout this paper. In the last line, we have reintroduced vector notation,
since the vector potential in our equations has always been the component parallel to the velocity of the particle.

Thus, from (42) and (46) we have

�A
i − �B

i =
∫ T

0
dt

(
vA

i,cl(t) · qi

c
A

(
xA

i,cl(t),t
) − qiV

(
xA

i,cl(t),t
)) −

∫ T

0
dt

(
vB

i,cl(t) · qi

c
A

(
xB

i,cl(t),t
) − qiV

(
xB

i,cl(t),t
))

. (47)

That is, �A
i and �B

i are each the time integral of the negative of the Hamiltonian interaction energy with operators replaced by
classical variables for that trajectory (A or B). Due to the symmetry of the interaction under exchange of particles 1 and 2, these
are the same, independent of i. Since this is the negative of the extra phase φ′A

i (T ) and φ′B
i (T ), we have for the probabilities (43)

P± = 1
2 [1 ± cos(�A − �B)], (48a)

where

�A,B =
∫ T

0
dt

(
vi,cl(t)

A,B · qi

c
A

(
x

A,B
i,cl (t),t

) − qiV
(
x

A,B
i,cl (t),t

)) = −
∫ T

0
dt Hint

(
x

A,B
1cl (t),xA,B

2,cl (t),pA,B
1,cl (t),pA,B

2,cl (t)
)
. (48b)

Thus, we have confirmed the assertion made in the beginning of this section, that the phase shift is the difference for each path
of the time integral of the negative of the interaction Hamiltonian with operators replaced by time-dependent classical variables.

C. N particles interacting with a single particle: Wave function

We will extend the result of the preceding section since we eventually wish to consider an N -particle solenoid interacting with
an electron. We will repeat as closely as possible the steps taken in the discussion of the interaction of two particles.

The Schrödinger equation for N identical particles of mass m, charge q, interacting with a single particle of mass me, charge
e, under mutual vector and scalar potentials has the form

i
d

dt
|�,t〉 =

[
p2

e

2me

+
N∑

n=1

p2
n

2m
+

N∑
n=1

V (ren) −
N∑

n=1

eq

memc2
S[pe · D↔(ren) · pn]

]
|�,t〉. (49)

(We will call the single particle the electron.) Upon considering the variational principle for the Schrödinger equation with the
approximate solution |�,t〉 = |ψe,t〉

∏N
n=1 |ψn,t〉 and varying separately for each particle state vector, we obtain

i
d

dt
|ψe,t〉 +

(
N∑

n=1

〈ψn,t |
[
i

d

dt
− p2

n

2m

]
|ψn,t〉

)
|ψe,t〉

=
(

p2
e

2me

+
N∑

n=1

〈ψn,t |V (ren)|ψn,t〉 − eq

memc2
S

[
pe ·

N∑
n=1

〈ψn,t |S[D↔(ren) · pn]

]
|ψn,t〉

)
|ψe,t〉

≈
(

p2
e

2me

+
N∑

n=1

V (|xe − xncl(t)|) − eq

memc2
S

[
pe ·

N∑
n=1

D↔(xe − xncl(t)) · pncl(t)

])
|ψe,t〉, (50a)
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i
d

dt
|ψn,t〉 +

⎛
⎝ N∑

n′=1,n′ �=n

〈ψn′ ,t |
[
i

d

dt
− p2

n′

2m

]
|ψn′ ,t〉 + 〈ψe,t |

[
i

d

dt
− p2

e

2me

]
|ψe,t〉

−
N∑

n′=1,n′ �=n

V (|xecl(t) − xn′cl(t)|) + eq

memc2
pecl(t) ·

N∑
n′=1,n′ �=n

D↔(xecl(t) − xn′cl(t)) · pn′cl(t)

⎞
⎠|ψn,t〉

=
[

p2
n

2m
+ 〈ψe,t |V (ren)|ψe,t〉 − eq

memc2
S[pn · 〈ψe,t |S[D↔(ren) · pe]|ψe,t〉]

]
|ψn,t〉

≈
[

p2
n

2m
+ V (|xn − xecl(t)|) − eq

memc2
S[pn · [D↔(xn − xecl(t)) · pecl(t)]]

]
|ψn,t〉. (50b)

(Note the new terms in the scalar and vector potentials on the second line of (50b) that do not appear in the two particle case.)
We can remove the extra phase terms from the N particles by the phase transformation |ψn,t〉 = |ψn,t〉′eiαn(t) and |ψe,t〉 =

|ψe,t〉′ exp[−i
∑N

n=1 αn(t)]. Equations (50a) and (50b) then become

i
d

dt
|ψe,t〉′ +

(
N∑

n=1

′〈ψn,t |
[
i

d

dt
− p2

n

2m

]
|ψn,t〉′

)
|ψe,t〉′

≈
(

p2
e

2me

+
N∑

n=1

V (|xe − xncl(t)|) − eq

memc2
S

[
pe ·

N∑
n=1

D↔(xe − xncl(t)) · pncl(t)

])
|ψe,t〉′, (51a)

i
d

dt
|ψn,t〉′ ≈

[
p2

n

2mn

+ V (|xn − xecl(t)|) − eq

memc2
S[pn · [D↔(xn − xecl(t)) · pecl(t)]]

]
|ψn,t〉′. (51b)

By subtracting p2
n

2m
|ψn,t〉′ from (51b) and taking the scalar product with ′〈ψn,t |, we see that the extra phase in Eq. (51a) is

given by

φ̇′
e(t) ≡

N∑
n=1

′〈ψn,t |
[
i

d

dt
− p2

n

2m

]
|ψn,t〉′ =

N∑
n=1

V (|xncl(t) − xecl(t)|) − eq

memc2
pecl(t) ·

N∑
n=1

D↔(xecl − xncl(t)) · pncl(t). (52)

Again, we find that the phase φ′
e(t) is the time integral of the interaction energy term of the Hamiltonian, where all operators are

replaced by their classical values.
If we write |ψe,t〉′ ≡ eiφ′

e(t)|ψj ,t〉′′, then |ψj ,t〉′′ satisfies (51a) without the extra phase term. So the wave function that solves
(49) approximately is the product of N + 1 wave functions of the type we have considered, for the N particles and the electron,
multiplied by the extra phase factor eiφ′

e(t).

D. N particles interacting with a single particle: Interference

We will now consider a situation where the electron goes on either path A or path B and so the N interacting particles likewise
move on trajectories A or B determined by their interaction with the electron. The electron packets that traveled by route A and
B are brought, at time T , to exactly overlap at a half-silvered mirror. The electron is measured as either going right or left, just
as was the case for particle 1 in the two-particle example; however, for each of the N particles, the wave packet on trajectory A

does not precisely overlap with the wave packet on trajectory B at time T (the overlap is presumed the same thereafter). So we
will have to consider the effect of this on the measured interference.

The wave function at time t < T may be written as

�(xe,x1, . . . ,xN ,t) = 1√
2

(
eiφ′A

e (t)ψ ′′A
e (xe,t)

N∏
n=1

ψ ′A
n (xn,t) + eiφ′B

e (t)ψ ′′B
e (xe,t)

N∏
n=1

ψ ′B
n (xn,t)

)
, (53)

where ψ ′′
e (xe,t) = 〈xe|ψe,t〉′′ and ψ ′

n(xn,t) = 〈xn|ψn,t〉′ satisfy their respective Schrödinger equations; motion under potentials
where the position and momentum operators of the other interacting particle have been replaced by their time-dependent classical
values. The wave function at time T , just after the electron has passed through the half-silvered mirror, is �(xe,x1, . . . ,xN ,T ) =

1√
2
[�+(xe,x1, . . . ,xN ,T ) + �−(xe,x1, . . . ,xN ,T )], with

�±(xe,x1, . . . ,xN ,T ) = 1√
2

(
eiφ′A

e (t)ψ ′′A
e (xe,T )

N∏
n=1

ψ ′A
n (xn,T ) ± eiφ′B

e (t)ψ ′′B
e (xe,T )

N∏
n=1

ψ ′B
n (xn,T )

)
. (54)

The individual particle wave functions in Eq. (54) are of the form (40).
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The probabilities of the two outcomes are

P± ≡
∫

dxedx1|�±(x1,x2,T )±|2

= 1

4

[
2 ± ei[φ′A

e (T )−φ′B
e (T )]

∫
dxeψ

′′A
e (xe,T )ψ∗′′B

e (xT ,T )
N∏

n=1

∫
dxnψ

′A
n (x2,T )ψ∗′B

n (x2,T ) + c.c.

]
. (55)

We now must perform the integrals in Eq. (55) using the expressions (40). The integral over xe is readily performed, since the
electron wave functions completely overlap at time T . The integrals over xn are more complicated, since the wave functions do
not overlap.

The factor associated with interference of each particle in Eq. (55) (leaving off the subscript and the primes) is∫ ∞

−∞
dx ψA(x,T )ψB∗(x,T ) ∼

∫ ∞

−∞
dx e−{[x−xA

cl (T )]2/4σ 2}e−{[x−xB
cl (T )]2/4σ 2}eipA

cl (T )[x−xA
cl (T )]e−ipB

cl (T )[x−xB
cl (T )]

× exp

(
i

∫ T

0
dt

1

2m

[
pA

cl(t)
]2 − i

∫ T

0
dt

1

2m

[
pB

cl(t)
]2

)

× exp

[
−iq

( ∫ T

0
dt

[
V

(
xA

cl (t),t
) − V

(
xB

cl (t),t
)])]

. (56)

We may now use∫ ∞

−∞
dx e−[(x−a)2/4σ 2]e−[(x−b)2/4σ 2]eip1(x−a)e−ip2(x−b) =

∫ ∞

−∞
dx e−(x2/2σ 2)ex(a+b)/2σ 2

e−(a2/4σ 2)e−(b2/4σ 2)ei(p1−p2)xe−ip1aeip2b

∼ e(σ 2/2)[(a+b)/2σ 2+i(p1−p2)]2
e−(a2/4σ 2)e−(b2/4σ 2)e−ip1aeip2b

= e−[(a−b)2/8σ 2]e−[σ 2(p1−p2)2/2]ei[(p1+p2)(b−a)/2]. (57)

The factor in Eq. (56) is then

〈ψB,T |ψA,T 〉 ≡ |〈ψB,T |ψA,T 〉|ei�

= exp

(
−

[
xA

cl (T ) − xB
cl (T )

]2

8σ 2

)
exp

(
−σ 2

[
pA

cl(T ) − pB
cl(T )

]2

2

)
exp

(
i
1

2

[
pA

cl(T ) + pB
cl(T )

][
xB

cl (T ) − xA
cl (T )

]

+ i
1

2m

∫ T

0
dt

{[
pA

cl(t)
]2 − [

pB
cl(t)

]2} − iq

∫ T

0
dt

[
V

(
xA

cl (t),t
) − V

(
xB

cl (t),t
)])

. (58)

For the electron, since xA
cl (T ) = xB

cl (T ) and pA
cl(T ) = pB

cl(T ), the magnitude in Eq. (58) is 1. The phase analysis is precisely the
same as for either particle in the case of two particles, resulting in the phase difference we will call �A

e − �B
e . Here �A,B

e is the
negative time integral of the interaction Hamiltonian with all particle operators replaced by time-dependent classical variables for
that trajectory (A or B). This cancels the extra phase factor φ′A

e (T ) − φ′B
e (T ). Therefore, the net phase is that of the N particles.

The phase shift contributed by each particle, according to (58), is

�n = 1

2

[
pA

ncl(T ) + pB
ncl(T )

][
xB

ncl(T ) − xA
ncl(T )

] + 1

2m

∫ T

0
dt

{[
pA

ncl(t)
]2 − [

pB
ncl(t)

]2} − q

∫ T

0
dt

[
V

(
xA

ncl(t),t
) − V

(
xB

ncl(t),t
)]

.

(59)

For the electron, the first term vanishes, but here it does not. The analysis is the same as previously, using the expressions (11)
for the classical position and momentum in terms of the potentials, recalling that terms proportional to the square of the charges
are disregarded:

1

2

[
pA

cl(T ) + pB
cl(T )

][
xB

cl (T ) − xA
cl (T )

] ≈ 1

2
[2mv0]

q

m

∫ T

0
dt

∫ t

0
dt ′

[
E
(
xB

cl (t
′),t ′

) − E
(
xA

cl (t
′),t ′

)]
,

1

2m

∫ T

0
dt

{[
pA

cl(t)]
2 − [

pB
cl(t)

]2} = 1

2m

∫ T

0
dt

[
pA

cl(t) + pB
cl(t)

][
pA

cl(t) − pB
cl(t)

]
(60a)

≈ 1

2m

∫ T

0
dt[2mv0]

(
q

c

[
A

(
xA

cl (t),t
) − A

(
xB

cl (t),t
)]

+ q

∫ t

0
dt ′

[
E
(
xA

cl (t
′),t ′

) − E
(
xB

cl (t
′),t ′

)])
. (60b)
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Adding (60a) and (60b), the double integral of the electric field vanishes, and putting the sum into (59) gives the phase
contribution of the nth particle,

�n =
∫ T

0
dt

qvn0

c

[
A

(
xA

ncl(t),t
) − A

(
xB

ncl(t),t
)] − q

∫ T

0
dt

[
V

(
xA

ncl(t),t
) − V

(
xB

ncl(t),t
)]

≈
∫ T

0
dt

qvncl(t)

c

[
A

(
xA

ncl(t),t
) − A

(
xB

ncl(t),t
)] − q

∫ T

0
dt

[
V

(
xA

ncl(t),t
) − V

(
xB

ncl(t),t
)]

=
∫ T

0
dt

qvncl(t)

c
· [

A
(
xA

ncl(t),t
) − A

(
xB

ncl(t),t
)] − q

∫ T

0
dt

[
V

(
xA

ncl(t),t
) − V

(
xB

ncl(t),t
)]

. (61)

Therefore, the phase contributed by all N particles is

�N ≡ �A
N − �B

N =
N∑

n=1

�n

=
∫ T

0
dt

N∑
n=1

[
qvncl(t)

c
· A

(
xA

ncl(t),t
) − qV

(
xA

ncl(t),t
)] −

∫ T

0
dt

N∑
n=1

[
qvncl(t)

c
· A

(
xB

ncl(t),t
) − qV

(
xB

ncl(t),t
)]

. (62)

Thus, we see that the phase �
A,B
N = �A,B

e ≡ �A,B is the negative of the interaction Hamiltonian with operators replaced by
their classical counterparts for the associated trajectory. Again we see the crucial effect of the extra phase: Since �A − �B =
−[φ′A

e (T ) − φ′B
e (T )], we have for the probabilities (55), using (58),

P± = 1

2

[
1 ±

N∏
n=1

e−{[xA
ncl (T )−xB

ncl (T )]2/8σ 2}e−{σ 2[pA
ncl (T )−pB

ncl (T )]2/2} cos(�A − �B)

]
. (63)

When we apply Eq. (63) to the magnetic AB effect, where the N particles comprise the solenoid, we will evaluate the magnitude
of the interference term.

A few remarks are in order before we close this section.
Of course, the wave function of a quantized solenoid under the influence of the classical field of an electron (as done by

Vaidman and verified by us in the next section) has a phase, since all wave functions have a phase; however, why should that
phase be precisely the same as that acquired by the quantized electron moving in the classical potentials of the solenoid? We have
answered that question here. At heart, it is due to the symmetry of the potentials under exchange of the electron and solenoid
variables.

A concise way to see the equality of these phases is to note that the current of the electron is Je(x,t) = eve(t)δ(x − xe(t)), so
the phase contribution of the electron that moved in the classical field of the N particles until time T may be expressed as

�e = 1

c

∫ T

0
dt

∫
dx Je(x,t) · AN (x,t),

where AN (x,t) is the vector potential due to the N particles.2 In addition, the current of the N particles is JN (x,t) =
q

∑N
n=1 vn(t)δ(x − xn(t)), so their phase acquired while moving in the classical field of the electron is

�N = 1

c

∫ T

0
dt

∫
dx JN (x,t) · Ae(x,t).

However, using integration by parts,

�e = 1

c

∫ T

0
dt

∫
dx[−c∇2Ae(x,t)] · AN (x,t) = 1

c

∫ T

0
dt

∫
dx Ae(x,t)[−c∇2 · AN (x,t)]

= 1

c

∫ T

0
dt

∫
dx Ae(x,t) · JN (x,t) = �N.

2In the Coulomb gauge, either the current or the transverse current JeT (x,t) may be put into this equation:
∫

dx Je(x,t) · AN (x,t) =∫
dx JeT (x,t) · AN (x,t). This is because Je(x,t) − JeT (x,t) is a gradient and its contribution to the integral vanishes, since ∇ ·AN (x,t)=0.
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FIG. 1. Electron packet trajectories in the z = 0 plane and a cross
section of the rotating cylindrical shells. The splitter boxes do not
represent simply beam splitters but whatever optics is necessary to
execute the electron behaviors explained in the text.

V. APPLICATION TO THE MAGNETIC AB EFFECT

We now apply these considerations to the Aharonov-Bohm
magnetic effect, where we model the solenoid as a collection
of N particles. As remarked in the Introduction, Vaidman
demonstrated by a semiclassical calculation that the phase shift
associated with the motion of the solenoid under the vector
potential of the electric field of the electron is equal to the
usual phase shift associated with the motion of the electron
under the vector potential of the solenoid. Using our fully
quantum calculation, we have confirmed this in the preceding
section by a general argument. In this section we will show
this by direct calculation. In addition, we will show that the
magnitude of the interference term in Eq. (63) is essentially 1
for reasonable values of the parameters in our model.

A. Model

We suppose that the electron moves in from infinity
to location (x = 0,y = −R,z = 0) ≡ (R,φ′ = −π

2 ,z = 0) at
time t = 0, where it is split by a beam splitter into two packets,
each packet then circulating around the solenoid in a half circle
(in the z = 0 plane) of radius R with speed u (Fig. 1). We
choose the discontinuity in angle at −π

2 ↔ 3π
2 . The right-side

packet goes counterclockwise with angle φ′(t) = −π
2 + ut

R

and the left-side packet goes clockwise with angle φ′(t) =
3π
2 − ut

R
, with the packets meeting again after time T = πR

u
at

(R,π/2,z = 0) at a second beam splitter, from which the sum
of packets emerges from one side and the difference from the
other side.

We model the solenoid as comprised of two concentric
cylindrical shells of nearly the same radius (which, for
simplicity, we will consider as superimposed). Each cylinder
consists of a stack of, say, square cross-sectioned hollow rings
(see Fig. 2), the center of each ring at (x = 0,y = 0,z), with
the rings extending from z = −L/2 to z = L/2. Each ring is
of radius a and height characterized by coordinate z. Each

piece

FIG. 2. Illustrating one of the two superimposed cylindrical shells
comprising the solenoid, a hollow ring within the shell containing
charged pieces, and the wave packet of a piece.

ring contains charged pieces, each of mass m and charge
±q, moving with speed v0, each of localized extent and
well-defined momentum so that our previous results apply.
As the electron moves in, its Coulomb field alters the speed
of these pieces as well as their density, but the current that is
their product is unchanged.3

The charge may be written as

q = dzdφQ/2πL, (64)

where φ is the angular coordinate of a piece, Q (M) is the
magnitude of the total charge (total mass) in one cylindrical
shell, dz is the height of a ring, and adφ is the length of each
piece (see Fig. 3). The charge to mass ratio is q/m = Q/M

for each piece.
The positively charged pieces move counterclockwise, the

negatively charged pieces move clockwise, with uniform
surface charge density σ0 = Q/2πaL, so there is linear current
density J0 = Qv0/2πaL in each ring. Thus, the magnetic field
due to the two cylinders is

B0 = 2
4π

c
J0 = 4

v0

c

Q

aL
. (65)

B. Magnitude of the interference term

One expects the magnitude to differ negligibly from 1. For
the electron, in either the magnetic or the electric AB effect,
when the packets recombine at time T , they are brought by
the beam splitter to have the same position and momentum

3Suppose the electron wave packet moves in adiabatically from
infinity to (x = 0,y = −R,z = 0). Then one can neglect the vector
potential of the electron and neglect Ė. This leaves the electric field
as the gradient of the scalar potential. It then follows from Maxwell’s
equation Ḃ = −c∇×E = 0 that the magnetic field is unchanged.
Thus, we see from J = (c/4π )∇×B that J̇ = 0, so the current is
unchanged, J = J0. Thus, the current associated with the nth piece
J0 = σnvn is unchanged, although both the surface charge density σn

and velocity vn have been changed from σ0 and v0. One may further
show that vn(φ) ≈ v0 + qeaR sin φ

mv0D3 . Thus, we may take the particle
densities and velocities as having the constant values σ0 and v0 since
the effect of the correction term ∼q upon the phase shift is ∼q2, which
may be ignored.
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φ′
φ

R

r

−r Rˆu ′φ

ˆ ˆ,R a= =R R r r

x

y

FIG. 3. Illustration of the notation.

x1
ecl(T ) = x2

ecl(T ) and p1
ecl(T ) = p2

ecl(T ), which we have seen
implies that the electron contributes a factor 1 to the magnitude.

For the electric AB effect, as discussed in Sec. VII and
Appendix D, the capacitor plate dynamics is that of a single
particle (i.e., the plate wave function describes its center of
mass behavior) and when the electron is brought to interfere,
the two plates then overlap almost completely in position and
momentum and so their contribution to the magnitude is ≈1.

The solenoid in the magnetic AB effect requires much more
discussion. We see from (63) that there is a dependence upon
both position and momentum for each piece. Qualitatively, the
AB shift is shared among a large number of pieces (as we
will call the charged particles making up the solenoid). Each
piece’s wave function then has such a small relative shift (for
the electron packet’s two traverses) in position and momentum
that the magnitude of overlap is ≈1. In terms of de Broglie
waves, this corresponds to the need for the de Broglie waves to
overlap spatially almost completely, to shift very slightly, and
to have nearly the same frequency to get maximal interference.

In our model, suppose each ring of radius a contains na

pieces of wave packet size σ moving clockwise with speed v0,
each with ne electrons. Each ring also contains na similar sized
pieces moving counterclockwise with speed v0, each with ne

“positive electrons.” We note that σ = 2πa/na and the mass
of a piece is m = neme, where me is the mass of an electron.
The solenoid is of length L and contains nL ≡ L/σ rings. The
number of pieces is N = 2nLna .

We will give here an example to illustrate how, for
reasonable values of the parameters, the sum of all the
exponents in Eq. (63) corresponding to all N pieces in the
solenoid can be negligibly small. Say a is of order 1 cm, R is
of order 10 cm, L is of order 100 cm, v0 is of order 1 cm/s
(a typical drift velocity of electrons in a conductor), and u

is of order 1 m/s. In terms of the total number of positive
or negative electron charges Ne = nenanL, the AB shift is
�AB = 4πNe

e2

h̄c

v0
c

a
L

[see Eq. (67), below]. Say the setup gives
a shift �AB = π . Then Ne ≈ 1014 electrons.

The strongest constraint on na is the condition for our
model that λ ≡ h/mv0 � σ , i.e., that a solenoid piece wave
packet contain many wavelengths so that its momentum

is well defined. Using m = neme = Ne

nanL
me = Ne

na

L
σ
me and

σ = 2πa/na , this constraint becomes n3
a � Ne

mev0a

h̄
2πa
L

≈
6×1012, which we satisfy by choosing na ≈ 1000 pieces per
ring.

This determines m and so makes λ ≈ 10−6 cm and deter-
mines σ ≈ 6×10−3 cm, so there are ≈6000 wavelengths in a
wave packet. Also, then there are ne ≈ 6×106 electrons per
piece, nL ≈ 1.5×104 rings in the solenoid, and np = 1.5×107

pieces in the solenoid.
For this estimate, we will treat each piece of the solenoid

as participating equally in the phase shift, even though the
pieces in the ring in the plane of the electron’s motion, being
closer to the electron, can receive a larger force and therefore
displacement and also pieces in the same ring are displaced
differently. Since the AB shift �AB = π corresponds to a
total shift of all pieces by a distance λ/2 ≈ 5×10−7 cm, each
individual piece shifts by a distance λ/2np ≈ 3×10−14 cm.
The squared fractional displacement appearing in the exponent
of the first term in Eq. (63) for one piece is therefore
[x1

cl (T )−x2
cl (T )]2

8σ 2 ≈ 3×10−24 and for all np = 1.5×107 pieces the
spatial displacement total exponent is ≈10−16.

In order to achieve the displacement of ≈3×10−14 cm in
the time T = πR/u ≈ 0.3 s it takes the electron packets to
complete their traverse, the relative speed change of the pieces
is �v ≈ 10−13 cm/s. Therefore, since σ [p1

cl(T ) − p2
cl]T/h̄ ≈

σm�v/h̄, using m ≈ neme, we have σ [p1
cl(T ) − p2

cl]T/h̄ ≈
×10−8. Thus, for one piece the momentum contribution to the
exponent in Eq. (63) is therefore ≈0.5×10−16 and for all np

pieces the momentum-dependent total exponent is ≈10−9. We
conclude that the magnitude in Eq. (63) is 1 to high accuracy.

C. Direct calculation of the phase shift

The phase shift of the electron moving in the vector
potential of the solenoid, the well-known calculation of the
AB phase shift, is

�AB = �A
e − �B

e

= 1

c

∫ T

0
dt euA(R) − 1

c

∫ T

0
dt e(−u)[−A(R)]

= 2T
e

c
u

a2B0

2R
= e

c
πa2B0, (66)

where A(R) = a2B0
2R

is magnitude of the solenoid’s vector
potential, which is parallel to the electron velocity for
trajectory A and antiparallel for trajectory B, and we have
used uT = πR. In the preceding section’s discussion of the
magnitude of the interference term, we used the expression

�AB = e

c
πa2B0 = e

c
πa2

[
4
v0

c

Nee

aL

]
1

h̄
, (67)

where B0 comes from (65), Q = Nee, and the correct factor
of h̄ has been inserted.
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Now we explicitly calculate the phase contribution of the pieces of the solenoid due to the field of the electron. We will do this in
both the Lorenz gauge and the Coulomb gauge. At time t , the electron is at the location (R,φ′(t),0), where φ′(t) = −π/2 + ut/R,
and the solenoid piece is at (a,φn(t),zn), where φn(t) = φ(0) + v0t/a + o(q). We identify each piece, labeled by the (discrete)
index n, as we take the continuum limit, by the continuous variables φ(0) describing its initial angular value and its z value.
According to (32), the vector potential caused by the electron at the location of the piece in the solenoid at time t is

A(φn(0),zn,t) = e

c

u(t)

|r − R| , (68a)

A(φn(0),zn,t) = e

2c

u(t)

|r − R| + e

2c
[r − R]

u(t) · [r − R]

|r − R|3 (68b)

in the Lorenz and Coulomb gauges, respectively. Here r = r(a,φn(t),zn) and R = R(R,φ′(t),0).
First we treat the Lorenz gauge. We consider the counterclockwise traverse of the electron (path A) and the phase it gives to

the positively charged pieces of the solenoid. The contribution to the phase for the nth piece is

�A
n (zn,φn(0),T ) =

∫ T

0
dt

q

c
v0φ̂(t) · A(z,t)

= v0equ

c2

∫ T

0
dt

cos
(
φ0 + v0t

a
+ π/2 − ut

R

)
√

R2 + z2 + a2 − 2aR cos
(
φ0 + v0t

a
+ π/2 − ut

R

) , (69)

where we have used φ̂(t) · u(t) = uφ̂(t) · φ̂′(t) = u cos[φ(t) − φ′(t)] and r · R = aR cos[φ(t) − φ′(t)]. We now use (64) to write
q = dzdφ0Q/2πL and sum over all pieces, i.e., integrate over φ0 and z. Since φ0 is integrated over a 2π range, the argument of
the cosine can be replaced by an angle θ integrated over that range. Then we assume that the solenoid length L � a,R, which
simplifies the integral over z,

�A
sol = v0Qeu

2πLc2

∫ T

0
dt

∫ 2π

0
dθ

∫ L/2

−L/2
dz

cos θ√
R2 + z2 + a2 − 2aR cos θ

≈ v0QeuT

2πLc2

∫ 2π

0
dθ cos θ [2 ln L − ln(R2 + a2 − 2aR cos θ )]

= v0QeuT

2πLc2

∫ 2π

0
sin θd ln[R2 + a2 − 2aR cos θ ]

= v0QeuT

2πLc2
2aR

∫ 2π

0
dθ

sin2 θ

R2 + a2 − 2aR cos θ

= v0QeuT

2πLc2
2aR

1

R2

∫ 2π

0
dθ

sin2 θ

1 + (a/R)2 − 2a/R cos θ

= v0QeuT

2πLc2
2aR

1

R2
π = e

4c
πa2B0, (70)

where the third line is obtained by integrating by parts, the last integral over θ is π if a/R < 1, which it is, and we have used
uT = πR and the expression (65) for B0.

The result (70) is 1/4 the AB shift (66). The negatively charged rings give the same result (Q → −Q,v0 → −v0), so traverse
A gives 1/2 the AB shift. The counterclockwise traverse also gives 1/2 the AB shift (u → −u and the B traverse phase is
subtracted). Thus we get the full AB shift.

For the Coulomb gauge, the first term in the vector potential expression (68b) is 1/2 the Lorenz gauge potential (68a),
so this term gives 1/8 the AB shift. Using φ̂(t) · [r − R] = −φ̂(t) · R = R sin[φ(t) − φ′(t)] and u(t) · [r − R] = u(t) · r =
ua sin[φ(t) − φ′(t)], the second term in Eq. (68b) gives the shift, for large L,

�A
sol = 1

2

v0QeuaR

2πLc2

∫ T

0
dt

∫ 2π

0
dθ

∫ L/2

−L/2
dz

sin2 θ

[R2 + z2 + a2 − 2aR cos θ ]3/2

≈ v0QeuT aR

4πLc2

∫ 2π

0
dθ

2 sin2 θ

R2 + a2 − 2aR cos θ
. (71)

This is 1/2 the result given by the last term on the third line in Eq. (70), i.e., it is 1/8 of the AB shift, so both vector potential
terms combined in the Coulomb gauge give 1/4 the AB phase shift.
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D. Time-average approach to understanding the contribution
of a solenoid piece to the phase shift

Here is a simple, intuitively appealing, approach that gives
the result (70). Suppose each piece of the solenoid moves
slowly compared to the speed of the electron over the interval
T . Then one might consider the approximation of replacing
the vector potential created by the electron at the site of a
piece, during the piece’s traverse along its own path, by the
time-averaged potential it experiences.

This averaging technique will also apply even if the speed
of a solenoid pieces is not slow compared to the electron speed,
as in the preceding section. Because one piece of the solenoid
replaces another during their motion, a piece will always be
present at a given place in the solenoid and thus that place can
be considered to experience an average vector potential and
we can add the contribution from all the places. This approach
starts with the following Hamiltonian for a piece:

H = 1

2m

(
p̂ − q

c
〈A〉T

)2

, (72)

where 〈A〉T ≡ 1
T

∫ T

0 dtA(t) and A(t) is the component of the
electron’s vector potential along the path of the solenoid piece.
Because 〈A〉T is a constant, it immediately follows (as is usual
when treating the phase contributed by the electron’s motion)
that the phase P contributed by the piece is the path integral
of the vector potential:

P(T ) =
∫

path
ds

q

c
〈A〉T = v0T

q

c
〈A〉T . (73)

However, this is precisely the expression given in Eq. (40)
for the phase contributed by the motion of a piece that, when
summed over all positively charged pieces as in the previous
section, gives 1/4 the AB phase. Including, in a similar way,
the contribution of the negatively charged pieces and the
contribution of the left traverse, gives the full AB shift. Thus,
the phase shift can be viewed as due to the action of the
time-averaged electric-field-producing vector potential of the
electron acting on the charged pieces of the solenoid as they
travel their short paths, the small arcs of the ring in which they
are constrained to move. A more detailed analysis from this
point of view appears in Appendix C.

E. Electric force in the magnetic AB effect

We have shown that the standard AB calculation and
the solenoid-involved calculation are two alternative ways of
calculating the same thing. It is remarkable how conceptually
dissimilar they are. In the usual case, there is the situation of
a non-field-producing potential causing the phase shift. We
would like to point out in this section, in the other case,
although we have expressed the phase shift in terms of the
vector potential, that it can be looked at as due to the electric
force of the electron on the solenoid pieces, the view that
Vaidman took in his semiclassical calculation [5].

It may be noted that Vaidman reasoned the existence of the
electric force on the solenoid using the Faraday law. Faraday’s
law encompasses two distinct effects (see, e.g., Ref. [8]), one
dealing with the electromotive force (EMF) generated in a
conductor traveling through a magnetic field, the other dealing

with the EMF generated when there is a changing magnetic
field inside a closed path. Vaidman’s analysis uses the latter.
He reasoned that, when the electron accelerates from rest and
begins its traverse, it produces a changing magnetic flux in the
solenoid. Thus, he obtained the electric field induced in the
solenoid (since its integral over the solenoid circumference
is the EMF), whose force changes the speed of the charged
solenoid cylinders. This expression of the second Faraday law
effect is equivalent to noting that the accelerating electron
causes a time-changing vector potential, whose (negative) time
derivative is this same electric field.

Consider, for example, the effect of the electron’s vector
potential, on the positively charged solenoid pieces, during its
right traverse. We will suppose that the electron starts from
rest so that its initial vector potential is zero (we ignore the
solenoid’s self-vector potential). We take the time dependence
of the electron’s vector potential at the site of each solenoid
piece to be just due to the electron’s motion and not the
piece’s motion, i.e., A(rn,t) at the site rn. This is because the
replacement of solenoid pieces by successive pieces means
we need only label the pieces’ locations and ignore their
translation. Then the phase associated with these solenoid
pieces may be written as

�A =
∫ T

0
dt

∑
n

q

c
vn · A(rn,t)

= −
∑

n

∫ T

0
dxn(t) ·

∫ t

0
dt ′

[
− ∂

∂t ′
q

c
A(rn,t

′)
]

= −
∑

n

∫ T

0
dxn(t) ·

∫ t

0
dt ′Fn(rn,t

′). (74)

We have written vndt = dxn as the displacement of the nth
piece during dt . We have noted that the bracketed expression
is the electric force Fn(ri ,t

′) exerted by the electron on the nth
piece in the interval dt ′. Thus, this phase-shift contribution has
been expressed in terms of dt ′Fn(rn,t

′) = dpn(t ′), the impulse
exerted during dt ′ by the electron on the solenoid pieces.

If we consider that the electron rapidly accelerates to speed
u at the beginning of its trajectory, since the vector potential is
proportional to u(t), there is a large initial impulse (followed, as
the electron continues its traverse, by a force on each solenoid
piece that averages out over all pieces to zero), causing a
sudden initial change of the momentum �pn of the positively
charged pieces (and the opposite change in momentum for the
negatively charged pieces), so �A = −∑

n

∫ T

0 dxn(t) · �pn.
This impulse-induced differential of momentum, occurring

oppositely for the electron’s left traverse, causes the phase shift
to accumulate over the interval T , which was the point of view
taken by Vaidman in his semiclassical calculation. We can see
that here by writing �pn = mvn − mv0, which is constant and
close to parallel to the piece displacement

∫ T

0 dxn ≡ �σn over
time T . Tossing out the term mv0, which does not contribute
to the AB shift as it is the same for left and right traverses
of the electron, we have the effective �A = −∑

n �σnmvn =∑
n �σn/λn, where λn is the de Broglie wavelength for the

piece.
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VI. APPLICATION TO THE ELECTRIC AB EFFECT

Finally, we turn to discuss the electric AB effect. This
has precisely the same dichotomy as the magnetic AB effect,
two different ways of viewing and calculating the AB phase
shift. However, here it can be shown more simply (because
the Coulomb interaction is a direct particle interaction,
not an interaction mediated by an intermediate field as is
the interaction through the vector potential) precisely how
this involves two alternative views of the identically same
calculation.

Using a simplified model, where the electron sits in a
zero-field environment halfway between two identical point
charges, again by a semiclassical argument, Vaidman [5]
showed that, while the AB shift is obtainable as due to the
electron’s motion in the field of the charges, it can also be
obtained as due to the motion of the charges in the electric
field of the electron.

Instead of Vaidman’s simplified model, we will apply our
considerations to the usually discussed electric AB effect
setup, where electron packets passing over and under a charged
capacitor are brought together to interfere. According to the
usual view, the phase shift �AB = −eσDT (e is the charge
on the electron, σ is the surface charge on the plates, D

is the plate separation, and T is the time of traverse of
the electron; in this section we use rationalized mks units)
is due to the quantized electron moving in the constant
potential of the classical capacitor. We will show that the
same phase shift is obtained by consideration of the quantized
capacitor plates moving in the electric field of the classical
electron.

However, we do more. We consider what happens when
both electron and plates are quantized. The Hamiltonian is
separable, the wave function is the product of wave functions
for the electron and plates, and we show how the phase shift
of this product wave function, the AB electric phase shift,
can be viewed as either due to the electron motion or due to
the capacitor plate motion, alternative ways of calculating the
same thing.

A. Model

We consider two very large plates containing charges glued
down, with uniform charge densities ±σ and area A, lying
initially on top of one another in the x-y plane at z = 0 (see
Fig. 4). There are two long hollow frictionless tubes parallel
to the x axis, one at (y = 0,z = d) and the other at (y = 0,

z = −d), with the entrance and exit of each tube at the plate
edges. From the left, an electron approaches a beam spitter
that creates two wave packets of equal amplitude., following
which two mirrors direct the packets into the tubes.

After the packets have traveled well away from the capacitor
edges, the two plates are separated, rapidly moved by an
external field (over a time interval much shorter than T ) so
that the positive and negative plates are left at rest at ±D/2
at time t = 0. The plates are free to move thereafter for a
time interval T , but it is assumed that they are so massive that
their displacement is relatively small compared to D over that
interval.

At time T , while the electron is still far from the capacitor
edge, the plates are rapidly returned to the plane z ≈ 0 by an

----------------

+ + + + + + + + + + +  

x

z

⊗y

Tube guides electron z d=

z d=−

e
BS BS sumdiff

----------------+ + + + + + + + + + +  
x

z Tube guides electron z d=

z d=−

e
BS BS sumdiff

FIG. 4. Shown on top is the setup for electric AB effect, when
the plates are together, before and after the electron nears the center
of the plates. Here BS denotes beam splitter. (The left beam splitter’s
output differs from the right beam splitter’s output, as illustrated.) On
the bottom is an illustration of the plates with separation ≈D while
the electron moves for a time interval T . (Figures are not to scale; the
plates and tubes should be greatly stretched in the ±x direction.)

external field. (While the plates acquire a phase shift during
their separation and rejoining motions, we may take the time
scale to be brief enough that it may be neglected compared
to the phase shift acquired during the interval T .) Eventually
the electron reaches the edge of the plates and, by means of
two more mirrors reflecting the packets toward each other and
another beam splitter, the packets emerge with their sum in
one direction and their difference in another direction, each
direction containing a detector.

The Hamiltonian over the time interval (0,T ) for electron
passage above (H+) or below (H−) the capacitor is

H± = P 2
e

2m
+ P 2

U

2M
+ P 2

L

2M
+ 1

2
[σ 2A ± eσ ](ZU − ZL). (75)

Here (Xe,Pe), (ZU,PU ), and (ZL,PL) are the conjugate
operators for the electron motion in the x direction and upper
plate and lower plate motion in the z direction, respectively,
and A is the plate area. This gives the force on each capacitor
plate as due to the other plate and the electron and of course
no force on the electron.

B. Calculations

One can take the point of view that the capacitor is a
classical object and only the electron should be quantized.
Then one may truncate this Hamiltonian by throwing away the
plate potential energy and kinetic energy operator terms and
setting ZU = D/2 and ZL = −D/2, their classical positions
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to excellent accuracy. The solution of Schrödinger’s equation
with the Hamiltonian

H±electron = P 2
e

2m
+ 1

2
[±eσ ]D (76)

is easily seen to have the form

ψ±(x,T ) = ψ ′(x,T )e−i(1/2)[±eσ ]DT , (77)

where ψ ′(x,T ) is a free-particle wave function [this is of course
what is obtained from Eq. (8) or Eqs. (13) and (30) applied to
this problem]. Here ψ+(x,T ) [ψ−(x,T )] is the wave function
for the electron packet that passes above (below) the capacitor
plates. By inspection, the electric AB phase shift, the difference
of phases for the two traverses, is seen to be −eσDT .

However, one may rewrite the Hamiltonian (75) as (omit-
ting the self-energy of the capacitor since it makes the same
contribution to the phase for the upper and lower electron
traverses)

H± = P 2
e

2m
+

[
P 2

U

2M
± 1

2
eσZU

]
+

[
P 2

L

2M
∓ 1

2
eσZL

]
. (78)

In this form, the wave function is the product of the free-
electron wave function, associated with no phase shift, and
the upper and lower plate wave functions, which do have
associated phase shifts. We use our solution (8) in Sec. II
[or Eqs. (13) and (30) in Sec. III] of the problem of finding
the wave function for one-dimensional motion in an electric
potential to obtain the wave function in terms of the classical
variables:

ψ±(x,zU ,zL,T )

= ψel(x)Ne−[(zU −D/2)2/4σ ′2]e∓i(1/2)eσT [zU −D/2]e∓i(1/4)eDσT

× e−[(zL+D/2)2/4σ ′2]e±i(1/2)eσT [zL+D/2]e∓i(1/4)eDσT . (79)

In obtaining (79) we have used |pU,L,cl(T )| = 1
2eσT ,

zU,cl(T ) ≈ D/2 and zL,cl(T ) ≈ −D/2, and e.g., for the up-
per traverse situation, − ∫ T

0 dt ′V (zU (t ′)) = − ∫ T

0 dt ′ eσ
2

D
2 =

− 1
4eDσT .
Because of the narrowness of the Gaussian wave packets

in Eq. (79), zU ≈ D/2 and zL ≈ −D/2, so it is only the last
factor in each wave function expression that contributes to the
phase shift. For the upper traverse, from ψ+, the contribution
of both plates is then 2(− 1

4eDσT ) = − 1
2eDσT . Adding

the contribution of the lower traverse gives 4(− 1
4eDσT ) =

−eDσT .
It might seem from this solution that we have settled the

question as to what causes the phase shift: Here the phase shift
is completely due to the capacitor. However, one can also write
this Hamiltonian as

H± =
[

P 2
e

2m
± 1

2
eσD

]
+

[
P 2

U

2M
± 1

2
eσ

(
ZU − D

2

)]

+
[

P 2
L

2M
∓ 1

2
eσ

(
ZL + D

2

)]
. (80)

In this case, the phase shift belongs completely to the electron
part of the wave function and the capacitor plate part has no
phase shift associated with it [the wave function for each plate
is the wave function in Eq. (79) with additional phase factors

that exactly cancel the phase that arose from the dynamics].
Alternatively, one could add and subtract a constant term in
such a way that any fraction of the phase shift belongs to the
electron wave function and the rest belongs to the capacitor. It
is clear that these are alternative ways of calculating the same
phase shift, with no reason apparent here to prefer one over
the other.

C. Electric force in the electric AB effect

In the example just discussed, the phase shift in both cases
was calculated using potentials. In one case there is the electron
in the non-field-producing potential of the capacitor. In the
other case there are the capacitor plates in the electric field of
the electron.

The conceptual contrast, no force vs force, would be even
greater if the phase-shift calculation for the capacitor plates
was expressed not in terms of the potential, but in terms of
the electron’s electric force on the capacitor plates. This could
not be done in the above example because the external force,
required to separate the plates and reunite them, intrudes.

Accordingly, we consider a modified problem such that an
external force does not act. Instead, we suppose that, at t = 0,
the plates that coincide at z = 0 are suddenly given velocities
±v0 in the z direction. They then move, under their mutual
forces and the force of the electron, to a maximum separation,
which we will call D± (D+ for the upper traverse and D−
for the lower traverse), and fall back to z = 0. Taking e to be
positive for definiteness, then D+ < D−. Therefore, for the
upper traverse, the plates return to z = 0 at time T+, which is
slightly earlier than the time of return T− for the lower electron
traverse.

The plates encounter a decelerating potential at z ≈ 0
designed to slow them down to a near stop and keep them
close to each other (an idea introduced by Vaidman [5] in
his example of the electric AB effect) until after the electron
is finally detected. Since the potentials are ∼z and z ≈ 0,
there is negligible phase-shift contribution thereafter. The
width of the wave packets is chosen to be large enough
that the positive-plate wave packets from the two traverses
finally overlap almost completely (similarly of course for the
negative plate wave packets), which is necessary if there is to
be maximal interference.

The calculation is governed by the same Hamiltonian we
have already discussed and the details of that calculation are
in Appendix D. However, they are not essential to the point
being made here. We illustrate it by considering the phase
contributed by the positively charged plate’s motion in the
electric field of the electron undergoing the upper traverse
using Eq. (39), namely,

� = −
∫ T

0
dt V (zU (t)) = −

∫ T

0
dt

∫ t

0
dt ′

d

dt ′
V (zU (t ′))

= −
∫ T

0
dt

∫ t

0
dt ′

dzU (t ′)
dt ′

d

dzU (t ′)
V (zU (t ′))

=
∫ T

0
dt

∫ t

0
dzU (t ′)F (zU (t ′)) (81)

[we have utilized V (0) = 0], where F (zU (t)) is the force on
the capacitor plate exerted by the electron. Thus, this phase
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contribution has been expressed in terms of the work done by
the electron on the upper plate.

VII. CONCLUDING REMARKS

Here is a summary of the results in this paper:
(i) We obtained an exact solution for the magnitude and

phase of a localized wave packet describing a particle moving
in a vector and scalar potential corresponding to non-spatially-
varying forces.

(ii) We calculated an approximate solution for the magni-
tude and phase of a particle moving in an arbitrary vector and
scalar potential.

(iii) We attained an approximate solution of the problem
where both the electron and solenoid are quantized, employing
a variational technique, obtaining Schrödinger equations for
the electron and solenoid, showing how an extra phase arises.

(iv) We applied (ii) and (iii) to an interference experiment,
where one localized particle interacts with a second, or
interacts with N > 1 other localized particles, obtaining the
magnitude and phase shift of the interference term.

(v) We obtained a fully quantum mechanical verification of
Vaidman’s semiclassical argument that the electron acting on
the quantized solenoid particles gives the magnetic AB phase
shift.

(vi) We answered the vexing question of why this does not
result in twice the usual magnetic AB phase shift, the phase
shift from the solenoid acting on the electron added to the
equal phase shift from the electron acting on the solenoid. The

answer lies in (ii)–(iv): For the problem of the jointly quantized
electron and solenoid, the extra phase provides the negative of
these phase shifts.

(vii) We developed a time-average approach to understand-
ing the contribution of a solenoid piece to the phase shift that
gives simple intuition into the nature of the buildup of the
phase in the magnetic AB effect.

(viii) We devised a treatment of the electric AB effect,
the exactly soluble problem of interference when a quantized
electron interacts with quantized capacitor plates. We verified
Vaidman’s semiclassical argument that the electric AB phase
shift arises from the electron exerting forces on quantized
capacitor plates. We showed how an extra phase is responsible
for providing the electric AB phase shift and not twice that
value.

We have seen, in both effects, two conceptual pictures,
that the AB phase shift arises from the electron moving in
non-field-producing potentials and that the AB phase shift
arises from the electric force exerted by the electron (on the
solenoid particles or on the charged capacitor plates) as was
argued by Vaidman. As far as our examples are concerned,
there is no reason to prefer one of these conceptual pictures
over the other.
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APPENDIX A: WAVE FUNCTION IN SEC. II

In this Appendix we do the algebra involved in obtaining the wave function for a charged object, moving on a one-dimensional
path, subject to a time-dependent electric field.

1. Wave function in the momentum representation

Putting the momentum space wave function (6),

ψ(p,t) ∼ e−(σ 2+it/2m)p2+β(t)p+iγ (t)−β2
R (t)/4σ 2

, (A1)

with initial conditions γ (0) = 0 and β(0) = 2p0σ
2 − ix0 into the momentum space Schrödinger equation (4) and equating

coefficients of p and 1 (the coefficient of p2 agrees on both sides of the equation) yields

i
d

dt
β = − q

mc
A − 2iqV ′σ 2 + qt

m
V ′

− d

dt
γ = i

2σ 2
βR

d

dt
βR + q2

2mc2
A2 + iqV ′β + qg(t)

= iβR

2σ 2

[
d

dt
βR + qV ′2σ 2

]
+ q2

2mc2
A2 − qV ′βI + qg(t) = q2

2mc2
A2 − qV ′βI + qg(t), (A2)

where the bracketed term in the penultimate equation vanishes because of the imaginary part of the first equation. Solving for β

and putting in the initial conditions, results in

βR = 2σ 2[p0 − qU ] = 2σ 2pcl(t), βI = −x0 + q

m
[A/c − W ]. (A3)

Now note that

xcl(t) = x0 + p0

m
t − q

mc
A − q

m
[tU (t) − W (t)] = t

m
(p0 − qU ) −

[
−x0 + q

m
(A/c − W )

]
= t

2mσ 2
βR − βI , (A4)
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from which follows

βI = −xcl(t) + pcl(t)t

m
. (A5)

In Eq. (A2) for γ , dropping terms quadratic in the potentials leaves only

− d

dt
γ = qx0V

′(t) + qg(t) = qV (t) − v0tV
′(t) or γ = −q

∫ t

0
dt ′V (t ′) + v0W (t), (A6)

where we have used g(t) ≡ V (t) − (x0 + v0t)V ′(t).

2. Wave function in the position representation

The Fourier transform of (6) is

ψ(x,t) ∼
∫

dp eipxe−(σ 2+it/2m)p2+β(t)p+iγ (t)−β2
R (t)/4σ 2

= e(ix+β)2/4[σ 2+it/2m]eiγ e−β2
R (t)/4σ 2

= exp

([−(x + βI )2 + β2
R + 2iβR(x + βI )

]
[σ 2 − it/2m] − (

β2
R

/
4σ 2

)
4[σ 4 + (t/2m)2]

4[σ 4 + (t/2m)2]

)
eiγ . (A7)

We will assume that the mass of the object is large enough so that there is negligible spreading of the wave packet over time T ,
so σ 4 + (t/2m)2 ≈ σ 4.

a. Real part of the exponent

We have for the real part of the exponent

4σ 4Re
{[−(x + βI )2 + β2

R + 2iβR(x + βI )
]
[σ 2 − it/2m] − (

β2
R/4σ 2)4[σ 4 + (t/2m)2]

}
= −(x + βI )2σ 2 + 2βR(x + βI )t/2m − (βRt/2mσ )2

= σ 2{−x2 + 2x[βR(t/2mσ 2) − βI ] − [βR(t/2mσ 2) − βI ]2}
= −σ 2[x − xcl(t)]

2. (A8)

Thus, the mean position follows the classical trajectory.

b. Imaginary part of the exponent

The imaginary part of the exponent, using expressions (A3) and (A1) for βR and βI (and omitting γ for the moment), is

Im = {[−(x + βI )2 + β2
R

]
(−t/2mσ 2) + 2βR(x + βI )

}/
4σ 2

= t

8mσ 2

[x − xcl(t) + pcl(t)t/m]2

σ 2
− p2

cl(t)t

2m
+ pcl(t)[x − xcl(t) + pcl(t)t/m]

= t

8mσ 2

[x − xcl(t) + pcl(t)t/m]2

σ 2
+ p2

cl(t)t

2m
+ pcl(t)[x − xcl(t)]. (A9)

That the first term in Eq. (A9) is negligibly smaller than the following two terms follows below, from the negligible spread
condition t/mσ 2 � 1 and that the real part of the exponent makes [x − xcl(t)]2/σ 2 be of order 1:

Im = t

8mσ 2

[x − xcl(t)]2

σ 2
+ p2

cl(t)t

2m

[
1 +

(
t

2mσ 2

)2]
+ pcl(t)[x − xcl(t)]

[
1 +

(
t

2mσ 2

)2]

≈ t

8mσ 2
+ p2

cl(t)t

2m
+ pcl(t)[x − xcl(t)] ≈ p2

cl(t)t

2m
+ pcl(t)[x − xcl(t)]. (A10)

The last approximation arises since, in order that the momentum of the wave packet be well defined, many oscillations of the
wave function should lie within the packet width:

1

8mσ 2
� p2

cl(t)

2m
= k2

cl

2m
. (A11)

Combining the exponents in (A6), (A8), and (A10), we have finally arrived at the wave packet expression

ψ(x,t) = Ne−{[x−xcl (t)]2/4σ 2}eipcl (t)[x−xcl (t)]eip2
cl (t)t/2m exp

(
−iq

∫ t

0
dt ′V (t ′) + iv0W (t)

)
. (A12)
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APPENDIX B: GENERAL CASE PHASE OF SEC. III REDUCES TO SPECIAL CASE PHASE OF SEC. II
FOR A SOLELY TIME-DEPENDENT ELECTRIC FIELD

If the force depends only upon time, i.e., if V ′(x,t) = V ′(t) and A(x,t) = A(t), the phase angle is given by Eq. (8) in Sec. II:

θ (x,t) = pcl(t)[x − xcl(t)] + t

2m
p2

cl(t) − q

∫ t

0
dt ′V (t ′) + v0qW (t) (B1)

[neglecting some terms squared in the potentials (i.e., ∼q2), which is the order we employ]. We wish to show here that the phase
expression (30) in Sec. III,

θ (x,t) = pcl(t)[x − xcl(t)] +
∫ t

0
dt ′

1

2m
p2

cl(t
′) − q

∫ t

0
dt ′V (xcl(t

′),t ′), (B2)

for the general case of the electric field depending on position and time reduces to (B1) when there is only time dependence. In
that case,

pcl(t) = mvcl(t) + q

c
A(xcl(t),t) → mvcl(t) + q

c
A(t) = mv0 − U (t),

V (xcl(t
′),t ′) → V (t ′). (B3)

[The latter is the zeroth-order term in the expansion of the scalar potential V (x,t) in x − xcl(t).] Then we have∫ t

0
dt ′

1

2m
p2

cl(t
′) =

∫ t

0
dt ′

1

2m
[mv0 − qU (t ′)]2 = m

2
v2

0 t − v0q

∫ t

0
dt ′U (t ′)

= m

2
v2

0 t − v0q[tU (t) − W (t)] = 1

2m
p2

cl(t)t + v0qW (t). (B4)

When (B4) is inserted into (B2), we obtain (B1).

APPENDIX C: CALCULATIONS WITH EXPLICATION INVOLVED IN THE TIME-AVERAGE APPROACH

In Sec. V D we argued that one gets the correct contribution to the phase associated with the motion of a piece, subjected
to the vector potential of the electron, by recognizing that, effectively, there is always a piece at angle φ that experiences the
time-averaged vector potential:

〈A〉T ≡ 1

T

∫ T

0
dtA(t) = 1

T

∫ T

0
dt

e

cS
φ̂ · u

= u

πR

∫ T

0
dt(±u)e

[
cos[φ − φ′(t)]

cD
+ aR cos2[φ − φ′(t)]

cD3

]
= ± eu

cD

[
2

π
cos φ + aR

2D2

]
, (C1)

where S ≡
√

a2 + R2 + z2 − 2aR cos(φ − φ′) has been expanded to first order in a, D ≡ √
R2 + z2, and uT = πR has been

employed, as has dφ′(t) = ± u
R
dt [+ for the right traverse where φ′(t) = u

R
t − π

2 and − for the left traverse where φ′(t) =
− u

R
t − π

2 ].
Now, since the vector potential is constant along the path of the piece and noting that the distance traveled by each piece

during T is v0T = v0
πR
u

, the phase contributed by a piece at angle φ is given in Eq. (73),

�± =
∫

path
ds

q

c
〈A〉T = ±v0

eqπR

c2D

[
2

π
cos φ + aR

2D2

]
. (C2)

Integrating over all the pieces using q in Eq. (64) gives for the total phase for a path and a cylinder:

P± = Q

∫ 2π

0

dφ

2π

∫ L/2

−L/2

dz

L
�± = Q

∫ 2π

0

dφ

2π

∫ L/2

−L/2

dz

L

1

D3
(±)v0

eqπaR2

2c2
= ±Qev0aπ

Lc2
. (C3)

The phase difference between the two paths gives twice the magnitude of this. Accounting for both cylinders requires another
factor of 2, resulting in the standard AB phase shift. This result is the same as that obtained in Sec. V C, where the integral over
angle was considered first, followed by the integrals over time: Here the integrals are taken in reverse order.

APPENDIX D: ANALYSIS OF THE PHASE SHIFT IN THE ELECTRIC AB EFFECT
FOR THE SETUP DISCUSSED IN SEC. VI C

To calculate the phase shift with the Hamiltonian (78), we must find the classical motion of the electron and the capacitor plates.
The electron experiences no force and the plates experience a constant force with the potential energy σ

2 [σA ± e][zU − zL],
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where zU and zL are the upper and lower capacitor plate positions. The upper sign in ± refers to the electron’s traverse above the
capacitor (trajectory A) and the lower sign refers to the electron’s traverse below the capacitor (trajectory B).

The solutions of the equations of motion are, for the electron and plates,

ve = u, xe = ut, vU = −vL = v0 − σ

2M
[σA ± e]t, zU = −zL = v0t − σ

4M
[σA ± e]t2. (D1)

The largest separation of the plates for the two possible traverses and the time it takes the plates to return to z = 0 are

D± = 1

4
v0T±, T± = 4Mv0

σ [σA ± e]
. (D2)

Taking e to be positive for simplicity, then T+ < T−. We take e � σA, so the time difference is small, but we will see that
nonetheless it has an important effect. The phase shift is then

�A − �B ≡ −
∫ T

0
dt[V A(t) − V B(t)] = −

∫ T+

0
dt

σ

2
[σA + e][zU (t) − zL(t)]+ +

∫ T−

0
dt

σ

2
[σA + e][zU (t) − zL(t)]−

= −σev0

6
[T 2

− + T 2
+] + σ 2Av0

6
[T 2

− − T 2
+] ≈ −1

3
σev0T̄

2 + 2

3
σev0T̄

2 = 1

3
σev0T̄

2, (D3)

where we have written T̄ ≡ 4Mv0
σ 2A

and the approximation is to drop terms ∼e/σA compared to 1. The first term in the third line
of (D3) is the negative phase shift due to the plates moving in the potential of the electron. The second term in that line is a
positive phase shift due to one plate moving in the potential of the other. That phase shift would vanish if the plates spent the
same amount of time on their trajectories when the electron was above them as below them. However, that is not the case, due to
the force of the electron on the plates.

Perhaps surprisingly, the net phase shift is positive. This is because, although the time difference in travel is relatively small,
the self-potential energy of the plates is relatively large compared to their potential energy in the field of the electron and the
phase shift due to the larger potential energy wins out.

Again, as in Sec. VI B, although it appears here that the phase shift is totally due to the motion of the plates under the force
of the electron, one can add and subtract a term from the Hamiltonian (78), rewriting it as

H± =
[

P 2
e

2m
+ σ

2
[σA ± e][zU (t) − zL(t)]±

]
+

[
P 2

U

2M
+ σ

2
[σA ± e][ZU − zU (t)]±

]
+

[
P 2

L

2M
− σ

2
[σA ± e][ZL − zL(t)]±

]
.

(D4)

Now the electron part of the Hamiltonian has in it the time-varying spatially constant potential it experiences and this is completely
responsible for the phase shift, while the capacitor plate part of the Hamiltonian makes no contribution to the phase shift.
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