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Tighter uncertainty and reverse uncertainty relations
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We prove a few state-dependent uncertainty relations for the product as well as the sum of variances of two
incompatible observables. These uncertainty relations are shown to be tighter than the Robertson-Schrödinger
uncertainty relation and other ones existing in the current literature. Also, we derive a state-dependent upper bound
to the sum and the product of variances using the reverse Cauchy-Schwarz inequality and the Dunkl-Williams
inequality. Our results suggest that not only can we not prepare quantum states for which two incompatible
observables can have sharp values, but also we have both the lower and the upper limits on the variances of
quantum mechanical observables at a fundamental level.
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I. INTRODUCTION

Quantum mechanics has many distinguishing features
from classical mechanics in the microscopic world. One of
these distinguishing features is the existence of incompatible
observables. As a result of this incompatibility, we have the
uncertainty principle and the uncertainty relations. Owing
to the seminal works by Heisenberg [1], Robertson [2],
and Schrödinger [3], lower bounds were shown to exist for
the product of variances of two noncommuting observables.
Recently, Maccone and Pati have shown stronger uncertainty
relations for all incompatible observables [4]. The stronger
uncertainty relations have also been experimentally tested [5].
In addition, the entropic uncertainty and the reverse uncertainty
relations also capture the essence of quantum uncertainty
[6–11] and the incompatibility between two observables, but
in a state-independent way.

With the advent of quantum information theory, uncertainty
relations in particular have been established as important
tools for a wide range of applications. To name a few,
uncertainty relations have been used in formulating quantum
mechanics [12] (where we can justify the complex structure
of the Hilbert space [13]) or as a fundamental building block
for quantum mechanics and quantum gravity [14]. Further,
they have been used in entanglement detection [15,16],
security analysis of quantum key distribution in quantum
cryptography [17], quantum metrology, and quantum speed
limit (QSL) [18–21]. In most of these areas, particularly in
quantum entanglement detection and quantum metrology or
quantum speed limit, where a small fluctuation in an unknown
parameter of the state of the system needs to be detected,
state-independent relations are not very useful. Thus, a focus
on the study of the state-dependent and tighter uncertainty
and the reverse uncertainty relations based on the variance is
currently needed.

Uncertainty relations in terms of variances of incompatible
observables are generally expressed in two forms: product
form and sum form. Although both of these kinds of uncer-
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tainty relations express limitations in the possible preparations
of the system by giving a lower bound to the product or
sum of the variances of two observables, the product form
cannot capture the concept of incompatibility of observables
properly because it may become trivial even when observables
do not commute. In this sense, uncertainty relations in terms
of the sum of variances capture the concept of incompatibility
more accurately [4]. It may be noted that earlier uncertainty
relations that provide a bound to the sum of the variances
comprise a lower bound in terms of the variance of the sum
of observables [4,22], entropic uncertainty and reverse uncer-
tainty relations [6–11], sum uncertainty relation for angular
momentum observables [23], sum uncertainty relations for
N -incompatible observables [24], uncertainty relations for
noise and disturbance [25–27], and also uncertainty for non-
Hermitian operators [28–30]. Recently, experiments have also
been performed to test various uncertainty relations [5,31,32].

One striking feature of most of the stronger uncertainty
bounds is that they depend on an arbitrary orthogonal state
|�⊥〉 to the state of the system |�〉 [4,27,33–35]. It has
been shown that an optimization over |�⊥〉, which maximizes
the lower bound, can saturate the inequality. For higher
dimensional systems, finding such an orthogonal state may be
difficult. Therefore, a focus on deriving an uncertainty relation
independent of any optimization and yet tight is needed for the
sake of further technological developments and explorations,
particularly in quantum metrology [36]. Here, we aim to attain
this goal and report a few tighter as well as optimization free
uncertainty bounds both in the sum and the product forms.

The aim of this paper is twofold. First, we show a set of
uncertainty relations in product as well as sum forms. The
uncertainty relation in the product form is stronger than the
Robertson-Schrödinger uncertainty relation. We also derive an
optimization-free bound, which is also tighter most of the
time than the Robertson-Schrödinger relation. On the other
hand, uncertainty relations for the sum of variances are also
shown to be tight enough considering the advantage that the
bounds do not need an optimization. Second, we prove reverse
uncertainty relations for incompatible observables. We derive
the state-dependent reverse uncertainty relations in terms of
variances both in the sum form and the product form. Thus,
the uncertainty relation is not the only distinguishing feature,
but here we show that reverse uncertainty relation also comes
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out as an another unique feature of quantum mechanics.
If one considers that an uncertainty relation quantitatively
expresses the impossibility of jointly sharp preparation of
incompatible observables, then the reverse uncertainty relation
should express the maximum extent to which the joint sharp
preparation of incompatible observables is impossible. It is
well known that quantum mechanics sets the lower limit to the
time of quantum evolutions [18–21]. In contrast to this, our
state-dependent uncertainty and reverse uncertainty relations
can now also be used in setting an upper time limit of quantum
evolutions [37] (reverse bound to the QSL) and in quantum
metrology. Thus, the results of our paper are not only of
fundamental interest, but can have several applications in
diverse areas of quantum physics, quantum information, and
quantum technology.

II. TIGHTER UNCERTAINTY RELATIONS

For any two noncommuting operators A and B, the
Robertson-Schrödinger uncertainty relation [3] for the state
of the system |�〉 is given by the following inequality:

�A2�B2 �
∣∣ 1

2 〈[A,B]〉∣∣2 + ∣∣ 1
2 〈{A,B}〉 − 〈A〉〈B〉∣∣2

, (1)

where the averages and the variances are defined over the
state of the system |�〉. This relation is a direct conse-
quence of the Cauchy-Schwarz inequality. However, this
uncertainty bound is not optimal. There have been several
attempts to tighten the bound [4,22,33,34]. Here, we pro-
vide a tighter bound and obtain an alternative uncertainty
relation. Let us consider two observables A and B in their
eigenbasis as A = ∑

i ai |ai〉〈ai | and B = ∑
i bi |bi〉〈bi |. Let

us define (A − 〈A〉) = A = ∑
i ãi |ai〉〈ai | and (B − 〈B〉) =

B = ∑
i b̃i |bi〉〈bi |. We express |f 〉 = A|�〉 and |g〉 = B|�〉

as |f 〉 = ∑
n αn|ψn〉 and |g〉 = ∑

n βn|ψn〉, where {|ψn〉}
is an arbitrary complete basis. Using the Cauchy-Schwarz
inequality for two real vectors �α = (|α1|,|α2|,|α3|, . . . ), �β =
(|β1|,|β2|,|β3|, . . . ), we have

�A2�B2 = 〈f |f 〉〈g|g〉 =
∑
n,m

|αn|2|βm|2

�
(∑

n

|αn||βn|
)2

=
(∑

n

|α∗
nβn|

)2

=
(∑

n

|〈�|A|ψn〉〈ψn|B|�〉|
)2

=
(∑

n

∣∣〈�∣∣AB
ψ

n

∣∣�〉∣∣)2

, (2)

where B
ψ

n =|ψn〉〈ψn|B, αn =〈ψn|A|�〉 and βn =〈ψn|B|�〉.
On expressing 〈�|AB

ψ

n |�〉 = 1
2 (〈[ A,B

ψ

n ]〉� + 〈{A,B
ψ

n }〉�),
this uncertainty relation can be written as

�A2�B2 � 1

4

(∑
n

∣∣〈[ A,B
ψ

n

]〉
�

+ 〈{
A,B

ψ

n

}〉
�

∣∣)2

. (3)

This uncertainty relation is tighter than the Robertson-
Schrödinger uncertainty relation [2,3] given in Eq. (1). To

prove this let us start with the righthand side of Eq. (2) and
note that(∑

n

∣∣〈�∣∣AB
ψ

n

∣∣�〉∣∣)2

�
∣∣∣∣∣
∑

n

〈
�

∣∣AB
ψ

n

∣∣�〉∣∣∣∣∣
2

= |〈�|AB|�〉|2, (4)

where we have used the fact that | ∑i zi |2 � (
∑

i |zi |)2, zi ∈ C
for all i. Here, the last line in Eq. (4) is nothing but the bound
obtained in Eq. (1). Thus, our bound is indeed tighter than the
Robertson-Schrödinger uncertainty relation.

This uncertainty relation in Eq. (3) can further be tightened
by optimizing over the sets of complete orthonormal bases as

�A2�B2 � max
{|ψn〉}

1

4

(∑
n

∣∣〈[ A,B
ψ

n

]〉
�

+ 〈{
A,B

ψ

n

}〉
�

∣∣)2

.

(5)

As shown in Fig. 1, an optimization over different bases
indeed gives tighter bound.

Next, we derive an optimization-free uncertainty relation
for two incompatible observables. For that we consider (say)

A
2 = ∑

i,j (ai − ajF
aj

� )2|ai〉〈ai | = ∑
i(ãi)2|ai〉〈ai | and B

2 =∑
i,j (bi − bjF

bj

� )2|bi〉〈bi | = ∑
i(b̃i)2|bi〉〈bi |, where Fx

� is
nothing but the fidelity between the states |�〉 and |x〉 (|x〉 =
|ai〉,|bi〉), F (|�〉,|x〉) = |〈�|x〉|2. Using the Cauchy-Schwarz
inequality, we obtain

�A2�B2 �
(∑

i

√
F

ai

�

√
F

bi

� ãi b̃i

)2

, (6)

FIG. 1. Here, we plot the lower bound of the product of
variances of two incompatible observables, A = Lx and B = Ly ,
two components of the angular momentum for a spin-1 particle with
a state |�〉 = cos θ |1〉 − sin θ |0〉, where the states |1〉 and |0〉 are the
eigenstates of Lz corresponding to eigenvalues 1 and 0 respectively.
The long-dashed (blue colored) line shows the lower bound of
the product of variances given by (6), the flattest (purple colored,
short-dashed) curve stands for the bound given by the Schrödinger
uncertainty relation given by Eq. (1), and the continuous line
(multicolored) plot denotes the product of two variances. Scattered
black points denote the optimized uncertainty bound achieved
by Eq. (5).
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where we use the inequality for two real vectors �u
and �v defined as �u = (ã1

√
F

a1
� ,ã2

√
F

a2
� ,ã3

√
F

a3
� , . . . ), �v =

(b̃1

√
F

b1
� ,b̃2

√
F

b2
� ,b̃3

√
F

b3
� , . . . ) and the quantities

√
F

ai

� ãi ,√
F

bi

� b̃i are arranged such that
√

F
ai+1
� ãi+1 �

√
F

ai

� ãi and√
F

bi+1
� b̃i+1 �

√
F

bi

� b̃i . This uncertainty relation depends on
the transition probability between the state of the system
and the eigenbases of the observables. The incompatibility
is captured here not by the noncommutativity, but rather by
the nonorthogonality of the state of the system |�〉 and the
eigenbases of the observables |ai〉 and |bi〉. As observed from
Fig. 1, the bound given by Eq. (5) is one of the tightest bounds
reported here but it needs optimization. The bound given by
Eq. (6) is the only bound, which is tighter than the other bounds
most of the time and even surpasses the bound given by Eq. (5),
yet it does not need any optimization.

However, we know that the product of variances does not
fully capture the uncertainty for two incompatible observables,
since if the state of the system is an eigenstate of one of the
observables, then the product of the uncertainties vanishes. To
overcome this shortcoming, the sum of variances was invoked
to capture the uncertainty of two incompatible observables. In
this regard, stronger uncertainty relations for all incompatible
observables were proposed in Ref. [4]. But, these uncertainty
relations are not always tight and are highly dependent on the
states perpendicular to the chosen state of the system. Here,
we propose uncertainty relations that perform better than the
existing bounds and need no optimization. We use the the par-
allelogram law for two real vectors to improve the bound on the
sum of variances for two incompatible observables. Using the
parallelogram law for two real vectors �u and �v, one can derive
a lower bound on the sum of variances of two observables as

�A2 + �B2 � 1

2

∑
i

(
ãi

√
F

ai

� + b̃i

√
F

bi

�

)2
. (7)

As shown in Fig. 2, the bound obtained in Eq. (7) is one of
the tightest optimization-free bounds.

If one allows the optimization over a set of states, then
the procedure used to derive the uncertainty relation given
in Eq. (5) can be used to derive another set of uncertainty
relations using the parallelogram law for two real vectors �α
and �β. Using the parallelogram law, one obtains

�A2 + �B2 � 1

2

∑
n

(|αn| + |βn|)2

= 1

2

∑
n

(|〈ψn|A|�〉| + |〈ψn|B|�〉|)2. (8)

An optimization over the set of complete bases provides a
more tighter bound as

�A2 + �B2 � max
{|ψn〉}

1

2

∑
n

(|〈ψn|A|�〉| + |〈ψn|B|�〉|)2. (9)

III. REVERSE UNCERTAINTY RELATIONS

Does quantum mechanics restrict the upper limit of the
product and sum of variances of two incompatible observ-
ables? Here, we introduce the reverse bound, i.e., the upper
bound to the product and the sum of variances of two

FIG. 2. Here, we plot the lower bound of the sum of variances for
two incompatible observables, A = Lx and B = Ly , two components
of the angular momentum for a spin-1 particle with a state |�〉 =
cos θ |1〉 − sin θ |0〉, where the states |1〉 and |0〉 are the eigenstates
of Lz corresponding to eigenvalues 1 and 0 respectively. The blue
dashed curve shows the lower bound of the sum of variances given
by (7), the continuous line (multicolored) plot denotes the bound
given by Eq. (4) in [4], and the flattest discontinuous (purple colored)
plot gives the bound given by Eq. (2) in [22]. Scattered red points are
the uncertainty bound achieved by Eq. (3) in [4]. As observed from
the plot, the bound given by Eq. (7) is one of the tightest bounds in
the literature. The bound given by Eq. (3) in [4] is the only bound,
which is surpassed at only few points.

incompatible observables. To prove the reverse uncertainty
relation for the product of variances of two observables, we
use the reverse Cauchy-Schwarz inequality for positive real
numbers [38–41]. This states that for two sets of positive real
numbers c1, . . . ,cn and d1, . . . dn, if 0 < c � ci � C < ∞,
0 < d � di � D < ∞ for some constants c, d, C, and D for
all i = 1, . . . ,n, then

∑
i,j

c2
i d

2
j � (CD + cd)2

4cdCD

(∑
i

cidi

)2

. (10)

Using this inequality for ci = √
F

ai

� |ãi | and di =
√

F
bi

� |b̃i |,
one can show that the product of variances of two observables
satisfies the relation

�A2�B2 � ��
ab

(∑
i

√
F

ai

�

√
F

bi

� |ãi ||b̃i |
)2

, (11)

where ��
ab = (Ma

�Mb
�+ma

�mb
�)

2

4Ma
�Mb

�ma
�mb

�

with Ma
� = max {

√
F

ai

� |ãi |},
ma

� = min {
√

F
ai

� |ãi |}, Mb
� = max {

√
F

bi

� |b̃i |}, and mb
� =

min {
√

F
bi

� |b̃i |}. If one uses the reverse Cauchy-Schwarz

inequality for the two real positive vectors �α and �β, we have

�A2�B2 � 	
ψ�

αβ

(∑
n

|αn||βn|
)2

= 	
ψ�

αβ

4

(∑
n

∣∣〈[ A,B
ψ

n

]〉 + 〈{
A,B

ψ

n

}〉∣∣)2

, (12)
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FIG. 3. Here, we plot the upper bound of the product of
variances for two incompatible observables, A = σx and B = σz,
two components of the angular momentum for a spin- 1

2 particle
with a state ρ = 1

2 (I2 + cos θ

2 σx +
√

3
2 sin θ

2 σy + 1
2 sin θ

2 σz). The blue
dashed curve is the upper bound of the product of the two variances
given by (11) and the continuous line (multicolored) plot denotes the
product of the two variances.

where 	
ψ�

αβ = (Mα
ψ�M

β

ψ�+mα
ψ�m

β

ψ�)
2

4Mα
ψ�M

β

ψ�mα
ψ�m

β

ψ�

with Mα
ψ� = max{|αn|},

mα
ψ� = min{|αn|}, Mβ

ψ� = max{|βn|}, and m
β

ψ� = min{|βn|}.
One can optimize the right-hand side of Eq. (12) to get a tighter
reverse uncertainty relation. For example, see Fig. 3.

Next, we derive the reverse uncertainty relation for the
sum of variances using the Dunkl-Williams inequality [41].
It is a state-dependent upper bound on the sum of variances.
The Dunkl-Williams inequality states that if f, g are non-null
vectors in the real or complex inner product space, then

‖f − g‖ � 1

2
(‖f ‖ + ‖g‖)

∥∥∥∥ f

‖f ‖ − g

‖g‖
∥∥∥∥. (13)

Now, if we take |f 〉 = A|�〉 and |g〉 = B|�〉 as defined
earlier, then, using the Dunkl-Williams inequality we obtain
the following equation:

�A + �B �
√

2�(A − B)√
1 − Cov(A,B)

�A.�B

, (14)

where, Cov(A,B) = 1
2 〈{A,B}〉 − 〈A〉〈B〉 is the quantum co-

variance of the operators A and B in quantum state |�〉.
We know from the Robertson-Schrödinger uncertainty re-
lation that �A2�B2 � Cov(A,B)2 + 1

4 |〈[A,B]〉|2, such that
−1 � Cov(A,B)

�A�B
� 1. Thus, the quantity inside the square root

in the denominator of Eq. (14) is always positive. Also,√
1 − Cov(A,B)

�A.�B
<

√
2 for nontrivial cases. Thus, we have

�A + �B < �(A − B) in such cases, though this is a weaker
bound than Eq. (14). Therefore, by squaring the both sides of
the equation, we obtain an upper bound on the sum of variances
as

�A2 + �B2 � 2�(A − B)2[
1 − Cov(A,B)

�A.�B

] − 2�A�B. (15)

FIG. 4. Here, we plot the upper bound of the sum of variances for
two incompatible observables, A = σx and B = σz, two components
of the spin angular momentum for a spin- 1

2 particle with a state

ρ = 1
2 (I2 + cos θ

2 σx +
√

3
2 sin θ

2 σy + 1
2 sin θ

2 σz). The continuous line
(red colored) plot is the upper bound of the sum of the two variances
given by (15) and the blue dashed curve denotes the sum of the two
variances.

As can be seen in Fig. 4, the bound is actually tight for some
classes of qubit states.

IV. DISCUSSIONS AND CONCLUSIONS

Arguably, the uncertainty relations are the most fundamen-
tal relations in quantum theory. It is ironic that after nine
decades of the Robertson-Schrödinger uncertainty relation,
there are still ample scopes to discover tighter uncertainty
relations. With the discovery of tighter uncertainty relations,
we prove that there is “more” fuzziness in nature than
what is allowed by the Heisenberg-Robertson-Schrödinger
uncertainty relations.

To summarize, we have derived tighter, state-dependent un-
certainty relations both in the sum as well as the product form
for the variances of two incompatible observables. We have
also introduced state-dependent reverse uncertainty relations
based on variances. The significance of the uncertainty and
the reverse relations is that, for a fixed amount of “spread” of
the distribution of measurement outcomes of one observable,
the “spread” for the other observable is bounded from both
sides. These uncertainty relations will play an important role
in quantum metrology, quantum speed limits, and many other
fields of quantum information theory due to the fact that these
relations are optimization free, state dependent, and tighter
than most of the existing bounds. On the other hand, reverse
uncertainty relations should set the stage for addressing an
important issue in quantum metrology, i.e., to set the upper
bound of error in measurement and the upper bound [37] for
the time of quantum evolutions.
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