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Wigner functions for angle and orbital angular momentum: Operators and dynamics

H. A. Kastrup*

DESY, Theory Group, Notkestrasse 85, D-22607 Hamburg, Germany
(Received 18 February 2017; published 12 May 2017)

Recently a paper on the construction of consistent Wigner functions for cylindrical phase spaces S1 × R,
i.e., for the canonical pair angle and orbital angular momentum, was published [H. A. Kastrup, Phys. Rev.
A 94, 062113 (2016)] in which the main properties of these functions are derived and discussed and their
usefulness is illustrated with examples. The present paper is a continuation which compares the properties of the
Wigner functions for cylindrical phase spaces with those of the well-known Wigner functions for planar phase
spaces in more detail. Furthermore, the mutual (Weyl) correspondence between Hilbert space operators and
their phase-space functions is discussed. The � product formalism is shown to be completely implementable. In
addition, basic dynamical laws for Wigner and Moyal functions are derived as generalized Liouville and energy
equations. They are very similar to those in the planar case but also show characteristic differences.
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I. INTRODUCTION

In a recent paper [1] mathematically and physically
consistent Wigner functions for cylindrical phase spaces
S1 × R were proposed, based to a large extent on group
theoretical considerations: Replacing the angle θ—which
characterizes the S1 part—with the pair (cos θ, sin θ ) allows
for a consistent quantization in terms of unitary representations
of the Euclidean group E(2) of the plane. This group comes
into play because the Poisson brackets of cos θ and sin θ and
the angular momentum p obey the Lie algebra of E(2) so that
the corresponding quantum mechanical self-adjoint operators
(observables) C, S, and L become the generators of unitary
representations of E(2) [2].

In view of the many applications of Wigner and Moyal
functions for planar phase spaces (see, e.g., Refs. [3–14]), a
similarly well-founded theoretical framework for cylindrical
phase spaces may open paths to new applications in physics,
mathematics, informatics, and technologies. A few simple
typical examples are discussed in Ref. [1]. In physics,
additional applications to fractional orbital angular momenta
[2] or pendulum-type systems might be of interest.

Considering the structural similarities between the well-
known Wigner-Moyal functions for planar phase spaces and
those for cylindrical phase spaces proposed in Ref. [1],
it is a strong challenge to apply the many methods and
tools developed for the former to the cylindrical case. Let
me briefly recall the main result in Ref. [1]: The Wigner
functions Vψ (θ,p) = (ψ,V (θ,p)ψ), the more general Moyal
functions Vψ2ψ1 (θ,p) = (ψ2,V (θ,p)ψ1), and the associated
Wigner Hermitian operator (matrix) V (θ,p) = (Vmn(θ,p)) are
constructed by a kind of ordered group-averaging within a
Hilbert space L2(S1,dϕ/2π ) with the scalar product

(ψ2,ψ1)S1 =
∫ π

−π

dϕ

2π
ψ∗

2 (ϕ)ψ1(ϕ) (1)

and the basis

en(ϕ) = einϕ, (em,en)S1 = δmn, m,n ∈ Z, (2)
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where δmn is the usual Kronecker symbol. [Generally one has a
basis en,δ(ϕ) = exp[i(n + δ)], δ ∈ [0,1), where δ characterizes
a covering group of the rotation group SO(2) [1,2]. Here we
consider only the case δ = 0.]

We then have

Vmn(θ,p) = (em,V (θ,p)en)S1 (3)

and

ψ(ϕ) =
∑
n∈Z

cn en(ϕ), cn = (en,ψ)S1 . (4)

The matrix elements Vmn(θ,p) have the explicit form [1]

Vmn(θ,p) = 1

2π
ei(n−m)θ

∫ π

−π

dϑ

2π
ei[(n+m)/2−p/h̄]ϑ (5)

= 1

2π
ei(n−m)θ sinc π [p/h̄ − (m + n)/2],

sinc x ≡ sin x

x
(6)

and yield the Wigner function—a bilinear form—for a wave
function ψ(ϕ),

Vψ (θ,p) =
∑

m,n∈Z
c∗
mVmn(θ,p)cn

= 1

2π

∫ π

−π

dϑ

2π
e−ipϑ/h̄ψ∗(θ − ϑ/2)ψ(θ + ϑ/2).

(7)

Many properties of Vmn(θ,p) are discussed in Ref. [1]. Those
which are essential for the present paper are listed below.

In Ref. [1] it was pointed out—without going into detail—
that many properties associated with the matrix, (5), and the
Wigner function, (7), correspond to structurally equivalent
ones for the usual Wigner functions on the plane R2:

Wφ(q,p) = 1

2πh̄

∫ ∞

−∞
dξ e−ipξ/h̄φ∗(q − ξ/2)φ(q + ξ/2).

(8)

(The letter V , introduced in Ref. [1] for the “cylindrical”
Wigner function, stands for “v”ortex or “v”ariant of the
“planar” W .)
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Superficially expressions (7) and (8) look very similar: The
integral in Eq. (7) appears as a restriction from the one over R
in Eq. (8) to the one over the finite interval [−π,π ]. The
implications are, however, quite nontrivial: Whereas there
exists a well-defined position operator Q in the quantum
version of the coordinate q, no such operator exists for
the angle θ [15], and the angle has to be replaced by the
equivalent pair (cos θ, sin θ ) before quantization. Furthermore,
the translation q → q + a or ξ → ξ + a form an invariance
group of the integral, (8). The corresponding transformations
for integral (7) are rotations from the group SO(2): θ → θ + α

or ϑ → ϑ + α. For the associated quantum mechanics this
means that the angular momentum operator L, the canonically
conjugate variable of the angle, has a discrete spectrum,
whereas the momentum operator P and position operator
Q of the phase plane generally have a continuous one. In
addition, the quantum mechanics (representation theory) of
the group SO(2) has subtleties the translations do not have:
SO(2) is infinitely connected—you can wrap a string around
a cylinder an infinite number of times—which implies an
infinite number of covering groups and, therefore, allows for
fractional angular momenta [2] and so for additional physical
effects.

The close correspondence between quite a number of
relations of the two types of Wigner functions is made more
explicit in Sec. II. Furthermore, as the discussions of relations
between operators in Hilbert space and their corresponding
functions in phase space are still incomplete in Ref. [1], they
are discussed in more detail in Sec. III. Section IV contains an
explicit analysis of the dynamics—time evolution and energy
equations—of the Wigner-Moyal functions in the cylindrical
case.

II. COMPARISONS OF WIGNER FUNCTIONS FOR
PLANAR AND CYLINDRICAL PHASE SPACES

In this section well-known results for the planar case (see,
e.g., Refs. [4,6], and [16–20]) are compared to those estab-
lished in Ref. [1]. Additional new results for the cylindrical
case are discussed in Secs. III and IV and compared to the
corresponding properties of the planar case.

In the cylindrical case operators A are generally and
conveniently represented by infinite matrices:

A = (Amn = (em,Aen)S1 ), m,n ∈ Z. (9)

In the following, wave functions in the Hilbert space on R are
denoted φ(x); those on S1, by ψ(ϕ).

Another remark concerns the different incorporations of
Planck’s constant h̄: Comparing the integrals (8) and (13)
shows that the former is dimensionless. The prefactor 1/(2πh̄)
serves the following purpose: The integration measure in a
planar phase space, dq dp, has the dimension of an action. It
is usually made dimensionless by dividing it by 2πh̄ = h.
However, only the product dqdp itself has the dimension
of an action. So one cannot associate that denominator with
dq or dp alone. But there are situations where one would
like to integrate over q or p separately. In order to avoid
the problem mentioned one inserts the factor 1/(2πh̄ into
the integrand, (8). In this way we get the (dimensionless)

normalization ∫
R2

dq dp Wφ(q,p) = 1. (10)

On the other hand, in the case of a cylindrical phase space
with measure dθ dp the angular momentum p alone has the
dimension of an action. Thus, one makes dp dimensionless
by dividing it by h̄ and associates the remaining factor 1/(2π )
with the dimensionless dθ . For convenience we write

dp̄ ≡ d(p/h̄) (11)

and absorb the factor 1/(2π ) into the integrand, (7). We then
have the normalization∫ π

−π

dθ

∫ ∞

−∞
dp̄ Vψ (θ,p) = 1. (12)

In order to keep the appearance of h̄ otherwise explicit in the
following, we do not in general replace p/h̄ in functions or
integrands with p̄. This serves the discussion of classical limits
h̄ → 0.

A. Wigner functions proper

1. Expectation values of operators and operator-related
phase-space functions

The basic postulate for the concept of Wigner functions—
here, in the planar case—is to express the expectation value
〈A〉φ of an operator A with respect to a state φ in a Hilbert
space with scalar product

(φ2,φ1)R =
∫ ∞

−∞
dx φ∗

2 (x)φ1(x) (13)

as an integral over phase space with density Wφ(q,p),

〈A〉φ = (φ,Aφ)R =
∫
R2

dq dp Ã(q,p) Wφ(q,p), (14)

where, in Dirac’s notation,

Ã(q,p) =
∫ ∞

−∞
dξe−ipξ/h̄〈q + ξ/2|A|q − ξ/2〉 (15)

is the phase-space function (Weyl symbol) associated with the
Hilbert-space operator A.

Expression (15) for Ã(q,p) may be rewritten in a way which
resembles the corresponding cylindrical one very closely:
Introducing the operator [4,21,22]

�(q,p) =
∫ ∞

−∞
dξe−ipξ/h̄|q − ξ/2〉〈q + ξ/2|, (16)

the function Ã(q,p) can be written as

Ã(q,p) = tr[A · �(q,p)], (17)

where

tr(B) =
∫ ∞

−∞
dx 〈x|B|x〉. (18)

Expectation values of operators with respect to a density
operator ρ are treated below where traces of operators and
their products are discussed.

If A is an operator in a Hilbert space with scalar product
(1), then—according to Ref. [1]—its expectation value with
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respect to a wave function ψ(ϕ) is given by an associated
integral over the cylindrical phase space,

〈A〉ψ = (ψ,Aψ)S1 =
∫ ∞

−∞
dp̄

∫ π

−π

dθ Ã(θ,p) Vψ (θ,p),

(19)

where now

Ã(θ,p) = 2π tr[A · V (θ,p)]. (20)

As V (θ + 2π,p) = V (θ,p) [see Eq. (5)], the function Ã(θ,p)
has the same periodicity. Furthermore, if A is self-adjoint, i.e.,
A∗

mn = Anm, like V (θ,p), then Ã(θ,p) is real.
For the elementary operators

C = cos ϕ, S = sin ϕ, L = h̄

i
∂ϕ, (21)

e.g., one has—according to Eq. (9)—the matrix elements

Cmn = 1

2
(δm(n+1) + δm(n−1)),

Smn = 1

2i
(δm(n+1) − δm(n−1)),

Lmn = h̄ m δmn. (22)

Using the relation

1

2π

∑
n∈Z

einβ = δ(β) for β ∈ [−π, + π ], (23)

one obtains, according to Eq. (20),

C̃(θ,p) = 2π tr[C · V (θ,p)] = cos θ, (24)

S̃(θ,p) = 2π tr[S · V (θ,p)] = sin θ, (25)

L̃(θ,p) = 2π tr[L · V (θ,p)] = p. (26)

As a real 2π -periodic potential U (ϕ) of a Hamilton operator

H (ϕ,L) = γ L2 + U (ϕ) (27)

can be expanded in terms of the multiplication operators

C(k) = cos kϕ, S(k) = sin kϕ, k ∈ Z, (28)

the following relations are useful too:

˜C(k)(θ,p) = 2π tr[V (θ,p) · C(k)] = cos kθ, (29)

˜S(k)(θ,p) = 2π tr[V (θ,p) · S(k)] = sin kθ, (30)

Ũ (θ,p) = 2π tr[V (θ,p) · U ] = U (θ ), (31)

L̃2(θ,p) = 2π tr[V (θ,p) · L2] = p2, (32)

H̃ (θ,p) = 2π tr[V (θ,p) · H ] = H (θ,p). (33)

In the same manner one gets for the “mixed” products, L · C

and C · L,

L̃C(θ,p) = 2π tr[L · C · V (θ,p)] = p cos θ + i
h̄

2
sin θ,

(34)

C̃L(θ,p) = 2π tr[C · L · V (θ,p)] = p cos θ − i
h̄

2
sin θ,

(35)

so that

˜[L,C](θ,p) = 2π tr{[L,C] · V (θ,p)} = ih̄ sin θ, (36)

˜{L,C}(θ,p) = 2π tr[{L,C} · V (θ,p)] = 2p cos θ. (37)

Equation (36) corresponds to the Lie algebra relation [L,C] =
h̄iS of the operators, (21), or the Poisson bracket {p, cos θ} =
sin θ [1,2]. The occurrence of h̄ in Eq. (36) shows its quantum
mechanical character. In the limit h̄ → 0 the operators L and
C commute, i.e., they become “classical.”

The anticommutator function, (37), does not contain any h̄

and is purely classical.
The general case of phase-space functions for products

of operators is discussed in Sec. III below. The phase-space
function Ṽ (θ,p) of the operator (matrix) V (θ1,p1) itself is

Ṽ (θ,p) = 2π tr[V (θ,p) · V (θ1,p1)]

= δ(θ − θ1) sinc[π (p − p1)/h̄]. (38)

The corresponding relation for the planar space operator, (16),
is, using Eq. (17),

�̃(q,p) = tr[�(q,p) · �(q1,p1)]

= 2πh̄ δ(q − q1) δ(p − p1). (39)

The inverse problem, namely, constructing the Hilbert-space
operator A from a given phase-space function Ã(θ,p), is
addressed in Sec. III.

2. Marginal distributions and transition probabilities

As the Wigner functions, (8) and (7), can be negative
for certain subsets of their respective phase spaces, they are
not proper probability distributions. That Wφ(q,p) may be
negative can be seen from the relation

Wφ(q = 0,p = 0) = 1

2πh̄

∫ ∞

−∞
dξ φ∗(−ξ/2)φ(ξ/2). (40)

So, if φ(x) is an odd function, the right-hand side of Eq. (40)
is negative. This is so, e.g., for odd n eigenfunctions of the
harmonic oscillator [10,13]. Similar arguments apply to the
Wigner function, (7). In addition, it follows from Eq. (6) that
the Wigner function Vmm(θ,p) of the basic function em(ϕ) is
the sinc function, which has negative regions [1].

Contrary to the Wigner functions themselves the marginal
distributions,∫ ∞

−∞
dpWφ(q,p) = |φ(q)|2,

∫ ∞

−∞
dqWφ(q,p) = |φ̂(q)|2,

(41)
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where φ̂(p) is the Fourier transform of φ(q),

φ̂(p) = 1

2πh̄

∫
R

dq φ(q) e−iqp/h̄, (42)

are the usual nonnegative quantum mechanical ones. (Def-
inition (42) follows the conventions of Ref. [6].) This is
considered to be an essential requirement for the properties
of Wigner functions [6].

The situation is slightly more complicated for the Wigner
function Vψ (θ,p). Here we have∫ ∞

−∞
dp̄ Vψ (θ,p) = 1

2π
|ψ(θ )|2, (43)∫ π

−π

dθ Vψ (θ,p) =
∑
n∈Z

|cn|2 sinc π (p/h̄ − n) ≡ ωψ (p),

(44)∫ ∞

−∞
dp̄ ωψ (p) sinc π (p/h̄ − m) = |cm|2, m ∈ Z. (45)

Equation (45), which yields the quantum mechanical marginal
probabilities |cm|2 for the quantized angular momentum,
follows from Eq. (44) as a consequence of the orthonormality
relations∫ ∞

−∞
dp̄ sinc π (m − p̄) sinc π (n − p̄) = δmn. (46)

More details, especially about the interpolating role of the sinc
functions, can be found in Ref. [1].

If the Wigner functions Wφ1 (q,p) and Wφ2 (q,p) for two
states φ1 and φ2 are known, then one can calculate the
probability for the transitions φ1 ↔ φ2,

|(φ2,φ1)R|2 = 2πh̄

∫
R2

dq dp Wφ2 (q,p) Wφ1 (q,p), (47)

which implies ∫
R2

dq dp W 2
φ (q,p) = 1

2πh̄
. (48)

An analog relation holds for the cylindrical case [1],

|(ψ2,ψ1)S1 |2 = 2π

∫ ∞

−∞
dp̄

∫ π

−π

dθ Vψ2 (θ,p) Vψ1 (θ,p), (49)

and therefore ∫ ∞

−∞
dp̄

∫ π

−π

dθ V 2
ψ (θ,p) = 1

2π
. (50)

3. Traces of operators

It is possible to discuss the trace of the product of two
Hilbert-space operators in terms of function (15) or (20)
without having treated the operators themselves: If A and B

are two operators in a Hilbert space with the scalar product,
(13), then

tr(A · B) = 1

2πh̄

∫
R2

dq dp Ã(q,p) B̃(q,p). (51)

This relation can be obtained by using expression (15) or (17)
under the last integral (see, e.g., Ref. [4]).

If A is a density operator ρ and B a self-adjoint observable
O, we get from Eq. (51) the expectation value of O with
respect to ρ,

〈O〉ρ = tr(ρ · O) = 1

2πh̄

∫
R2

dq dp ρ̃(q,p) Õ(q,p), (52)

with, according to Eq. (15),

ρ̃(q,p) =
∫ ∞

−∞
dξe−ipξ/h̄〈q + ξ/2|ρ|q − ξ/2〉. (53)

Inserting for ρ the projection operator Pφ = |φ〉〈φ| the right-
hand side becomes 2πh̄ times the Wigner function Wφ(q,p)
from Eq. (8). Thus,

Wρ(q,p) = 1

2πh̄
ρ̃(q,p) = 1

2πh̄
tr[ρ �(q,p)] (54)

is the generalization of the Wigner function from that for a
pure state to that of a mixed state.

Another useful relation is obtained for A = ρ1 and B = ρ2:

tr(ρ1 · ρ2) = 2πh̄

∫
R2

dq dp Wρ1 (q,p) Wρ2 (q,p). (55)

If ρ2 = ρ1 = ρ, then

2πh̄

∫
R2

dq dp W 2
ρ (q,p) = tr(ρ2) � 1. (56)

Relations completely analog to those in Eqs. (51)–(56) are
derived in Ref. [1] for the cylindrical case [note the difference
in normalization: tr[�(q,p)] = 1, tr[V (θ,p)] = 1/(2π )]:

tr(A · B) = 2π

∫ ∞

−∞
dp̄

∫ π

−π

dθ

× tr[A · V (θ,p)] tr[B · V (θ,p)]. (57)

Application to the expectation value of an operator O for a
given density operator ρ gives

〈O〉ρ = tr(ρ · O)

= 2π

∫ ∞

−∞
dp̄

∫ π

−π

dθ tr[ρ · V (θ,p)] tr[O · V (θ,p)].

(58)

Here Vρ(θ,p) = tr[ρ · V (θ,p)] is the Wigner function for a
given ρ.

In addition, we have∫ ∞

−∞
dp̄

∫ π

−π

dθ Vρ2 (θ,p) Vρ1 (θ,p) = 1

2π
tr(ρ2 · ρ1). (59)

Other properties of Vρ(θ,p) are discussed in Ref. [1].

4. Recovering the wave function

If the Wigner function Wφ(q,p) or Vψ (θ,p) of the wave
function φ(x) or ψ(ϕ) is given, then the wave functions may
be retrieved up to an overall constant phase [14]: Multiplying
the Wigner function, (8), by exp(ipξ1/h̄) and integrating over
p/h̄ yields a delta function δ(ξ − ξ1), which leads to

φ∗(q − ξ1/2)φ(q + ξ1/2) =
∫ ∞

−∞
d(p/h̄) eipξ1/h̄Wφ(q,p).

(60)
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Finally, first, putting q = ξ1/2 and then renaming ξ1 as q gives

φ∗(0) φ(q) =
∫ ∞

−∞
d(p/h̄) eipq/h̄Wφ(q/2,p). (61)

Here φ∗(0) is a fixed complex number the modulus of which
can be absorbed into the normalization of φ(q) and the constant
phase of which has no physical significance.

Exactly the same reasoning leads, in the cylindrical case,
to the result

ψ∗(0) ψ(θ ) = 2π

∫ ∞

−∞
dp̄ eipθ/h̄Vψ (θ/2,p). (62)

B. Moyal functions

Wigner functions (8) and (7) are special cases of bilinear
forms for wave functions in which both wave functions ψ1(ϕ)
and ψ2(ϕ) or φ1(x) and φ2(x), respectively, are identified. The
general forms are

Wφ2φ1 (q,p) = 1

2πh̄

∫ ∞

−∞
dξ e−ipξ/h̄φ∗

2 (q − ξ/2)φ1(q+ξ/2)

(63)

and

Vψ2ψ1 (θ,p) = 1

2π

∫ π

−π

dϑ

2π
e−ipϑ/h̄ψ∗

2 (θ − ϑ/2)ψ1(θ+ϑ/2).

(64)

These so-called Moyal functions [23] have a number of
interesting properties of which a few are listed here. We start
with Wφ2φ1 (q,p), relying mainly on Refs. [16] and [17]:∫ ∞

−∞
dp Wφ2φ1 (q,p) = φ∗

2 (q) φ1(q), (65)∫ ∞

−∞
dq Wφ2φ1 (q,p) = φ̂∗

2 (p) φ̂1(p), (66)∫ ∞

−∞
dp

∫ ∞

−∞
dq Wφ2φ1 (q,p) = (φ2,φ1), (67)∫ ∞

−∞
dp

∫ ∞

−∞
dq W ∗

φ2φ1
(q,p) Wφ4φ3 (q,p)

= 1

2πh̄
(φ1,φ3) (φ2,φ4)∗. (68)

Correspondingly, we have for the cylindrical case [1]∫ ∞

−∞
dp̄ Vψ2ψ1 (θ,p) = 1

2π
ψ∗

2 (θ ) ψ1(θ ), (69)∫ π

−π

dθ Vψ2ψ1 (θ,p) =
∑
m∈Z

c(2)∗
m sinc π (p/h̄ − m)c(1)

m , (70)∫ ∞

−∞
dp̄

∫ π

−π

dθ Vψ2ψ1 (θ,p) = (ψ2,ψ1) , (71)∫ ∞

−∞
dp̄

∫ π

−π

dθ V ∗
ψ2ψ1

(θ,p) Vψ4ψ3 (θ,p)

= 1

2π
(ψ1,ψ3) (ψ2,ψ4)∗. (72)

As for Eqs. (41) and (44), the main difference between the two
cases can be seen from relations (66) and (70): the classical

angular momentum p is continuous, whereas the quantum
mechanical one is discrete and the sinc function provides the
interpolation.

Again using relation (46) yields the analog to Eq. (66) (n
corresponds to p):∫ ∞

−∞
dp̄ sinc π (n − p̄)

∫ π

−π

dθ Vψ2ψ1 (θ,p) = c(2)∗
n c(1)

n . (73)

III. OPERATORS FROM THEIR PHASE-SPACE FUNCTION

A. The cylindrical phase space

In Eqs. (17) and (20) we have seen how a phase-space
function can be associated with a given Hilbert-space operator,
for the planar case and for the cylindrical one as well. There
is, of course, the question: Given the phase-space functions
Ã(q,p) and Ã(θ,p), how can one construct the corresponding
Hilbert-space operators? The answer is well known for a planar
phase space (see below) and is now first discussed for the
cylindrical phase space. Here it is sufficient to determine all
matrix elements Amn = (em,Aen) of an operator A [we drop
the index ′′S1′′ of the scalar product (1) in this subsection].
Essential use is made of the important relation [1]

2π

∫ π

−π

dθ

∫ ∞

−∞
dp̄ Vkl(θ,p) Vmn(θ,p) = δknδlm. (74)

In the present subsection this relation is used more conse-
quently than in Sec. IV B of Ref. [1].

1. Single operators

Using expansion (4) and Eqs. (9) and (74) we get

(ψ2,Aψ1) =
∑
kl

c
(2)∗
k Akl c

(1)
l

= 2π

∫ ∞

−∞
dp̄

∫ π

−π

dθ
∑
klmn

c(2)∗
m

×Vmn(θ,p)c(1)
n AklVlk(θ,p)

=
∫ ∞

−∞
dp̄

∫ π

−π

dθ Vψ2ψ1 (θ,p) Ã(θ,p),

Ã(θ,p) = 2π tr[A · V (θ,p)],V (θ,p) = (Vmn(θ,p)), (75)

implying

A = (Amn) =
∫ ∞

−∞
dp̄

∫ π

−π

dθ V (θ,p) Ã(θ,p). (76)

This formula allows us to calculate the matrix elements Amn

once the function Ã(θ,p) is given. If Ã(θ,p) is real, then A is
self-adjoint.

A simple example is Ã(θ,p) = p2 [see Eq. (32)]. Integrat-
ing Vmn(θ,p) in Eq. (5) over θ gives a factor 2πδmn. It remains
that

Amn = δmn

∫ ∞

−∞
dp̄ p2

∫ π

−π

dϑ

2π
e−ipϑ/h̄eimϑ (77)

= δmn

∫ ∞

−∞
dp̄

∫ π

−π

dϑ

2π

[( − h̄2∂2
ϑ

)
e−ipϑ/h̄

]
eimϑ

= δmn

∫ π

−π

dϑ
[ − h̄2 ∂2

ϑδ(ϑ)
]
eimϑ

= h̄2 m2 δmn = (em,L2en), (78)
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with L from Eq. (21).

2. Product of operators I: Convolution

Of considerable interest is the correspondence between the
product A · B of two Hilbert-space operators and their phase-
space function ÃB(θ ) (the usual “dot” between the operators
is omitted for their phase-space functions): According to the
general equation, (76), we have

A · B =
∫ ∞

−∞
dp̄

∫ π

−π

dθ V (θ,p) ÃB(θ,p). (79)

Again using relation (74) one can verify that

ÃB(θ,p) = 2π tr[V (θ,p) · A · B]

=
∫ ∞

−∞
dp̄1

∫ π

−π

dθ1 GA(θ,p; θ1,p1)B̃(θ1,p1),

GA(θ,p ; θ1,p1) = 2π tr[V (θ,p) · A · V (θ1,p1)]. (80)

Here the phase-space function of the product A · B is a kind
of convolution of those for the single operators. Compare Ref.
[24] for a similar relation in the planar case.

3. Product of operators II: � product

It turns out that the procedure which is employed in the
planar case [4,6,16–20] can be used in the cylindrical one too.
Starting again with the relation

ÃB(θ,p) = 2π tr[V (θ,p) · A · B], (81)

and using representation (76) for A and B inside the trace
yields

ÃB(θ,p) = 2π

∫ ∞

−∞
dp̄1 dp̄2

∫ π

−π

dθ1 dθ2

× tr[V (θ,p) · V (θ1,p1) · V (θ2,p2)]

× Ã(θ1,p1) B̃(θ2,p2). (82)

Inserting for V the integral representation, (5), and using
relation (23), one obtains for the trace

tr[V (θ,p) · V (θ1,p1) · V (θ2,p2)] (83)

= 4

(2π )3
e−2i[p(θ1−θ2)+p1(θ2−θ)+p2(θ−θ1]/h̄. (84)

Observing that

[p(θ1 − θ2) + p1(θ2 − θ ) + p2(θ − θ1)]

= −[(θ1 − θ )b − α(p1 − p)],

α = θ2 − θ, b = p2 − p, dθ2 dp2 = dα db,

B̃(θ + α,p + b) = e(α∂θ +b∂p)B̃(θ,p) (Taylor series),

α e−2iα(p1−p)/h̄ = − ih̄

2
∂pe−2iα(p1−p)/h̄,

b e2ib(θ1−θ)/h̄ = ih̄

2
∂θe

2ib(θ1−θ)/h̄ (85)

yields

ÃB(θ,p) = 4

(2π )2

∫ ∞

−∞
dp̄1 db̄

∫ π

−π

dθ1 dα (86)

× Ã(θ1,p1){e2i[(θ1−θ)b−(p1−p)α]/h̄e
h̄
2i

�(θ,p)B̃(θ,p)},
(87)

�(θ,p) = ←
∂ p

→
∂ θ − ←

∂ θ

→
∂ p , (88)

where
←
∂ p and

←
∂ θ act to the left, here on exponentials.

Integration over b̄ gives a delta function δ(θ1 − θ ) which
allows us to carry out the θ1 integration. There remains the
integral

1

π

∫ ∞

−∞
dp̄1

∫ π

−π

dαÃ(θ,p1) e−2i(p1−p)α/h̄. (89)

Inserting into

Ã(θ,p1) = 2π tr[A · V (θ,p1)] (90)

representation (5) for V (θ,p1) and carrying out the integrations
gives, for integral (89),

1

π

∫ ∞

−∞
dp̄1

∫ π

−π

dαÃ(θ,p1) e−2i(p1−p)α/h̄ = Ã(θ,p), (91)

so that, finally,

ÃB(θ,p) = Ã(θ,p) e
h̄
2i

�(θ,p)B̃(θ,p) (92)

≡ Ã(θ,p) � B̃(θ,p) (93)

= B̃(θ,p) e− h̄
2i

�(θ,p)Ã(θ,p),

Ã2(θ,p) = Ã2(θ,p).

This is the complete analog to the corresponding formula in
the planar case (see the next subsection). Thus, the � product
formalism of the planar phase space [25–36] can be carried
over to the cylindrical one. Only a few important examples are
mentioned here:

From Eq. (92) one obtains, for the commutator and
anticommutator,

˜[A,B](θ,p) = 2iÃ(θ,p) sin

[
h̄

2
�(θ,p)

]
B̃(θ,p), (94)

˜{A,B}(θ,p) = 2Ã(θ,p) cos

[
h̄

2
�(θ,p)

]
B̃(θ,p). (95)

At first order of h̄ the right-hand side of Eq. (94) becomes—as
usual—ih̄ times the Poisson bracket of functions Ã and B̃,
and the right-hand side of (95) at zeroth order becomes twice
their product. The expression for the commutator is of special
importance for the time evolution of an operator A or that of
a Wigner function which is determined by the commutator
[H,A], etc. (see Sec. IV, below).

Equation (92) can also be written in terms of the Bopp
operators (shifts) [37,38], which are especially helpful for
explicit calculations,

˜A · B(θ,p) = Ã(θ,p) � B̃(θ,p) = Ã(θ̃ ,p̃) · B̃(θ,p), (96)
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where

θ̃ = θ − h̄

2i
∂p, p̃ = p + h̄

2i
∂θ . (97)

As a simple application of Eq. (96) consider the example
discussed in Sec. II A above, L̃(θ,p) = p and C̃(θ,p) = cos θ :
Using Eq. (96) we get

L̃C(θ,p) =
(

p + h̄

2i
∂θ

)
cos θ = p cos θ − h̄

2i
sin θ (98)

and

C̃L(θ,p) = cos

(
θ − h̄

2i
∂p

)
p

=
[

cos θ cos

(
h̄

2i
∂p

)
+ sin θ sin

(
h̄

2i
∂p

)]
p

= p cos θ + h̄

2i
sin θ, (99)

which coincide with Eqs. (34) and (35). In both cases, (98)
and (99), the relation

cos(x − y) = cos x cos y + sin x sin y (100)

has been used.

B. The planar phase space

We recall only very briefly a few essential elements of
constructing Hilbert-space operators from functions in the
planar phase space, namely, mainly those which correspond
closely to relations in the cylindrical case discussed in the
preceding subsection. Note the many references relating to the
planar case given there.

Like the operator V (θ,p) in the cylindrical case the operator
�(q,p) from Eq. (16) can play a crucial role for the planar one:
Its importance for the Wigner function in the planar phase
space was emphasized by Leaf [21,22]. de Groot and Suttorp
give a very recommendable exposition of that approach in their
textbook [4].

The inversion of relation (17) is

A = 1

2πh̄

∫ ∞

−∞

∫ ∞

−∞
dq dp �(q,p) Ã(q,p), (101)

which is the analog to Eq. (76). As �(q,p) can also be written
as

�(q,p) = 1

2πh̄

∫ ∞

−∞

∫ ∞

−∞
du dv e−i[(Q−q)u+(P−p)v]/h̄,

(102)
where Q and P are the usual position and momentum
operators, the operator A may also be (Weyl) represented as

A =
∫ ∞

−∞

∫ ∞

−∞
du dv e−i(Qu+Pv]/h̄Â(u,v), (103)

where Â(u,v) is the Fourier transform of Ã(q,p):

Ã(q,p) =
∫ ∞

−∞

∫ ∞

−∞
du dv Â(u,v)e−i(qu+pv)/h̄. (104)

The important operator �(q,p) is hardly mentioned or used in
most of the literature on the planar Wigner function. Probably
the main reason is that the above formulas can be rewritten by

using the operator relations

[P,Q] = h̄

i
, eA+B = eA · eB · e−[A,B]/2. (105)

They lead to

A = 1

(2πh̄)2

∫ ∞

−∞
dq dp du dv Ã(q,p)

× eiuv/(2h̄)e−i(Q−q)u/h̄ · e−i(P−p)v/h̄. (106)

Replacing the product uv with the differential operators
−h̄2∂q ∂p and integrating partially one obtains

A = 1

(2πh̄)2

∫ ∞

−∞
dq dp du dv

× e−i(Q−q)u/h̄ · e−i(P−p)v/h̄ exp

[
h̄

2i
∂q∂p

]
Ã(q,p).

(107)

Here the operator ordering is such that the position operators
are to the left of the momentum ones.

The phase-space function ÃB(q,p) of the product A · B of
two operators is given by

ÃB(q,p) = Ã(q,p) exp[h̄�(q,p)/(2i)]B̃(q,p),

�(q,p) = ←
∂ p

→
∂ q − ←

∂ q

→
∂ p . (108)

The expression, (92), for the cylindrical case is the analog of
relation (108), which was first derived by Groenewold [25].

There are, of course, many more important properties of
Wigner functions for the planar phase space, which have been
worked out over decades (see the numerous references in
Sec. III A). For most of them their analogues in the cylindrical
case await new applications.

IV. DYNAMICAL AND ENERGY EQUATIONS

Quantum mechanics provides—among others—two basic
elements for the description of atomic systems. First, it gives
a description of their time evolution, i.e., their dynamics,
either—in the Schrödinger picture—in terms of a Schrödinger
equation for the wave function of the system or—in the
Heisenberg picture—in terms of equations of motion for the
operators (“observables”) which characterize the system.

Second, it allows, in principle, for calculation of the
eigenvalues and eigenstates of observables, especially the
energy, which are important for a quantitative description of
the system. In addition, in the realm of continuous (higher)
energies it provides the basis for the description of, e.g.,
stationary scattering processes for a given energy. In this
second case, which concerns the stationary structure of
physical systems, the time-independent Schrödinger equation
is an important tool.

Similarly, one can ask, How is the time evolution of a
system, from a given initial state, described by its associ-
ated Wigner function? and Are there appropriate structure
equations corresponding to the eigenvalue, etc., equations of
the conventional time-independent quantum mechanics? The
question of time evolution was answered by Wigner, in his very
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first paper on the subject, for planar phase spaces [3] in terms
of a generalized Liouville equation. The problem was later
discussed extensively by Moyal [23]. For further development
of this subject see the reviews [6,8,10,39,40].

Discussion of the time-independent structure or energy
“eigenvalue” equations for Wigner functions has its origin
in applications to statistical mechanics systems, the topic of
Wigner’s seminal paper [3]: For a quantum canonical ensem-
ble in equilibrium the quantum mechanical time evolution
operator

U (t) = e−itH/h̄ (109)

is replaced with

�(β) = e−βH , β = 1

kBT
, (110)

where H is the associated Hamilton operator. The operator �

provides the density operator

ρ(β) = �(β)/Z(β), Z(β) = tr(�) (111)

of the system and obeys the Bloch equation [41]

∂β� = −H · � = −� · H. (112)

Wigner functions related to � have been discussed in Refs. [26]
and [42]. A brief summary is contained in Ref. [6].

Comparing Eqs. (109) and (110) we note the correspon-
dence

−t/h̄ ←→ iβ. (113)

In modern approaches [43–45] this relation is treated under
the topic “KMS condition,” which deals with the analytic
continuation between the two regions in the complex t plane.

A. Time evolution of the Wigner function for a density matrix

For the time dependence of a density operator ρ(t) von
Neumann’s equation holds:

ih̄∂tρ(t) = [H,ρ(t)]. (114)

In order to translate this into the corresponding equation for
the phase-space function,

ρ̃(θ,p; t) = 2πVρ(θ,p; t) = 2π tr[ρ(t) · V (θ,p)], (115)

we need the phase-space function H̃ (θ,p) of the Hamilton
operator, (27). According to Eq. (33) this is given by

H̃ (θ,p) = γ p2 + U (θ ). (116)

In the following we use for U (θ ) the pendulum potential

U (θ ) = −A cos θ, (117)

and for ρ(t) the diagonal form [1],

ρ(t) = (ρmn(t)), ρmn(t) = λm(t) δmn,

λ � 0,
∑
m∈Z

λm(t) = 1. (118)

This gives

Vρ(θ,p; t) = 1

2π

∑
m∈Z

λm(t) sinc π (p/h̄ − m), (119)

sinc π (p/h̄ − m) = 1

2π

∫ π

−π

dϑe−i(p/h̄−m)ϑ . (120)

Thus, Vρ(θ,p; t) is independent of θ . The more general
θ -dependent case is treated in the next subsection, where
additional remarks on the pendulum can be found, too.

Using relations (96), (97), and (100) we have(
p + h̄

2i
∂θ

)2
· Vρ(p; t) = p2 Vρ(p; t),

cos
(
θ − h̄

2i
∂p

)
Vρ(p; t) =

[
cos θ cos

( h̄

2i
∂p

)
+ sin θ sin

( h̄

2i
∂p

)]
Vρ(p; t),

H̃Vρ(θ,p) =
{
γ p2 − A

[
cos θ cos

( h̄

2i
∂p

)
+ sin θ sin

( h̄

2i
∂p

)]}
Vρ(p; t),

(121)

and

sinc π [p/h̄ + 1

2i
∂θ − m] cos θ

= 1

2π

∫ π

−π

dϑe−i[p/h̄−m+ 1
2i

∂θ ]ϑ cos θ

= 1

2π

∫ π

−π

dϑ cos(θ − ϑ/2)e−i(p/h̄−m)ϑ

=
[

cos θ cos

(
h̄

2i
∂p

)
− sin θ sin

(
h̄

2i
∂p

)]
sinc π (p/h̄ − m),

ṼρH (θ,p) =
{
γp2 − A

[
cos θ cos

(
h̄

2i
∂p

)
− sin θ sin

(
h̄

2i
∂p

)]}
Vρ(p; t), (122)

so that

˜[H,Vρ] = −2A sin θ

[
sin

(
h̄

2i
∂p

)]
Vρ(p; t). (123)

Combined with Eq. (114) this yields

∂tVρ(p; t) = −2A

ih̄
sin θ sin

(
h̄

2i
∂p

)
Vρ(p; t). (124)

With

sin z =
∞∑

n=0

(−1)n
z2n+1

(2n + 1)!
(125)

and

A sin θ = ∂θU (θ ), (126)
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Eq. (124) can be written as

[∂t − ∂θU (θ ) ∂p]Vρ(p; t)

= ∂θU (θ )

[ ∞∑
n=1

(
h̄

2

)2n ∂2n+1
p

(2n + 1)!

]
Vρ(p; t). (127)

Note that the left-hand side of Eq. (127) is independent of h̄,
whereas the right-hand side represents quantum effects.

B. Generalized Liouville equation

The time evolution of the model discussed in the preceding
subsection is an example [see the left-hand side of Eq. (123)]
of the general time evolution equation, derived in Ref. [1], for
a Moyal function Vψ2ψ1 (θ,p; t):

∂tVψ2ψ1 (θ,p; t) = 1

h̄
(ψ2(t),K(θ,p)ψ1(t))S1 , (128)

K(θ,p) = i[H,V (θ,p)]. (129)

In the following the righ-hand side of this equation is worked
out in detail directly, partially following Ref. [10].

We start from

ih̄∂tψ(θ ; t) = Hψ(θ ; t), H = H0 + U (θ ), (130)

H0 = 1

2mr2
0

L2 = −ε
d2

dθ2
, ε = h̄2

2mr2
0

, (131)

where mr2
0 is the moment of inertia of a point mass rotating at

a distance r0 around an axis.
In the following we abbreviate:

ψ2(θ − ϑ/2) ≡ ψ2, ψ1(θ + ϑ/2) ≡ ψ1. (132)

It follows from Eqs. (64) and (130) that

ih̄∂tVψ2ψ1=
1

2π

∫ π

−π

dϑ

2π
e−ipϑ/h̄[−(Hψ∗

2 )ψ1+ψ∗
2 (Hψ1)].

(133)

Starting with the H0 part, observing that

dψ2

dθ
= −2

dψ2

dϑ
,

dψ1

dθ
= 2

dψ1

dϑ
(134)

and then integrating partially with respect to ϑ under the
integral, (133), yields

ih̄∂tVψ2ψ1 (θ,p; t) = −2 iε p

h̄
∂θVψ2ψ1 (θ,p; t)

− 2ε

(2π )2
∂θbψ2ψ1 (θ,p,ϑ = ±π ; t), (135)

where the boundary “potential”

bψ2ψ1 (θ,p,ϑ = ±π ; t)

= 1

(2π )2
[e−ipϑ/h̄ψ∗

2 (θ − ϑ/2; t) ψ1(θ + ϑ/2; t)]ϑ=π
ϑ=−π .

(136)

is the difference in the values of the integrand of Vψ2ψ1 (θ,p) at
the boundaries ϑ = ±π . This term vanishes in the planar case
because the integrand vanishes at ∞. It does not in general
vanish here.

For ψ2(ϕ) = ψ1(ϕ) = ψ(ϕ) one can write

bψ (θ,p,ϑ = ±π ; t)

= 2i

(2π )2
Im[e−ipπ/h̄ψ∗(θ − π/2)ψ(θ + π/2)]. (137)

A simple example is

ψ(ϕ) = 1√
2

(eimϕ + einϕ), (138)

for which the boundary term turns out to be

bψ (θ,p,ϑ = ±π ; t) = 2i

(2π )2
sin π [(m + n)/2 − p]

×{cos(m − n)θ + cos π [(m − n)/2]}.
(139)

Differentiating with respect to θ [see Eq. (135)] leaves a term
proportional to sin(m − n)θ , which vanishes for m = n but not
in general. It vanishes also if p − (m + n)/2 = kπ, k ∈ Z.

We next turn to the contribution of the potential U (θ ) on
the right-hand side of Eq. (133) [recall Eq. (132)]:

1

2π

∫ π

−π

dϑ

2π
e−ipϑ/h̄[−U (θ − ϑ/2)ψ∗

2 ]ψ1

+ψ∗
2 [U (θ + ϑ/2)ψ1]

= 1

2π

∫ π

−π

dϑ

2π
e−ipϑ/h̄[U (θ + ϑ/2) − U (θ − ϑ/2)]ψ∗

2 ψ1.

(140)

A real periodic potential, U (θ + 2π ) = U (θ ), can be expanded
in a Fourier series:

U (θ ) =
∞∑

k=0

Uk(θ ), Uk(θ ) = Ak cos kθ + Bk sin kθ. (141)

It follows that

Uk(θ + ϑ/2) − Uk(θ − ϑ/2)

= 2 sin(kϑ/2)(−Ak sin kθ + Bk cos kθ )

= 2 sin(kϑ/2) ∂θUk(θ )/k. (142)

Inserting this into Eq. (140) gives

2[∂kU (θ )/k]
1

2π

∫ π

−π

dϑ

2π
e−ipϑ/h̄ sin(kϑ/2)ψ∗

2 ψ1. (143)

As

(kϑ/2) e−ipϑ/h̄ = (k/2)ih̄∂pe−ipϑ/h̄, (144)

the contribution, (143), can be written as

2[∂kU (θ )/k] sin[(k/2)ih̄∂p]Vψ2ψ1 (θ,p), (145)

with sin z as in Eq. (125).
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Adding the term, (145), to Eq. ((135)) and dividing by ih̄

yields

∂tVψ2ψ1 (θ,p; t) = −2ε p

h̄2 ∂θVψ2ψ1 (θ,p; t)

+ 2

ikh̄
[∂kU (θ )] sin[(k/2)ih̄∂p]Vψ2ψ1 (θ,p)

− 2ε

h̄i
∂θbψ2ψ1 (θ,p,ϑ = ±π ; t). (146)

Inserting ε from Eq. (131) and separating all the terms which
are independent of h̄ finally gives{

∂t + p

mr2
0

∂θ − ∂θUk(θ ) ∂p

}
Vψ2ψ1 (θ,p; t)

=
{

∂θUk(θ )
∞∑

n=1

(kh̄/2)2n

k(2n + 1)!
∂2n+1
p

}
Vψ2ψ1 (θ,p; t)

+ h̄

mr2
0 i

∂θbψ2ψ1 (θ,p,ϑ = ±π ; t). (147)

Some remarks on the result follow: The generalized Liou-
ville equation, (147), holds, of course, also, if ψ2(ϕ) = ψ1(ϕ);
i.e., for the Wigner function proper Vψ (θ,p; t),

{∂t + p

mr2
0

∂θ − ∂θUk(θ ) ∂p}Vψ (θ,p; t)

= {∂θUk(θ )
∞∑

n=1

(kh̄/2)2n

k(2n + 1)!
∂2n+1
p }Vψ (θ,p; t)

+ h̄

mr2
0 i

∂θbψ (θ,p,ϑ = ±π ; t), (148)

where bψ is given by Eq. (137). If Vψ (θ,p; t) is independent
of θ , Eq. (148) reduces to Eq. (127).

It is remarkable that no higher derivatives of the potential
Uk(θ ) enter the right-hand side of Eq. (147), contrary to the
planar case, where the corresponding potential term has the
form [46]

∞∑
n=1

(−1)n(h̄/2)2n

(2l + 1)!

[
∂2n+1
q U (q)

]
∂2n+1
p Wφ(q,p; t). (149)

The boundary “potential” bψ on the right-hand side of
Eq. (147) is proportional to h̄, i.e., it is a quantum effect.
In addition, it makes the otherwise homogeneous PDE an
inhomogeneous one.

If the time dependence of the wave functions ψ(θ ; t) in
Eq. (130) can be separated as

ψ(θ ; t) = e−iEt/h̄u(θ ), (150)

then the time derivative in Eq. (147) takes the form

∂tVψ2ψ1 (θ,p; t) = E1 − E2

ih̄
Vψ2ψ1 (θ,p; t). (151)

Thus, for ψ2(ϕ) = ψ1(ϕ) and a stationary Wigner func-
tion Vψ (θ,p), the generalized Liouville equation, (148),

reduces to{
p

mr2
0

∂θ − ∂θUk(θ ) ∂p

}
Vψ (θ,p)

=
{
∂θUk(θ )

∞∑
n=1

(kh̄/2)2n

k(2n + 1)!
∂2n+1
p

}
Vψ (θ,p)

+ h̄

mr2
0 i

∂θbψ (θ,p,ϑ = ±π ). (152)

As discussed in Sec. IV A, an important example of a potential
U (θ ) of Eq. (141) is that of a pendulum [47,48],

U (θ ) = U1(θ ) = −A cos θ, (153)

where A = mg r0 for a rotating or oscillating point mass in a
constant gravitational field g, A = q Er0 for such a point mass
with charge q in a homogeneous electric field E, and A = p E

for a (rotating) dipole p in an external electrical field E.

C. An energy equation for the Wigner-Moyal function

We have seen in the preceding subsection that a time
dependence, (150), for the wave functions ψ1,2(θ ; t) in the
principal dynamical equation, (147), leads to a stationary
equation, (152), in the limit ψ2 → ψ1 = ψ which no longer
contains an energy parameter E. One can change this with two
related arguments.

If one replaces ψ∗
2 (θ ; t) with ψ∗

2 (θ ; −t), then E2 in Eq. (151)
changes sign. However, this operation is not the established
Wigner time inversion, which involves a simultaneous com-
plex conjugation of the wave function. Therefore, ψ∗

2 (θ ; −t)
is equivalent to ψ2(θ ; t). Thus, if one replaces ψ∗

2 (θ ; t) merely
with its complex conjugate, then E2 in Eq. (151) changes sign
too. So, either of these procedures can make the difference
E1 − E2 in Eq. (151) into the sum E1 + E2. Another related
argument makes use of the exchange, (113): if one replaces
it/h̄ in the Schrödinger equation with β, then one achieves the
same goal, namely, an equation for E1 + E2.

The discussion to obtain such an energy-type equation
for Wigner functions was—implicitly—started by Baker [49],
explicitly discussed by Fairlie [50], and then pursued by others
[10,31,51,52]. We now derive the corresponding equation for
the cylindrical phase space:

If we have the stationary Schrödinger equations

Hψj = Ejψj , j = 1,2, (154)

with H as in Eqs. (130) and (43), then

(E1 + E2)Vψ2ψ1 (θ,p)

= 1

2π

∫ π

−π

dϑ

2π
e−ipϑ/h̄[(Hψ∗

2 )ψ1 + ψ∗
2 (Hψ1)]. (155)

As in the case of Eq. (133) we first use relations (134) in
order to transform the H0 part under the last integral by partial
integration and obtain{

2ε

h̄2 p2 − ε

2
∂2
θ

}
Vψ2ψ1 (θ,p)

− 2i
ε mr2

0

h̄

[
e−ipϑ/h̄

{
p

mr2
0

ρ21(θ ; ϑ) + j21(θ ; ϑ)

}]ϑ=π

ϑ=−π

,

(156)
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where

ρ21(θ ; ϑ) = ψ∗
2 (θ − ϑ/2)ψ1(θ + ϑ/2), (157)

j21(θ ; ϑ) = h̄

2imr2
0

{ψ∗
2 (θ − ϑ/2) ∂θψ1(θ + ϑ/2)

− (∂θψ
∗
2 (θ − ϑ/2)) ψ1(θ + ϑ/2)}. (158)

If the solutions ψ1,2(θ ) of Eqs. (154) are a “stationary”
consequence of the time-dependent equations,

ih̄∂tψ1(θ ; t) = Hψ1(θ ; t), − ih̄∂tψ
∗
2 (θ ; t) = Hψ2(θ ; t),

(159)

then the continuity equation

∂tρ21(θ ; ϑ ; t) + ∂θj21(θ ; ϑ ; t) = 0 (160)

holds. As p/(mr2
0 ) is the angular velocity θ̇ , the term

p

mr2
0

ρ21(θ ; ϑ ; t) (161)

in the boundary part of Eq. (156) represents a kind of current
density too. Thus the boundary term in Eq. (156) represents a
circular flow depending on the boundaries ϑ = ±π .

For the potential U (θ ) part of H under the integral of
Eq. (155) we again use the mode Uk(θ ) of Eq. (141). Instead
of relation (142) we now have

Uk(θ + ϑ/2) + Uk(θ − ϑ/2) = 2 cos(kϑ/2) Uk(θ ). (162)

Inserting this into the potential part on the right-hand side of
Eq. (155) gives the contribution

2Uk(θ )
1

2π

∫ π

−π

dϑ

2π
e−ipϑ/h̄ cos(kϑ/2) ψ∗

2 ψ1. (163)

Using again relation (144), Eq. (163) can be written as

2Uk(θ ) cos[(k/2)ih̄∂p] Vψ2ψ1 (θ,p), (164)

with

cos z =
∞∑

n=0

(−1)n
z2n

(2n)!
. (165)

Adding the contribution, (164), to the term, (156), inserting ε

from Eq. (131), and dividing the result by 2, finally, gives{
p2

2mr2
0

+ Uk(θ ) − h̄2

8mr2
0

∂2
θ

}
Vψ2ψ1 (θ,p)

+
{
Uk(θ )

∞∑
n=1

(kh̄/2)2n

(2n)!
∂2n
p

}
Vψ2ψ1 (θ,p)

+ h̄

2i

[
e−ipϑ/h̄

{
p

mr2
0

ρ21(θ ; ϑ) + j21(θ ; ϑ)

}]ϑ=π

ϑ=−π

= E1 + E2

2
Vψ2ψ1 (θ,p). (166)

For the Wigner function itself, for which ψ2(ϕ) =
ψ1(ϕ) = ψ(ϕ) and E2 = E1, the last equation takes the

form {
p2

2mr2
0

+ Uk(θ ) − h̄2

8mr2
0

∂2
θ

}
Vψ (θ,p)

+
{
Uk(θ )

∞∑
n=1

(kh̄/2)2n

(2n)!
∂2n
p

}
Vψ (θ,p)

+ h̄

2i

[
e−ipϑ/h̄

{
p

mr2
0

ρ(θ ; ϑ) + j (θ ; ϑ)

}]ϑ=π

ϑ=−π

= E Vψ (θ,p), (167)

where now

ρ(θ ; ϑ) = ψ∗(θ − ϑ/2)ψ(θ + ϑ/2), (168)

j (θ ; ϑ) = h̄

2imr2
0

{ψ∗(θ − ϑ/2) ∂θψ(θ + ϑ/2)

− (∂θψ
∗(θ − ϑ/2)) ψ(θ + ϑ/2)}. (169)

D. PDEs for Wigner functions
In the preceding two subsections we have derived PDEs for

the Wigner function Vψ (θ,p; t) or Vρ(θ,p; t): Eq. (148) for the
time evolution and Eqs. (152) and (167) for stationary systems.
The question comes up immediately whether these equations
can replace—at least in principle—the Schrödinger wave or
Heisenberg operator equations, like path integrals in quantum
mechanics or the Hamilton-Jacobi equation in mechanics.

The time evolution of the Wigner function in the planar
case is considered to be equivalent to that of the Schrödinger
equation [19], mainly because both are of first order in the
time derivative and, therefore, have equivalent initial value
problems. As the corresponding equation, (148), has additional
boundary terms, (137), this problem must be analyzed anew
for the cylindrical case.

As for the stationary Eqs. (152) and (167) the question arises
whether they can replace the stationary Schrödinger equation,
especially an eigenvalue equation. Such an eigenfunction has
to obey the normalization conditions, (12) and (50), and should
have properties (69)–(72) for ψ2 = ψ1 = ψ . All this has yet to
be analyzed. In the planar case the corresponding eigenvalue
problem has been positively solved for the harmonic oscillator
[10,50]. But, of course, one has to get far beyond the harmonic
oscillator in order to establish a generally attractive and
convincing framework. There is much work ahead.

Equations (148), (152), and (167) have a structure which
invites us to attempt semiclassical approximations and classi-
cal limits: The left-hand sides are “classsical,” i.e., they do
not contain any h̄, whereas the right-hand sides contain a
(formal) power series in h̄, which appears to be useful for
approximations. This was one of the main motives of Wigner
already in 1932 [3]. Many investigations followed. See, e.g.,
Refs. [6,10], and [53–57]. However, one has to beware of
essential singularities in h̄ [58–61], which can spoil naive
polynomial approximations.
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