
PHYSICAL REVIEW A 95, 052110 (2017)

Infrared problem in quantum acoustodynamics

Dennis P. Clougherty and Sanghita Sengupta
Department of Physics, University of Vermont, Burlington, Vermont 05405-0125, USA

(Received 1 December 2016; revised manuscript received 1 February 2017; published 12 May 2017)

Quantum electrodynamics (QED) provides a highly accurate description of phenomena involving the
interaction of atoms with light. We argue that the quantum theory describing the interaction of cold atoms
with a vibrating membrane—quantum acoustodynamics (QAD)—shares many issues and features with QED.
Specifically, the adsorption of an atom on a vibrating membrane can be viewed as the counterpart to QED
radiative electron capture. A calculation of the adsorption rate to lowest order in the atom-phonon coupling is
finite; however, higher-order contributions suffer from an infrared problem mimicking the case of radiative capture
in QED. Terms in the perturbation series for the adsorption rate diverge as a result of massless particles in the
model (flexural phonons of the membrane in QAD and photons in QED). We treat this infrared problem in QAD
explicitly to obtain finite results by regularizing with a low-frequency cutoff that corresponds to the inverse size of
the membrane. Using a coherent-state basis for the soft-phonon final state, we then sum the dominant contributions
to derive a new formula for the multiphonon adsorption rate of atoms on the membrane that gives results that are
finite, nonperturbative in the atom-phonon coupling, and consistent with the Kinoshita-Lee-Nauenberg theorem.
For micromembranes, we predict a reduction with increasing membrane size for the low-energy adsorption rate.
We discuss the relevance of this to the adsorption of a cold gas of atomic hydrogen on suspended graphene.
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I. INTRODUCTION

The adsorption process, where a free atom or molecule
adheres to the surface of a material, is central to a variety
of phenomena in surface science [1]. Experimental study of
adsorption relies on having clean surfaces and gases at low
temperature. Recent experimental advances in the cooling and
manipulation of ultracold atomic beams have opened up a
new low-energy regime of adsorption where models of atom-
surface interactions require a complete quantum mechanical
treatment. Furthermore, newly discovered materials such as
graphene provide truly two-dimensional solids where strong
low-frequency fluctuations of the surface might dramatically
alter the adsorption dynamics [2].

In addition to its centrality in surface science, it has been
proposed that the dynamics of such a “quantum hybrid” system
could be utilized for quantum information processing [3] or
precision measurement [4]. It has been demonstrated that the
interactions between a cold atom and a vibrating membrane
can be engineered by placing the system in an optical cavity [5].
Laser light can be bounced off the membrane to form an optical
lattice [6] that can strongly couple over large distances the
motion of the atoms to the vibrational modes of the membrane.
The dynamics of cold atoms with nanotubes and cantilevered
beams has also been studied both experimentally [7,8] and
theoretically [9–11].

Our focus here is the dynamics of a system consisting of
a single atom interacting with an elastic membrane. Such a
system can be realized with a cold atom coupled via the van
der Waals (vdW) interaction to a suspended two-dimensional
material such as graphene. While the vdW interaction between
a cold neutral atom and graphene is weak, it is sufficiently
strong for a hydrogen atom to bind to graphene at low
temperatures. We examine the transition rate of a cold atom to
a bound state on the clamped membrane at zero temperature.

It was previously recognized that there are similarities
between the adsorption process and radiative capture [12,13].

Our work highlights the fact that quantum adsorption is a
nonrelativistic, condensed matter analog of quantum electro-
dynamics (QED). We essentially study in this work the phonon
analog to radiative corrections in scattering. It is interesting to
note that another well-known analogous effect, the phononic
Lamb shift, has been detected in a recent experiment [14] in a
related system.

A straightforward perturbative expansion of the adsorption
rate in the atom-phonon interaction has terms that become
infrared divergent for macroscopic membrane size. In analogy
to the well-known infrared problem in QED [15], we show
explicitly that the infrared divergences in the perturbation
expansion of the adsorption rate can be remedied by using
an appropriate set of soft-phonon final states and summing
over contributions corresponding to multiphonon emission.
We subsequently obtain a closed-form expression for the
multiphonon adsorption rate. The calculated rate is infrared
finite, a result consistent with the Kinoshita-Lee-Nauenberg
(KLN) theorem [16,17].

II. MODEL

We take for our model the following Hamiltonian,
H = Ha + Hph + Hbi + Hki , where

Ha = Ekc
†
kck − Ebb

†b, (1)

Hph =
∑

q

ωqa
†
qaq, (2)

Hbi = −gbbb
†b

∑
q

(aq + a†
q), (3)

Hki = −gkb(c†kb + b†ck)
∑

q

(aq + a†
q). (4)

The model was derived previously [2] by assuming that the
atom moves slowly in the perpendicular direction toward an
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FIG. 1. Atom impinging on an elastic membrane. During adsorp-
tion, energy is transferred from the atom to the membrane and is
radiated away by phonons.

elastic, clamped membrane under tension and can transfer
energy through force-coupling to the membrane by exciting
its circularly symmetric flexural modes (Fig. 1). The model
has linear phonon dispersion with constant transverse speed of
sound.

Here, ck (c†k) annihilates (creates) an atom in the continuum
state with energy Ek; b (b†) annihilates (creates) an atom
bound to the static membrane with energy −Eb; aq (a†

q)
annihilates (creates) a circularly symmetric flexural phonon
in the membrane with energy ωq ; gkb is the atom-phonon
coupling for an atom in the continuum state; and gbb is the
atom-phonon coupling for an atom bound to the membrane.

If one regards the atom-phonon interactions as perturba-
tions Hi = Hbi + Hki , the adsorption rate can be estimated
using Fermi’s golden rule. The unperturbed Hamiltonian
H0 = Ha + Hph has eigenstates |nk,nb; {nq}〉 labeled by the
number of atoms in the continuum nk , the number of atoms
bound nb, and the number of phonons in each vibrational
mode of the membrane {nq}. The initial state has an atom in
the continuum and the membrane in its ground state; the final
state has a bound atom plus a phonon present. The adsorption
rate �0 for a micromembrane is then

�0 = 2π
∑

q

δ(Ek + Eb − ωq)|〈0,1; 1q |Hi |1,0; 0〉|2 (5)

= 2πg2
kbρ, (6)

where ρ is a partial phonon density of states for the circularly
symmetric vibrational modes of the membrane. This result,
finite in the limit of a large membrane, is of order g2

kb and
is independent of gbb. Higher-order contributions in gbb,
however, are divergent in the large-membrane limit where
soft-phonon emission becomes possible. We use the inverse
size of the membrane ε as an infrared regulator that provides
a low-frequency cutoff to the vibrational spectrum; ωD is the
membrane’s high-frequency limit.

The KLN theorem [16,17] informs us that infrared di-
vergences are specious and are not contained in the true
physical adsorption rate as ε → 0. Thus, approximations to
the adsorption rate obtained by truncation of this (divergent)
perturbation expansion must be carefully scrutinized for large
membranes [18].

If one regroups the Hamiltonian so that Hbi is included in
the unperturbed Hamiltonian, a quite different result follows
for the lowest order adsorption rate. With Hki as the only
perturbation, the remaining terms of H form the unperturbed
Hamiltonian which can be diagonalized with a canonical
transformation (see the Appendix). We find that under the

perturbation Hki , the adsorption rate �1 is given by

�1 = 2πg2
kbρe−2F

(
1 + �

Es

)−2

, (7)

where F = g2
bb

2

∑
q

1
ω2

q
, � = g2

bb

∑
q

1
ωq

, and Es = Ek + Eb.

�1 is of order g2
kb and contains the effects of gbb to all orders.

Most importantly, in the large-membrane limit (ε → 0), we

see that F ∼ ρg2
bb

2

∫
ε

dω
ω2 , consequently growing as 1/ε. Thus,

the lowest order adsorption rate becomes exponentially small
for large membranes, a result in dramatic contrast to Eq. (6).

The rate of adsorption producing a multiphonon final state
is found in a similar fashion (see the Appendix). In the large-
membrane regime, the rate of adsorption via emission of n

phonons is

�n ≈ 2πg2
kbρe−2F

(
1 + �

Es

)−2(
g2

bbρ

ε

)n−1 1

(n − 1)!
. (8)

We conclude that the adsorption rate for any finite number of
phonons emitted is vanishingly small in the large-membrane
regime. The situation here is reminiscent of bremsstrahlung
emission by a charged particle in QED [15]. We also note
that, for large membranes where ε � ρg2

bb, the multiphonon
rate exceeds the one-phonon rate �1, a familiar situation for
soft-photon emission from a scattered electron in QED.

To obtain the total adsorption rate, we can sum over all n

and obtain a finite result, namely,

� =
∞∑

n=1

�n ≈ 2πg2
kbρ

(
1 + �

Es

)−2

. (9)

We conclude that, as ε → 0, a nonvanishing adsorption rate
results only with the emission of an infinite number of phonons.
We further note that the multiphonon rate differs from the
simplest golden rule estimate �0 by a fractional factor R =
(1 + �

Es
)−2 which depends logarithmically on the IR cutoff ε

(see Fig. 2). Lastly, we observe that all adsorption rates �n, as
well as the total rate �, are finite (specifically, tending to zero)
in the infrared limit ε → 0 in accord with the KLN theorem.
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FIG. 2. Normalized sticking rate �/�0 versus the IR cutoff ε

for micromembranes with different binding energies. Multiphonon
processes [MP, Eq. (9)] suppress the simple golden rule [GR, Eq. (6)]
adsorption rate �0. The suppression of the adsorption rate is stronger
for shallow bound states. The GR can be a poor approximation for
large membranes where soft-phonon processes are important.
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III. SUMMARY

We have studied a quantum model for low-energy atomic
adsorption on a two-dimensional membrane. The strength of
the atom-phonon interaction at low frequencies gives rise to
an infrared divergence problem in the adsorption rate for large
membranes. We use the inverse membrane size ε as a natural
IR regulator. With a canonical transformation, we obtain the
adsorption rate in each sector of the phonon Fock space, and
we show that each rate vanishes exponentially in the limit of a
vanishing cutoff, ε → 0. We sum the dominant terms in each
sector of the phonon Fock space for small ε to obtain a new
adsorption rate formula. We show that the simplest golden rule
approximation to the adsorption rate lacks a factor that reduces
the adsorption rate, vanishing slowly as ln−2(ωD/ε) as ε → 0.
This prediction might be experimentally tested by comparing
the cold-atom adsorption rates by samples with membranes
that range up to macroscopic size.

This result provides the answer to the question raised
previously [19] concerning the effect of the IR cutoff on
the low-energy sticking of atomic hydrogen on suspended
graphene [20]. It was anticipated [19] that changes in the
low-frequency phonon spectrum will have “little impact”
on the sticking process. This logic is used to justify an
approximation of the phonon spectrum that ignores phonons
with energies below 0.79 meV. Surprisingly, our result illus-
trates that the low-frequency phonon spectrum can have a
substantial effect on the sticking, as the emission of an infinite
number of soft phonons can dominate the sticking process for
micromembranes. This differs from “quantum sticking” [12]
where the emission of a finite number of quanta facilitates
the adsorption. Lastly, we note that this result is in agreement
with previous results based on a variational mean-field method
[2,21,22] that find a suppression of the adsorption rate with
respect to the simple golden rule rate for sticking via emission
of a finite number of phonons.
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APPENDIX

We group the Hamiltonian in Eqs. (1)–(4) as H = H0 + H1,
where

H0 = Ekc
†
kck − Ebb

†b +
∑

q

ωqa
†
qaq − gbbb

†b
∑

q

(aq + a†
q),

(A1)

H1 = −gkb(c†kb + b†ck)
∑

q

(aq + a†
q). (A2)

H0 contains the independent boson model [23] Hamiltonian
and can be diagonalized with a canonical transformation,

H̃0 = eSH0e
−S (A3)

= Ekc
†
kck − (Eb + �)b†b +

∑
q

ωqa
†
qaq, (A4)

where S = −b†b
∑

q
gbb

ωq
(a†

q − aq) and � = g2
bb

∑
q

1
ωq

. The
unperturbed ground-state energy for one atom Eg is thus
Eg = −(Eb + �).

Since the one-phonon eigenstate of H̃0 is |0,1; 1q〉 with en-
ergy Eq = −(Eb + �) + ωq , the corresponding unperturbed
eigenstate of H0 is e−S |0,1; 1q〉, a product of phonon coherent
states over the modes. (Technically, one state in the product
is a “phonon-added” coherent state.) Thus, from the golden
rule, the adsorption rate for first-order transitions under the
perturbation H1 is

�1 = 2π
∑

q

δ(Ek + Eb + � − ωq)|〈0,1; 1q |eSH1|1,0; 0〉|2

(A5)

= 2πg2
kb

∑
q

δ(Ek + Eb + � − ωq)|〈1q |X†
∑
q ′

a
†
q ′ |0〉|2,

(A6)

where X = exp[
∑

q
gbb

ωq
(a†

q − aq)]. We evaluate the phonon
matrix element and find that

∑
q ′

〈1q |X†a†
q ′ |0〉 = e−F

(
1 − �

ωq

)
, (A7)

where F = g2
bb

2

∑
q

1
ω2

q
. Thus,

�1 = 2πg2
kbe

−2F
∑

q

(
1 − �

ωq

)2

δ(Ek + Eb + � − ωq)

(A8)

≈ 2πg2
kbe

−2F

∫ ωD

ε

ρdω

(
1 − �

ω

)2

δ(Ek + Eb + � − ω)

(A9)

= 2πg2
kbe

−2F ρ

(
1 − �

Es + �

)2

, (A10)

where the quasicontinuum approximation is used to evaluate
the sum. As the IR cutoff ε approaches zero, �1 exponentially
vanishes.

For final states obtained from two-phonon eigenstates of
H̃0, the rate of adsorption is

�2 = 2π
∑

{nq }, ∑
q nq=2

δ(Ek + Eb + �

−∑
p npωp)|〈0,1; {nq}|eSH1|1,0; 0〉|2 (A11)

≈ 2πg2
kbe

−2F ρ2 g2
bb

ε

(
1 − �

Es + �

)2

, ε → 0, (A12)

Other contributions to �2 are subdominant as ε → 0. The use
of a coherent-state phonon basis for the final state removes the
IR divergence. This gives insight into the analogous method
to remedy IR divergences in QED with coherent states [24]. In
our case, the coherent states are a natural phonon basis, given
our choice of H0.

The dominant contribution to the adsorption rate from
n-phonon eigenstates has (n − 1) soft phonons (ω ∼ ε) and
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a hard phonon (ω ∼ Es) to satisfy energy conservation:

�n = 2π
∑

{nq }, ∑
q nq=n

δ(Ek + Eb + �

−∑
p npωp)|〈0,1; {nq}|eSH1|1,0; 0〉|2 (A13)

≈ 2πg2
kbe

−2F ρn

(n − 1)!

(
g2

bb

ε

)n−1

×
(

1 − �

Es + �

)2

, ε → 0. (A14)

Thus, the IR divergences have been successfully removed to
all orders in gbb.

The total adsorption rate for a micromembrane is obtained
by summing over the n-phonon contributions,

� =
∞∑

n=1

�n ≈ 2πg2
kbρe−2F

(
1 + �

Es

)−2 ∞∑
n=0

(
ρg2

bb

ε

)n 1

n!

(A15)

≈ 2πg2
kbρ

(
1 + �

Es

)−2

, (A16)

since 2F = (ρg2
bb/ε) in the quasicontinuum approximation

for a dense phonon spectrum. Remarkably, the exponentially
decaying factor e−2F is canceled with the infinite summation,
and the resulting rate is the product of the simple GR
rate �0 with a cutoff-dependent reduction factor of
R = (1 + �/Es)−2.
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