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We show how to solve a large class of Lindblad master equations for noninteracting particles on L sites. In the
first portion we concentrate on bosonic particles, while in the second we will address fermionic particles. In both
cases we show how to reduce the problem to diagonalizing an L × L non-Hermitian matrix. In particular, for
boundary dissipative driving of a uniform chain, the matrix is a tridiagonal bordered Toeplitz matrix which can
be solved analytically for the normal master modes and their relaxation rates (rapidities). In the regimes in which
an analytical solution cannot be found, our approach can still provide a speedup in the numerical evaluation. For
bosonic particles, we use this numerical method to study the relaxation gap at nonequilibrium phase transitions
in a boundary driven bosonic ladder with synthetic gauge fields. We conclude by showing how to construct
the nonequilibrium steady state. The analysis for fermionic particles closely follows that of bosons, but with
important differences due to the different commutation rules.
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I. INTRODUCTION

Quantum systems in contact with an environment display
a very rich physics including emergence of nonequilibrium
phase transitions [1–3] which can be used to engineer
particularly interesting nonequilibrium steady states (NESSs).
Moreover, also the relaxation towards an asymptotic or steady
state can, for example, manifest a nontrivial dynamics, from
power law to stretched exponentials and even aging [4–7]. A
particularly important class of open quantum systems is that of
boundary driven systems, in which a current may be induced
by the coupling, only at the extremities, of the system to the
environment. This class of systems is of particular relevance
in the study of quantum transport.

The knowledge of analytical solutions for open quantum
systems would allow us to build a better intuition of the physics
of these systems and to test numerical methods. The NESSs of
a boundary driven Heisenberg model can, in many regimes, be
computed analytically using a matrix product ansatz as shown
in [8–13] (for a review see [14]). In [15] an exact solution for
a diffusive XX chain is presented using a cleverly designed
ansatz. For a boundary driven bosonic noninteracting system,
in [16] the authors showed how to analytically compute the
local densities and the current. In the seminal article [17],
which is particularly relevant to our work, Prosen showed that
for a quadratic open fermionic model with L sites, solving for
the relaxation rates of the quantum Lindblad equation can be
reduced to the diagonalization of a 4L × 4L antisymmetric
matrix, which can be further reduced to the diagonalization
of a 2L × 2L general matrix [18]. A similar method was also
applied to quadratic open bosonic model [19].

Here we build on this strategy while focusing on a boundary
dissipative driven quadratic bosonic or fermionic system with
number-conserving Hamiltonians. We are able to reduce the
problem to the diagonalization of a L × L matrix which can
thus be studied numerically more effectively [20]. Moreover
we show that in many physically relevant cases the matrix
to be diagonalized is a tridiagonal bordered Toeplitz matrix
for which analytical expressions for the eigenvalues and
eigenvectors are known. We also show examples for which
we can explicitly write the relaxation rates (rapidities) of all
the normal master modes of the Lindblad master equation

(uniform noninteracting bosonic chain and XX chain). This
can be used, for example, to compute the relaxation gap, that
is the rapidity of the slowest decaying normal master mode.
Based on the equations we found, we propose an efficient
algorithm to compute the rapidities. We use this method to
study the scaling of the relaxation gap in a system with two
phase transitions of different nature. We show that the scaling
of the relaxation gap is different in the two cases. We also
show that our approach can be used to give an expression
for the steady state. We should stress that imposing fermionic
anticommutation relations between the normal master modes
requires a few further steps compared to the bosonic case, and
while the structure of the equations found may be similar, the
matrices involved have important differences.

This paper is divided in two large sections: in the first we
study the bosonic case and in the second the fermionic case.
To help the reader understand the material without having
to go back and forth between the sections, we have chosen
to write the parts on the bosons and that on the fermions
almost independently and with a similar structure: in Secs. II A
and III A we introduce the bosonic or fermionic model we
study. In Secs. II B and III B, we show how to diagonalize the
Lindblad master equation and obtain the normal master modes.
In Secs. II C and III C we show how to solve analytically the
boundary driven bosonic or XX chain and study the scaling
of the relaxation gap. In Secs. II D and III D we analytically
construct similarity transformations which map the vacuum
state to the steady state of the system. In Sec. II C 1, we
introduce an efficient numerical algorithm to compute the
quadratic observables such as currents and densities which
we then use to study the relaxation gap of systems which
present nonequilibrium phase transitions. This is exemplified
only for bosonic particles as the algorithm is based solely on the
structure of the equations. In Sec. IV, we draw our conclusions.

II. BOSONIC PARTICLES

A. Model

We consider an open quantum system of L sites with
bosonic particles. Its dynamics is described by the quantum
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Lindblad master equation [21,22] with Lindbladian L,

d

dt
ρ̂ = L(ρ̂) = − i

h̄
[Ĥ ,ρ̂] + D(ρ̂). (1)

Here ρ̂ is the density operator of the system, Ĥ is the
Hamiltonian, and D, the dissipator, describes the dissipative
part of the evolution. The Hamiltonian Ĥ is given by

Ĥ =
L∑

m,n=1

hm,nα̂
†
mα̂n, (2)

where h is an L × L Hermitian matrix, and α̂
†
j (α̂j ) creates

(annihilates) one boson on site j . The dissipative part is given
by

D(ρ̂) =
L∑

i,j=1

[�+
i,j (α̂†

i ρ̂α̂j − α̂j α̂
†
i ρ̂)

+�−
i,j (α̂i ρ̂α̂

†
j − α̂

†
j α̂i ρ̂) + H.c.], (3)

where �+ and �− are L × L Hermitian and non-negative
matrices. In the trivial case of only one site, the dissipator has
the familiar form D(ρ̂) = �+(α̂†ρ̂α̂ − α̂α̂†ρ̂) + �−(α̂ρ̂α̂† −
α̂†α̂ρ̂) + H.c., where �± is the heating or cooling rate.
In general, one can make a unitary transformation to the
creation and annihilation operators so that �+ and �− become
diagonal.

B. Solving the master equation

1. Reshaping the density operator in a different representation

We perform a one-to-one mapping from the density operator
basis elements |n1,n2, . . . nL〉〈n′

1,n
′
2, . . . n

′
L| to a state vector

basis (with 2L sites) |n1, . . . nL,n′
1, . . . n

′
L〉 (see for example

[18,23–25]). From this, the operator α̂i acting on site i on the
left of the density matrix is mapped to âi acting on the state
vector on the ith site, while the operator α̂i acting on the right of
the density matrix is mapped to â

†
L+i acting on the state vector.

We denote the density operator to be |ρ〉 in our representation.

2. Master equation in our representation

L in Eq. (1) can thus be written as

L =
(

a†1→L

aL+1→2L

)t

M
(

a1→L

a†L+1→2L

)

+
(

a1→L

a†L+1→2L

)t

Mt

(
a†1→L

aL+1→2L

)

+ tr(�−t − �+), (4)

where M is a 2L × 2L matrix,

M =
(

K �+

�−t K†

)
. (5)

Here K = (−ih/h̄ − �+ − �−t )/2, where with At we in-
dicate the transpose of the matrix A. We have also used
the notation a1→L to denote the column vector made of
operators â1,â2, . . . ,âL and a†1→L for the column vector made
of â

†
1,â

†
2, . . . ,â

†
L; the same applies for aL+1→2L and a†L+1→2L.

Indeed, we note that the Liouvillian L can be written in the
simple form of Eq. (4) because we study a number conserving
Hamiltonian. If the Hamiltonian is not number conserving, the
coefficient matrix will be a 4L × 4L matrix.

3. Normal master modes of the master equation

In general M is not Hermitian and it cannot always
be diagonalized, however in the following we start from
the assumption that we know a transformation which can
diagonalize M and preserves bosonic commutation relations.
This assumption is a posteriori verified in all the cases we
considered. This transformation is given by the matrices W1

and W2 as follows:

(
a1→L

a†L+1→2L

)
= W1

(
b1→L

b′
L+1→2L

)
, (6)(

a†1→L

aL+1→2L

)
= W2

(
b′

1→L

bL+1→2L

)
, (7)

whereas for a1→L and a†1→L, b1→L means the column vector
made of operators b̂1,b̂2, . . . ,b̂L and b′

1→L means the column
vector made of b̂′

1,b̂
′
2, . . . ,b̂

′
L. Again the same notation applies

for bL+1→2L and b′
L+1→2L.

Using this transformation we get

L =
(

b′
1→L

bL+1→2L

)t

Wt
2MW1

(
b1→L

b′
L+1→2L

)

+
(

b1→L

b′
L+1→2L

)t

Wt
1MtW2

(
b′

1→L

bL+1→2L

)

+ tr(�−t − �+). (8)

The bosonic commutation relation can be written as[(
a1→L

a†L+1→2L

)
,

(
a†1→L

aL+1→2L

)t
]

= ZL,

and requiring for the bosonic commutation relation to apply
also to the b̂ we get[(

b1→L

b′
L+1→2L

)
,

(
b′

1→L

bL+1→2L

)t]
= ZL

and hence

ZL = W1ZLWt
2 ⇐⇒ W2 = ZLWt

1
−1ZL. (9)

Here we have used

ZL =
(

1L 0
0 −1L

)
, (10)

where we have denoted 1l for an identity matrix of size l. In
the following we will also use the matrices

XL =
(

0 1L

1L 0

)
(11)

and

YL = −i

(
0 1L

−1L 0

)
. (12)
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Matrices in Eqs. (10)–(12), being given by a tensor product
between Pauli matrices and identity, satisfy the relations

Z2
L = 12L, X2

L = 12L, (13)

Y2
L = 12L, ZLXL = −XLZL = iYL. (14)

It follows that

L =
(

b′
1→L

bL+1→2L

)t

ZLW−1
1 ZLMW1

(
b1→L

b′
L+1→2L

)

+
(

b1→L

b′
L+1→2L

)t

Wt
1MtZLWt

1
−1ZL

(
b′

1→L

bL+1→2L

)

+ tr(�−t − �+)

=
(

b′
1→L

bL+1→2L

)t

ZL

(
W−1

1 ZLMW1
)( b1→L

b′
L+1→2L

)

+
(

b1→L

b′
L+1→2L

)t(
W−1

1 ZLMW1
)t

ZL

(
b′

1→L

bL+1→2L

)

+ tr(�−t − �+). (15)

This implies that the problem of finding the normal modes
of the system reduces to finding a W1 such that ZLM can be
diagonalized, that is,

W−1
1 (ZLM)W1 = diag(β1,β2, . . . ,β2L), (16)

where diag(�v) is a diagonal matrix with the elements of the
vector �v on its diagonal. It would then be possible to write the
following compact form for L:

L =2
L∑

i=1

(βib̂
′
i b̂i − βL+i b̂

′
L+i b̂L+i)

+
L∑

i=1

(βi − βL+i) + tr(�−t − �+). (17)

4. Diagonalizing ZLM

Here we will explicitly construct the eigenvalues and
eigenvectors of the matrix ZLM. From Eq. (5) we note the
relation

XLMXL = M†; (18)

we find that if

x =
(

u
v

)

is a right eigenvector of ZLM with eigenvalue ω, then x†YL is
a left eigenvector of ZLM with eigenvalue −ω∗. In fact, using
Eq. (13),

ZLMx = ωx → x†M†ZL = ω∗x†

→ x†XLXLM†XL = ω∗x†ZLXL

→ x†XLM = ω∗x†ZLXL.

This implies, using Eq. (14), that x†XLZLZLM = x†XLM =
ω∗x†ZLXL, which means x†YLZLM = −ω∗x†YL. Thus it

follows that

x†YL(ZLM) = −ω∗x†YL, (19)

i.e., x†YL is a left eigenvector of ZLM.
Moreover if x1 is a right eigenvector of ZLM with

eigenvalue ω1, and x2 is a right eigenvector of ZLM with
eigenvalue ω2, then if ω1 + ω∗

2 
= 0 it follows that x†
1YLx2 = 0.

In fact

ZLMx1 = ω1x1;

ZLMx2 = ω2x2,

then

x
†
1YLZLM = −ω∗

1x
†
1YL;

ZLMx2 = ω2x2;

→ (ω∗
1 + ω2)x†

1YLx2 = 0.

Since the eigenvalues of ZLM always appear in pairs, we
could list the eigenvalues and the corresponding eigenvectors
of ZLM as ω1,ω2, . . . ,ωL, − ω∗

1, . . . ,ω
∗
L, with the matrix

W1 composed in each column by the right eigenvectors
W1 = (�x1,�x2, . . . ,�x2L). Then following Eq. (19) we know that
�x†
L+j YL is the left eigenvector of ZLM correponding to ωj ,

and �x†
j YL is the left eigenvector corresponding to −ω∗

j , for
1 � j � L. Therefore the left eigenvectors of ZLM constitute
the matrix XLW†

1YL. We can now choose to renormalize the
right eigenvectors as

iXLW†
1YLW1 = ZL ⇔ YLW†

1YLW1 = −12L (20)

so that we have

W−1
1 = −YLW†

1YL, (21)

W2 = −XLW∗
1XL. (22)

At this point we define a new L × L matrix P, which
satisfies

P = K + �+ = (−ih/h̄ + �+ − �−t )/2, (23)

for which we assume to have the eigendecomposition

PWP = WPλλλP , (24)

where WP and λλλP are eigenvectors and eigenvalues. Then we
find that the 2L × L matrix formed by ( WP

WP
) constitutes L right

eigenvectors of ZLM, corresponding to λλλP , and the L × 2L

matrix (W†
P , −W†

P ) constitutes L left eigenvectors of ZLM,
corresponding to −λλλ∗

P . This can be shown from

ZLM
(

WP

WP

)
=

(
PWP

PWP

)
=

(
WP

WP

)
λλλP

and

(W†
P , − W†

P )ZLM = (−W†
P P†,W†

P P†)

= −λλλ∗
P (W†

P ,−W†
P ).

Hence by denoting the remaining L right eigenvectors of ZLM
as ( C

D ), where C, D are L × L matrices, we know that they
form the right eigenvectors with eigenvalues −λλλ∗

P , which are
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paired with the left eigenvectors (W†
P − W†

P ). Also (−D† C†)
will be the left eigenvectors corresponding to the eigenvalues
λλλP , which are paired with the right eigenvectors ( WP

WP
).

Therefore W1 and W2 can be written more explicitly as

W1 =
(

WP C
WP D

)
, W−1

1 =
(−D† C†

W†
P −W†

P

)
, (25)

W2 = −
(

D∗ W∗
P

C∗ W∗
P

)
, W−1

2 =
(

Wt
P −Wt

P−Ct Dt

)
, (26)

which means

a1→L = WP b1→L + Cb′
L+1→2L; (27a)

a†L+1→2L = WP b1→L + Db′
L+1→2L; (27b)

a†1→L = −D∗b′
1→L − W∗

P bL+1→2L; (27c)

aL+1→2L = −C∗b′
1→L − W∗

P bL+1→2L (27d)

and the inverse equation

b1→L = −D†a1→L + C†a†L+1→2L; (28a)

b′
L+1→2L = W†

P a1→L − W†
P a†L+1→2L; (28b)

b′
1→L = Wt

P a†1→L − Wt
P aL+1→2L; (28c)

bL+1→2L = −Cta†1→L + DtaL+1→2L. (28d)

Noticing that
∑

λP,i = tr(P) = [−i tr(h/h̄)
− tr(�−t − �+)]/2 and since the (λP,1, . . . λP,L, −
λ∗

P,1, · · · − λ∗
P,L) correspond to (β1, . . . β2L), the eigenvalues

of ZLM, we get the following identity:

L∑
i=1

(βi − βL+i) =
L∑

i=1

(λP,i + λ∗
P,i) = tr(�+ − �−t ), (29)

which exactly cancels the last term in the expression of L in
Eq. (17).

We can then write L as

L = 2
L∑

i=1

λP,i b̂
′
i b̂i + 2

L∑
i=1

λ∗
P,i b̂

′
L+i b̂L+i . (30)

The state |ρss〉 which annihilates all the operator b1→2L is
the steady state because L|ρss〉 = 0. The b̂i are the normal
master modes of the Lindblad master equation and the λP,i the
rapidities.

5. Nonpositivity of the eigenvalues of the Lindbladian

To prove the eigenvalues ofL are nonpositive, it is sufficient
to prove that all the eigenvalues of the matrix P are nonpositive.
The proof is similar as in [18]. Assuming Px = ωx, therefore
x†P† = ω∗x†, then we have

x†(P† + P)x = x†P†x + x†Px = 2R(ω)x†x, (31)

where R(ω) means the real part of ω. Moreover P† + P =
�+ − �−t hence all the eigenvalues of the matrix on the right-
hand side have to be nonpositive for the master equation to have
a steady state. Hence we can conclude that

R(ω) � 0, (32)

i.e., the real part of eigenvalues of the Lindbladian is
nonpositive.

6. Computing the expectation value 〈α̂†
i α̂ j〉

We denote |1〉 = ∑
i1,i2,...,iL

|i1,i2, . . . ,iL,i1,i2, . . . ,iL〉 to
be the state vector resulting from the mapping of an identity
operator, and 〈1| to be its transpose. Computing the expectation
value of observable Ô on the steady state ρ̂ss , which is
tr(Ôρ̂ss), is equivalent to the expression 〈1|Ô|ρss〉 where
we have simply rewritten the trace of an operator times the
density operator in the enlarged space. Of course the operator
Ô has also been mapped to the new space. In order to
compute quadratic expectation values such as tr(α̂†

i α̂j ρ̂ss) =
〈1|â†

i âj |ρss〉 it is convenient to rewrite the eigenequation
Eq. (16) in a different form.

To do so we start from W−1
1 W1 = 12L and using Eq. (25),

we have

D = C − W†
P

−1
; (33)

C = WP Q, (34)

where Q is a L × L Hermitian matrix. Therefore W1 can also
be written as

W1 =
(

WP WP Q

WP WP Q − W†
P

−1

)
. (35)

From Eq. (16), which can be written now as

ZLMW1 = W1

(
λλλP 0
0 −λλλ∗

P

)
, (36)

and using Eq. (35), together with � = WP QW†
P we have

P� + �P† = �+. (37)

Solving this equation for � will prove very useful in the
following.

Using Eqs. (27) we get

â′
i = −

L∑
k=1

D∗
i,kb̂

′
k −

L∑
k=1

WP
∗
i,kb̂L+k, (38)

âj =
L∑

k=1

WP j,kb̂k +
L∑

k=1

Cj,kb̂
′
L+k (39)

for 1 � i,j � L. Using this we can write

â′
i âj = −

L∑
k,m=1

D∗
i,kWP j,mb̂′

kb̂m −
L∑

k,m=1

D∗
i,kCj,mb̂′

kb̂
′
L+m

−
L∑

k,m=1

WP
∗
i,kWP j,mb̂L+kb̂m

−
L∑

k,m=1

WP
∗
i,kCj,mb̂L+kb̂

′
L+m. (40)

We then show that 〈1| is annihilated by all the operators b′
1→2L.

It is actually sufficient to prove it for all the b′
1→L because the
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b′
L+1→2L have the same structure. Taking 1 � i � L, and using

Eq. (28), we have

〈1|b′
i =

∑
i1,i2,...,iL

〈1|
(

L∑
k=1

Wt
P i,kâ

†
k −

L∑
k=1

Wt
P i,kâL+k

)

=
L∑

k=1

Wt
P i,k

∑
i1,i2,...,iL

〈1|(â†
k − âL+k)

=
L∑

k=1

Wt
P i,k

√
ik

∑
i1,i2,...,iL

〈. . . ,ik − 1, . . . ,ik, . . . |

−
L∑

k=1

Wt
P i,k

√
ik + 1

∑
i1,i2,...,iL

〈. . . ,ik, . . . ,ik + 1, . . . |

=
L∑

k=1

Wt
P i,k

√
ik + 1

∑
i1,i2,...,iL

〈. . . ,ik, . . . ,ik + 1, . . . |

−
L∑

k=1

Wt
P i,k

√
ik + 1

∑
i1,i2,...,iL

〈. . . ,ik, . . . ,ik + 1, . . . |

= 0. (41)

Hence, computing the trace of Eq. (40) we find that only the
last term does not vanish and gives

〈1|â′
i âj |ρss〉 = −〈1|

L∑
k,m=1

WP
∗
i,kCj,mb̂L+kb̂

′
L+m|ρss〉

= −
L∑

k,m=1

WP
∗
i,kCj,mδk,l = −(CWP

′)j,i

= −(WP QW′
P )j,i = −�j,i . (42)

The observable matrix Oi,j = tr(ρ̂α̂
†
i α̂j ) = 〈1|â†

i âj |ρss〉 is
then given by

O = −�t. (43)

C. Exact solution of a boundary driven bosonic chain

Here we apply our method to directly obtain the spectrum
of Eq. (4) for a class of linear chains (LCs) which can then be
solved analytically in the limit of a long chain. We consider a
linear lattice of L sites in which each site can have identical
bosons and which is driven at boundaries (similar, for example,
to [26]). The Lindbladian LLC then becomes

LLC(ρ̂) = − i

h̄
[ĤLC,ρ̂] + DLC(ρ̂) (44)

with

ĤLC = −J

L−1∑
l=1

(α̂†
l α̂l+1 + α̂

†
l+1α̂l) (45)

and

DLC(ρ̂) =
∑
l=1,L

[�+
l (α̂†

l ρ̂α̂l − α̂l α̂
†
l ρ̂)

+�−
l (α̂l ρ̂α̂

†
l − α̂

†
l α̂l ρ̂) + H.c.], (46)

where �+
l and �−

l are respectively the raising and lowering
rates at site l, while J is the tunneling amplitude.

In this case, the only nonzero elements of the matrix h are

hj,j+1 = hj+1,j = −J. (47)

For the dissipation we rewrite the four coefficients �a
l with

four new parameters:


1 = �−
1 − �+

1 , n̄1 = �+
1


1
, (48)


L = �−
L − �+

L, n̄L = �+
L


L

. (49)

Therefore, all the nonzero elements of matrix P are

P1,1 = −
1

2
, PL,L = −
L

2
, (50)

Pm,m+1 = Pm+1,m = iJ

2h̄
(51)

for 1 � m < L. Note that n̄1 and n̄L do not appear in the matrix
P, and hence will not affect the rapidities.

This results in the important fact that P is a tridiagonal
matrix whose elements are constant along the diagonals (i.e.,
Toeplitz) except for top-left and bottom-right corners (i.e.,
bordered). The eigenvalues and eigenvectors of this matrix can
be analytically computed [27] (for the eigendecomposition of
more general tridiagonal matrices see for example [28,29]).
Assuming that λ is an eigenvalue of P, and u is the
corresponding right eigenvector so that Pu = λu, then we find
that λ and u are given by

λ = i
J

h̄
cos (θ ) (52)

and the L elements of u are

uj = u1

sin(θ )

{
sin (jθ ) − i

h̄
1

J
sin[(j − 1)θ ]

}
. (53)

In Eqs. (52) and (53) θ is a complex number which satisfies
the equality

− J 2

h̄2 sin[(L + 1)θ ] + i
J

h̄
(
1 + 
L) sin (Lθ )

+ 
1
L sin [(L − 1)θ ] = 0 (54)

except the trivial solutions θ 
= mπ with m ∈ Z.
Denoting θ = α + iβ, we transform the above equation into

two equations of real numbers,

J 2

h̄2 sin[(L + 1)α] cosh[(L + 1)β]

+ J

h̄
(
1 + 
L) cos (Lα) sinh(Lβ)

− 
1
L sin[(L − 1)α] cosh[(L − 1)β] = 0, (55)

J 2

h̄2 cos[(L + 1)α] sinh[(L + 1)β]

− J

h̄
(
1 + 
L) sin (Lα) cosh(Lβ)

− 
1
L cos[(L − 1)α] sinh[(L − 1)β] = 0. (56)
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In the following we solve the above equation approximately,
in the limit L → ∞. All the solutions are found for α ∈ [0,π ]
[29]. We then make the approximation that

sinh[(L + 1)β] � sinh[(L − 1)β] � sinh[Lβ], (57)

cosh[(L + 1)β] � cosh[(L − 1)β] � cosh[Lβ] (58)

with which Eqs. (55) and (56) become

J 2

h̄2 sin [(L + 1)α] + J

h̄
(
1 + 
L) cos (Lα) tanh (Lβ)

− 
1
L sin [(L − 1)α] = 0, (59)

J 2

h̄2 cos [(L + 1)α] tanh (Lβ) − J

h̄
(
1 + 
L) sin (Lα)

− 
1
L cos [(L − 1)α] tanh (Lβ) = 0. (60)

Combining Eqs. (59) and (60) we get

J 2 sin [(L + 1)α] − h̄2
1
L sin[(L − 1)α]

h̄J (
1 + 
L) cos (Lα)

= h̄J (
1 + 
L) sin (Lα)

h̄2
1
L cos [(L − 1)α] − J 2 cos [(L + 1)α]
, (61)

which can be rewritten as

(κ1 + κL) sin (2Lα) + sin [2(L − 1)α]

+ κ1κL sin [2(L + 1)α] = 0, (62)

where κ1 = J 2/(h̄2
2
1) and κL = J 2/(h̄2
2

L). Equation (62)
can be solved analytically when J 2 = h̄2
1
L. In fact κ1 =
1
κL

= κ and Eq. (62) reduces to(
κ + 1

κ

)
sin(2Lα) + sin[2(L − 1)α] + sin[2(L + 1)α] = 0

(63)

or equivalently [κ + 1
κ

+ 2 cos (α)] sin (2Lα) = 0. Since κ +
1/κ � 2, the real solutions are

α = kπ

L
(64)

with 1 � k < L. Note that the solutions of Eq. (63) α =
kπ/2L with k odd have been discarded because they are
inconsistent with Eqs. (59) and (60).

We then get for β

tanh (Lβ) = − 2
√

κ

κ + 1
sin

kπ

L
, (65)

which results in

β = 1

2L
ln

(
1 − 2

√
κ

κ+1 sin kπ
L

1 + 2
√

κ

κ+1 sin kπ
L

)
. (66)

Using Eqs. (52) and that θ = α + iβ we can write

λ = J

h̄
sin (α) sinh (β) + i

J

h̄
cos (α) cosh (β) (67)

and inserting the various α and β from Eqs. (64) and (66) we
have an analytical solution for the eigenvalues. In Fig. 1 we
compare the analytical solution Eq. (67), blue diamonds, with

(h̄λP/J) ×10-3
-4 -3 -2 -1 0

Im
(h̄

λ
P
/
J
)

-1

-0.5

0

0.5

1

Re

FIG. 1. Eigenvalues λλλP of P which correspond to the spectrum
of the Lindbladian LLC of Eqs. (44)–(46), for a boundary driven
bosonic chain of length L = 100, h̄
1/J = 5, h̄
L/J = 1/5. The
blue diamonds are given by the numerical solution of Eq. (24), while
the red circles are given by the analytical solution Eq. (67) using
Eqs. (64) and (66). Re(ω) and Im(ω) mean respectively the real and
the imaginary part of the complex number ω.

numerical evaluation of the spectrum for Eq. (44), red circles,
for a system of length L = 100. The figure shows a remarkable
match of the analytical and numerical spectra.

A natural consequence of knowing the spectrum is that it is
possible to compute the relaxation gap �, which is given by
the eigenvalues of the Lindbladian with the real part closest to
zero. We thus get

� = J

h̄
sin

(
π

L

)
sinh

[
1

2L
ln

(
1 + 2

√
κ

κ+1 sin
(

π
L

)
1 − 2

√
κ

κ+1 sin
(

π
L

)
)]

� 2
√

κJ

h̄(κ + 1)L
sin2

(
π

L

)

� 2π2√κ

h̄(κ + 1)

J

L3
, (68)

which thus scales as 1/L3, in agreement with the predictions
in [17,30].

1. Efficient algorithm to compute quadratic observables

Equation (37) is a Lyapunov equation, which is a special
case of Sylvester equations [31,32]. For this type of equations
there exist numerical methods to efficiently solve them of order
O(L3). In this section we also propose an O(L3) algorithm
to solve Eq. (37) based on findings in the previous sections.
We start by solving the eigenvalue decomposition problem
of matrix P, to get the left eigenvector space Wl

P , the right
eigenvector space WP , and the diagonal matrix of eigenvalues
λλλP = diag(λP,1, . . . λP,L). At this point it is already possible
to figure whether the system has any dark mode; In fact this
would be manifested by the existence of eigenvalues with zero
real part. If the real part of all eigenvalues of P is strictly
smaller than 0, then the system has no dark modes, the steady
state is unique, and the following algorithm can be used. We
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can thus write � = WP QW†
P which gives

P� + �P† (69)

= PWP QW†
P + WP QW†

P P†

= WPλλλP QW†
P + WP QλλλP

∗W†
P

= �+.

We can renormalize WP and Wl
P so that Wl

P = W−1
P . From

Eq. (69) we get the elements of the Hermitian matrix Q by

λλλP Q + Qλλλ∗
P = W−1

P �+(
W−1

P

)† = Wl
P �+Wl

P

†

⇔ Qm,n =
(
Wl

P �+Wl
P

†)
m,n

λP,m + λ∗
P,n

. (70)

The elements of the matrix corresponding to 〈α̂†
i α̂j 〉, i.e.,

Oi,j = tr(ρ̂α̂
†
i α̂j ) are then given by, using Eq. (43),

Oi,j = −�j,i = −
∑
m,n

WPj,mQm,nW∗
P i,n (71)

Note that with this approach we only need to solve an
eigenvalue decomposition problem, plus a few matrix multi-
plications. All the matrices involved in these procedures are
of size L × L. The complexity of this algorithm is thus O(L3)
which is the complexity of solving a L × L non-Hermitian
eigendecomposition problem.

It should also be noted that because of the structure
of Eq. (70), this approach can become unstable if P has
eigenvalues whose real part is very close to 0.

2. Scaling of the relaxation time across the phase transition

With the algorithm introduced by Eqs. (70) and (71),
we can more effectively explore larger systems allowing us
to easily study the scaling of the relaxation gap in various
nonequilibrium phases. In the following we apply our method
to study the boundary driven bosonic ladder when also a
magnetic field is imposed on it. This system is depicted in
Fig. 2(a). The Lindblad master equation for this bosonic ladder
(BL) is

LBL(ρ̂) = − i

h̄
[ĤBL,ρ̂] + DBL(ρ̂), (72)

with Hamiltonian ĤBL given by

ĤBL = −
⎛
⎝J ‖ ∑

p,j

ei(−1)p+1φ/2α̂
†
j,pα̂j+1,p + J⊥ ∑

j

α̂
†
j,1α̂j,2

⎞
⎠

+ H.c. (73)

Here J ‖ is the tunneling constant in the legs, and J⊥ for the
rungs. α̂j,p (α̂†

j,p) annihilates (creates) a boson in the upper
(for p = 1) or lower (for p = 2) chain at the j th rung of the
ladder. A particle tunneling around a plaquette would acquire
a net phase of φ. We consider a dissipative coupling DBL on

(a)

FIG. 2. (a) Ladder made of two coupled linear chains, with local
bosonic excitations described by the annihilation operators at site j ,
α̂j,p , where p = 1,2 for the upper and the lower leg respectively. J⊥

is the tunneling between the legs, while J ‖ is the tunneling between
sites in the legs. A gauge field imposes a phase φ. (b) Chiral current
Jc as a function of J ⊥ and φ for L = 500. The white dashed and
the white dot-dashed lines correspond respectively to the two phase
transitions in Eqs. (79) and (80) respectively. The black horizonal line
corresponds to the line J ⊥ = 1.7, and the four white circles a, b, c, and
d on this line correspond to φ = φc1,0.5,φc1,0.6 respectively. Panels
(a) and (b) are similar to [33]. (c) The relaxation time h̄�/J ‖ vs the
length of the ladder L. Both h̄�/J ‖ and L are shown in log scale so
that an algebraic decay is clearly represented by a straight line. The
four lines correspond to the points a, b, c, and d in panel (b). The line
marked with green diamonds (line c) shows the scaling at φ = 0.5398
which corresponds to the nonequilibrium phase transition described
by Eq. (80). The red dashed line is a linear fitting of line c, which
has the exponent −5. The other three straight dashed lines are linear
fittings of a, b, and d, all with the same exponent −3.

the two edges modelled by

DBL(Ô) =
∑

j=1,L


[n̄j,1(α̂j,1Ôα̂
†
j,1 − α̂j,1α̂

†
j,1Ô)

+ (n̄j,1 + 1)(α̂†
j,1Ôα̂j,1 − α̂

†
j,1α̂j,1Ô) + H.c.],

(74)
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where 
 is the coupling constant of the bosons at sites j =
1,L, while n̄j,1 is the local particle density that the dissipator
would impose to the bosonic site if the site was isolated. The
dissipator is only coupled to the sites at the extremeties of the
upper leg [see Fig. 2(a)].

The unitary counterpart of this system is known to exhibit
a quantum phase transition from the Meissner to the vortex
phase. The transition between the two phases is characterized
by the chiral current Jc, defined as the difference of the current
between the upper and the lower leg,

Jc =
∑

j

(Jj,1 − Jj,2)/L, (75)

where Jj,p = 〈iJ ‖ei(−1)p+1φ/2α̂
†
j,pα̂j+1,p + H.c.〉 is the parti-

cle current out of site j on the pth leg. In the Meissner phase,Jc

is nonzero, while in the vortex phase, Jc is greatly suppressed
[34–36]. For an experimental realization with ultracold gases
see [37].

For the open case this system was studied in detail in [33]
where it was shown that two nonequilibrium phase transitions
can emerge between phases with or without chiral current.
Moreover, one of the two transitions would also be signalled
by a sudden suppression of the current. The coupling to the
baths studied here corresponds to the R configuration of [33]
for which these two transitions can occur.

Translating this model to the elements of P we get

P(1,1),(1,1) = P(L,1),(L,1) = −
, (76)

P(j,1),(j,2) = P(j,2),(j,1) = i
J⊥

2h̄
, (77)

P(j,p),(j+1,p) = P∗
(j+1,p),(j,p) = i

J ‖

2h̄
ei(−1)p+1φ/2 (78)

for 1 � j � L [except in Eq. (78) for which j < L]. All the
other elements of P are zero. We note that in this case P
is a block bordered Toeplitz matrix for which, to the best
of our knowledge, the analytical eigendecomposition is not
known [17]. The two phase transitions occur, respectively, for
φ = φ̃, φ̄ and J⊥ = J̃⊥, J̄⊥ given by

J̄⊥ = 2J ‖ cos(φ̄/2), (79)

J̃⊥ = 2J ‖ tan(φ̃/2) sin(φ̃/2) (80)

as shown in Fig. 2(b). The transition line Eq. (79) is depicted
by a white dashed line, while the other transition line, Eq. (80),
is represented by a white dot-dashed line.

Here we focus on the scaling of the relaxation gap of
the Lindbladian (72) across the two open quantum phase
transitions. In Fig. 2(b), we have chosen J⊥/J ‖ = 1.7, where
the system exhibits two phase transitions at φ = φc1 ≈ 0.3532
and φ = φc2 ≈ 0.5398, calculated from Eqs. (79) and (80).
In Fig. 2(c) we show the scaling of the relaxation gap as the
size of the system increases (we consider L = 10 → 1000).
The gap is analyzed in four distinct points a, b, c, and d

for φ = φc1, 0.5, φc2, and 0.6 as shown by the white dots in
Fig. 2(b). For the parameters corresponding to points a, b,
and d the scaling of the gap is proportional to L−3 as shown
by, respectively, the blue crosses, the pink circles, and the

red stars in Fig. 2(c). All the fits are represented by dashed
lines. For the transition point c, green diamonds, the scaling
is instead L−5 as predicted in [17,30]. It is here important to
discuss the difference in scaling of the relaxation gap in the
two transition lines. For the line given by Eq. (80), and hence
also point c, the Hamiltonian of the bulk system presents a
quantum phase transition, and the energy spectrum goes from
one to two minima. At the transition point the spectrum is not
quadratic but quartic thus affecting the scaling of the relaxation
gap. Instead, for the line given by Eq. (79) the low-energy
spectrum is not qualitatively changed; instead a gap opens
(see [33]). While the opening of the gap affects the total and
chiral currents, it does not change the scaling of the relaxation
gap. At the intersection point between the two transition lines
the scaling is indeed L−5.

D. Computing the steady state

From Eq. (30) we understand that the steady state of the
system is the vacuum of the operators b̂j , that is |ρss〉 = |0〉b.
This is related to the vacuum of the âj , |0〉a , by a linear
transformation. We can then write

|ρss〉 = Ŝ−1|0〉a. (81)

In the following we show how to compute Ŝ from W1. First
we write Ŝ = eT̂ , where T̂ is

T̂ =1

2

(
a†1→L

aL+1→2L

)t(
U V
I J

)(
a1→L

a†L+1→2L

)

+ 1

2

(
a1→L

a†L+1→2L

)t(
Ut It

Vt Jt

)(
a†1→L

aL+1→2L

)
, (82)

where U,V,I,J are L × L matrix. Hereafter we will write

W =
(

U V
I J

)
. (83)

To calculate eT̂ â
†
j e

−T̂ and eT̂ âL+j e
−T̂ , we use the relations

Ê := eT̂ â
†
j e

−T̂ =
∞∑

m=1

1

m!
[T̂ ,â

†
j ]m,

F̂ := eT̂ âL+j e
−T̂ =

∞∑
m=1

1

m!
[T̂ ,âL+j ]m,

where the nested commutator is defined recursively as
[Â,B̂]m+1 ≡ [Â,[Â,B̂]m] with [Â,B̂]0 ≡ B̂.

After a little algebra it is possible to show that

Ŝ

(
a†1→L

aL+1→2L

)t

Ŝ−1 (84)

=
(

a†1→L

aL+1→2L

)t

eWZL .

Similarly, we have

Ŝ

(
a1→L

a†L+1→2L

)
Ŝ−1 = e−ZLW

(
a1→L

a†L+1→2L

)
. (85)

We now denote W̃1 = e−ZLW,W̃2 = eWZL , and we see that

ln(W̃1)ZL + ZLln(W̃2) = 0, (86)
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which allows us to write

W̃2 = ZLW̃−1
1 ZL. (87)

Therefore we have that

ŜLŜ−1 =
(

a†1→L

aL+1→2L

)t

W̃2MW̃1

(
a1→L

a†L+1→2L

)

+
(

a1→L

a†L+1→2L

)t

W̃t
1MtW̃t

2

(
a†1→L

aL+1→2L

)

+ tr(�−t − �+)

=
(

a†1→L

aL+1→2L

)t

ZLW̃−1
1 ZLMW̃1

(
a1→L

a†L+1→2L

)

+
(

a1→L

a†L+1→2L

)t

W̃t
1MtZL

(
W̃t

1

)−1
ZL

(
a†1→L

aL+1→2L

)

+ tr(�−t − �+). (88)

Thus we see that if we set W̃1 = W1 which means

W = −ZLlnW1, (89)

then following from Eq. (17) and the explicit construction of
W1 in Sec. II B, Eq. (88) can be simply written as

ŜLŜ−1 = 2
L∑

i=1

λP,i â
†
i âi + 2

L∑
i=1

λ∗
P,i â

†
L+i âL+i . (90)

It follows that the vacuum |0〉a is the steady state of ŜLŜ−1

which implies that the steady state of L is given by Eq. (81).
Since W1 is given by Eq. (89), we can also reconstruct T̂ from
Eq. (82).

III. FERMIONIC PARTICLE

A. Model

We consider an open quantum system of L sites with
fermionic particles. Its dynamics is described by the quantum
Lindblad master equation, Hamiltonian, and dissipators given,
respectively, by Eqs. (1)–(3), however now the operators α̂j

and α̂
†
j are fermionic.

B. Solving the master equation

1. Mapping the density operator into new representations

In order to be able to treat the open fermionic sys-
tem, we proceed similarly to the bosonic case, how-
ever, in order to preserve anticommutation relations be-
tween the operators, we will have to use an ulterior
transformation.

First we perform a one-to-one mapping from the den-
sity operator basis elements |n1,n2, . . . nL〉〈n′

1,n
′
2, . . . n

′
L| to

a state vector basis (with 2L sites) which we denote as
|n1, . . . nL,n′

1, . . . n
′
L〉A (see for example [18,23–25]). As a

result, the operator α̂i acting on site i to the left of the
density matrix is mapped to âi acting on the state vector
on the ith site too, while the operator α̂i acting on the right
of the density matrix is mapped to â

†
L+i acting on the state

vector. We refer to this new representation defined by the
2L modes â as A. The 2L modes âi satisfy the following
relations:

{âi ,âj } = 0, {â†
i ,â

†
j } = 0, (91a)

{âL+i ,âL+j } = 0, {â†
L+i ,â

†
L+j } = 0, (91b)

{âi ,â
†
j } = δij , {âL+i ,â

†
L+j } = δij , (91c)

[âi ,âL+j ] = 0, [â†
i ,â

†
L+j ] = 0, (91d)

[âi ,â
†
L+j ] = 0, [â†

i ,âL+j ] = 0. (91e)

The operators acting on the group of sites 1 → L and the
group of sites L + 1 → 2L satisfy fermionic anticommutation
relations among themselves separately. However, the operators
between these two groups commute with each other.

To enforce the fermionic anticommutation relations over
all the sites, we perform a second mapping from 2L modes
âi to another set of 2L modes b̂i , which we refer to as the B
representation:

b̂i = âi , b̂
†
i = â

†
i , (92a)

b̂L+i = P âL+i , b̂
†
L+i = â

†
L+iP, (92b)

where P is the parity operator defined as (following [17])

P = eiπN , N =
2L∑
j=1

b̂
†
j b̂j . (93)

We note that P anticommutes with all the operators b̂,b̂†,
which means

{P,b̂i} = 0, {P,b̂
†
i } = 0, (94)

for 1 � i � 2L.
Now it is straightforward to verify that the 2L modes b̂

satisfy the fermionic anticommutation relations

{b̂i ,b̂L+j } = {âi ,P âL+j } = 0, (95a)

{b̂†i ,b̂†L+j } = {â†
i ,â

†
L+jP} = 0, (95b)

{b̂i ,b̂
†
L+j } = {âi ,â

†
L+jP} = 0, (95c)

{b̂†i ,b̂L+j } = {â†
i ,P âL+j } = 0, (95d)

{b̂L+i ,b̂L+j } = {P âL+i ,P âL+j } = 0, (95e)

{b̂†L+i ,b̂
†
L+j } = {P â

†
L+i ,â

†
L+jP} = 0, (95f)

{b̂i ,b̂
†
j } = {P âi ,â

†
jP} = δij , (95g)

{b̂L+i ,b̂
†
L+j } = {P âL+i ,â

†
L+jP} = δij . (95h)

The unitary part of Eq. (1) can be written in the B
representation as

[Ĥ ,ρ̂]B =
L∑

i,j=1

(hij b̂
†
i b̂j − hji b̂

†
L+i b̂L+j )|ρ〉B, (96)
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and the dissipative part of Eq. (1) can be written in the B
representation as

DB|ρ〉B =
L∑

i,j=1

(�+
ij b̂

†
i b̂

†
L+jP − �+

ji b̂i b̂
†
j + �−

ji b̂L+i b̂jP

− �−
ji b̂

†
i b̂j − �+

ij

∗
b̂
†
L+i b̂

†
jP − �+

ji

∗
b̂L+i b̂

†
L+j

− �−
ji

∗
b̂i b̂L+jP − �−

ji

∗
b̂
†
L+i b̂L+j )|ρ〉B, (97)

where DB is the dissipator D in the B representation while
|ρ〉B the density operator ρ̂ in B.

Now the system is almost in quadratic form of operators b̂i ,
b̂
†
i except for the presence of the parity operator P . To remove

the P operators, we first note that in general we can write |ρ〉B
as

|ρ〉B =
∑

n1,...,nL,n′
1,...,n

′
L

b̂
†,n1
1 . . . b̂

†,nL

L b̂
†,n′

1
L+1 . . . b̂

†,n′
L

2L |0〉B, (98)

where ni,n
′
i = 0,1 for 1 � i � L, and |0〉B is the vacuum state

|0〉〈0| in the B representation. We can see that P conserves the
parity of the number of operators of each term in Eq. (98),
which is N = ∑L

i=1(ni + n′
i). Therefore, the even sector,

defined as the group of terms for which N is even, and the
odd sector, defined as the group of terms for which N is
odd, of |ρ〉B, when acted on by P , will obtain opposite signs.
Moreover, we can see that each term in Eqs. (96) and (97)
does not change the parity of N , which means the even sector
and the odd sector of |ρ〉b are decoupled under the evolution of
Eq. (1). Thus we can treat them separately, and in the following
we only consider the even sector for which we can just set
P = 1 [38]. Hence we have

DB|ρ〉B =
L∑

i,j=1

(�+
ij b̂

†
i b̂

†
L+j − �+

ji b̂i b̂
†
j + �−

ji b̂L+i b̂j

− �−
ji b̂

†
i b̂j − �+

ij

∗
b̂
†
L+i b̂

†
j − �+

ji

∗
b̂L+i b̂

†
L+j

− �−
ji

∗
b̂i b̂L+j − �−

ji

∗
b̂
†
L+i b̂L+j )|ρ〉B. (99)

2. Master equation in the new representation

Combining Eqs. (96) and (99), the Lindbladian L of Eq. (1)
can be written in the B representation as

LB =
(

b†
1→L

bL+1→2L

)t

M
(

b1→L

b†
L+1→2L

)

−
(

b1→L

b†
L+1→2L

)t

Mt

(
b†

1→L

bL+1→2L

)

− tr(�−t + �+), (100)

where M is a 2L × 2L matrix,

M =
(

K �+

�−t −K†

)
, (101)

and K = (−ih/h̄ + �+ − �−t )/2, where with At we indicate
the transpose of the matrix A. We have also used the notation
b1→L to mean a column vector with elements b̂1,b̂2, . . . ,b̂L

and b†
1→L a column vector with elements b̂

†
1,b̂

†
2, . . . ,b̂

†
L (and

similarly for both bL+1→2L and b†
L+1→2L). We should note

here the difference of the last term of Eq. (100), −tr(�−t +
�+), compared to the bosonic case, tr(�−t − �+). As for the
bosonic case in Sec. II, we stress here that the simple form
of Eq. (100) is due to our choice of a number conserving
Hamiltonian.

3. Normal master modes of the master equation

In general M is not Hermitian and it cannot always be
diagonalized, however in the following we start from the
assumption that we know a transformation which can diag-
onalize M and preserves fermionic anticommutation relations.
This assumption is a posteriori verified in all the cases we
considered. This transformation is given by the matrices W1

and W2 as follows:(
b1→L

b†
L+1→2L

)
= W1

(
c1→L

c′
L+1→2L

)
, (102)(

b†
1→L

bL+1→2L

)
= W2

(
c′

1→L

cL+1→2L

)
, (103)

where as for b1→L and b†
L→L, c1→L means the column vector

made of operators ĉ1,ĉ2, . . . ,ĉL and c′
1→L means the column

vector made of ĉ′
1,ĉ

′
2, . . . ,ĉ

′
L, and similarly for cL+1→2L and

c′
L+1→2L. In the following we refer to the new representation

defined by ĉ as the C representation. Using this transformation
we get

LC =
(

c′
1→L

cL+1→2L

)t

Wt
2MW1

(
c1→L

c′
L+1→2L

)

−
(

c1→L

c′
L+1→2L

)t

Wt
1MtW2

(
c′

1→L

cL+1→2L

)

− tr(�−t + �+), (104)

where LC denotes the Lindbladian L in the C representation.
The fermionic anticommutation relation can be written as{(

b1→L

b†
L+1→2L

)
,

(
b†

1→L

bL+1→2L

)t
}

= 12L,

and requiring for the fermionic anticommutation relation to
apply also to the ĉ we get{(

c1→L

c′
L+1→2L

)
,

(
c′

1→L

cL+1→2L

)t}
= 12L

and hence

W2 = Wt
1
−1

. (105)

Using the properties of the ZL, XL, and YL matrices, Eqs. (10)–
(14), it again follows that

LC =
(

c′
1→L

cL+1→2L

)t

W−1
1 MW1

(
c1→L

c′
L+1→2L

)

−
(

c1→L

c′
L+1→2L

)t

Wt
1MtWt

1
−1

(
c′

1→L

cL+1→2L

)

− tr(�−t + �−). (106)

This implies that the problem of finding the normal modes
of the system reduces to finding a W1 such that M can be
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diagonalized, that is,

W−1
1 MW1 = diag(β1,β2, . . . ,β2L), (107)

where diag(�v) is a diagonal matrix with the elements of the
vector �v on its diagonal. It is then possible to write the
following compact form for LC :

LC = 2
L∑

i=1

(βi ĉ
′
i ĉi − βL+i ĉ

′
L+i ĉL+i)

−
L∑

i=1

(βi − βL+i) − tr(�−t + �+). (108)

4. Diagonalizing M

As we have seen until now, due to the different statistics of
fermions and bosons, in order to preserve their commutation
or anticommutation, for the bosonic case we diagonalize the
matrix ZLM (see Sec. II), while for the fermionic case the
relevant matrix to be diagonalized is M. Now we explicitly
construct the eigenvalues and eigenvectors of the matrix M.
Noticing the relation

YLMYL = −M† (109)

we find that if

x =
(

u
v

)

is a right eigenvector of M with eigenvalue ω, then x†Y is a
left eigenvector of M with eigenvalue −ω∗. In fact

Mx = ωx → x†M† = ω∗x†,

→ x†YLYLM†YL = ω∗x†YL,

→ x†YLM = −ω∗x†YL. (110)

Moreover if x1 is a right eigenvector of M with eigenvalue
ω1, and x2 is a right eigenvector of M with eigenvalue ω2, then
if ω1 + ω∗

2 
= 0 then x
†
1YLx2 = 0. In fact

Mx1 = ω1x1;

Mx2 = ω2x2,

then

x
†
1YLM = −ω∗

1x
†
1YL;

Mx2 = ω2x2;

→ (ω∗
1 + ω2)x†

1YLx2 = 0.

Since the eigenvalues of M always appear in pairs, we
could list the eigenvalues and the corresponding eigenvectors
of M as ω1,ω2, . . . ,ωL, − ω∗

1, . . . ,ω
∗
L, with the matrix W1

composed in each column by the right eigenvectors W1 =
(�x1,�x2, . . . ,�x2L). Then following Eq. (110) we know that
�x†
L+j YL is the left eigenvector of M corresponding to ωj ,

and �x†
j YL is the left eigenvector corresponding to −ω∗

j , for
1 � j � L. Therefore the left eigenvectors of M constitute
the matrix XLW†

1YL. We can now choose to renormalize the
right eigenvectors as

iXLW†
1YLW1 = ZL ⇔ YLW†

1YLW1 = −12L (111)

so that we have

W−1
1 = −YLW†

1YL, (112)

W2 = −YLW∗
1YL. (113)

At this point we define a new L × L matrix P, which
satisfies

P = K − �+ = (−ih/h̄ − �+ − �−t )/2, (114)

for which we assume to have the eigendecomposition

PWP = WPλλλP , (115)

where WP and λλλP are eigenvectors and eigenvalues. Then we
find that the 2L × L matrix formed by ( WP

−WP
) constitutes L

right eigenvectors of M, corresponding to λλλP , and the L ×
2L matrix (W†

P W†
P ) constitutes L left eigenvectors of M,

corresponding to −λλλ∗
P . This can be shown from

M
(

WP

−WP

)
=

(
PWP

−PWP

)
=

(
WP

−WP

)
λλλP

and

(W†
P ,W†

P )M = (−W†
P P†, − W†

P P†)

= −λλλ∗
P (W†

P ,W†
P ).

By denoting the remaining L right eigenvectors of M as ( C
D ),

where C, D are L × L matrices, we know that they form
the right eigenvectors with eigenvalues −λλλ∗

P , which are paired
with the left eigenvectors (W†

P , W†
P ). Also (−D† , C†) will be

the left eigenvectors corresponding the eigenvalues λλλP , which
are paired with the right eigenvectors ( WP

−WP
).

Therefore W1 and W2 can be written more explicitly as

W1 =
(

WP C
−WP D

)
, W−1

1 =
( −D† C†

−W†
P −W†

P

)
, (116)

W2 =
(−D∗ −W∗

P

C∗ −W∗
P

)
, W−1

2 =
(

Wt
P −Wt

P

Ct Dt

)
,

(117)

which means

b1→L = WP c1→L + Cc′
L+1→2L; (118a)

b†
L+1→2L = −WP c1→L + Dc′

L+1→2L; (118b)

b†
1→L = −D∗c′

1→L − W∗
P cL+1→2L; (118c)

bL+1→2L = C∗c′
1→L − W∗

P cL+1→2L (118d)

and the inverse equation

c1→L = −D†b1→L + C†b†
L+1→2L; (119a)

c′
L+1→2L = −W†

P b1→L − W†
P b†

L+1→2L; (119b)

c′
1→L = Wt

P b†
1→L − Wt

P bL+1→2L; (119c)

cL+1→2L = Ctb†
1→L + DtbL+1→2L. (119d)

Noticing that
∑

λP,i = tr(P) = [−i tr(h/h̄) + tr(�−t −
�+)]/2 and since the (λP,1, . . . λP,L, − λ∗

P,1, . . . − λ∗
P,L)
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correspond to the eigenvalues of M, (β1, . . . β2L), we get the
following identity:

L∑
i=1

(βi − βL+i) =
L∑

i=1

(λP,i + λ∗
P,i) = −tr(�+ + �−t ),

(120)

which exactly cancels the last term in the expression of LC in
Eq. (108).

We can then write LC as

LC = 2
L∑

i=1

λP,i ĉ
′
i ĉi + 2

L∑
i=1

λ∗
P,i ĉ

′
L+i ĉL+i . (121)

The state |ρss〉C which annihilates all the operator c1→2L is
the steady state because Lc|ρss〉C = 0. The ĉi are the normal
master modes of the Lindblad master equation and the λP,i the
rapidities.

5. Computing the expectation value 〈α̂†
i α̂ j〉

The expectation value 〈α̂†
i α̂j 〉 is given by tr(α̂†

i α̂j ρ̂ss). In the
A representation this is written as A〈1|â†

i âj |ρss〉A where A〈1|
is the transpose of the identity operator in theA representation,
|1〉A = ∑

i1,i2,...,iL
|i1,i2, . . . ,iL,i1,i2, . . . ,iL〉A. In the follow-

ing we will compute this quantity by transforming the â
†
i and

âj in the C representation, and using the fact that the steady
state is the vacuum of the ĉi , i.e., |ρss〉A = |0〉C .

Since for 1 � j � L, âj = b̂j ,â
†
j = b̂

†
j , we have tr(ρ̂α̂

†
i α̂j )

= A〈1|b̂†i b̂j |0〉C . Using Eqs. (118) we get

b̂
†
i = −

L∑
k=1

D∗
i,k ĉ

′
k −

L∑
k=1

WP
∗
i,k ĉL+k, (122)

b̂j =
L∑

k=1

WP j,kĉk +
L∑

k=1

Cj,k ĉ
′
L+k. (123)

Using this we can write

b̂
†
i b̂j = −

L∑
k,m=1

D∗
i,kWP j,mĉ′

kĉm −
L∑

k,m=1

D∗
i,kCj,mĉ′

kĉ
′
L+m

−
L∑

k,m=1

WP
∗
i,kWP j,mĉL+kĉm

−
L∑

k,m=1

WP
∗
i,kCj,mĉL+kĉ

′
L+m. (124)

We then show that A〈1| is annihilated by all the operators
c′

1→2L. From Eq. (119) we note that

A〈1|ĉ′
i =

∑
n1,...,nL

A〈1|
L∑

k=1

Wt
P i,k(b̂†k − b̂L+k), (125)

A〈1|ĉ′
L+i = −

∑
n1,...,nL

A〈1|
L∑

k=1

W†
P i,k

(b̂k + b̂
†
L+k), (126)

for 1 � i � L and ni = 0,1. It is thus sufficient to prove that∑
n1,...,nL

A〈1|(b̂†k − b̂L+k) = 0 (127)

and ∑
n1,...,nL

A〈1|(b̂k + b̂
†
L+k) = 0, (128)

for 1 � k � L. We have, using the operator Nk = ∑k
j=1 n̂j

and considering that P|1〉A = |1〉A (there is always an even
number of particles in the identity of the A representation),∑

n1,...,nL

A〈1|(b̂†k − b̂L+k)

=
∑

n1,...,nL

A〈1|(â†
k − P âL+k)

=
∑

n1,...,nL

A〈1|â†
k −

∑
n1,...,nL

A〈1|âL+k

=
∑

n1,...,nL

(−1)Nk−1nkA〈. . . ,1 − nk, . . . ,nk, . . . |

−
∑

n1,...,nL

(−1)Nk−1 (1 − nk)A〈. . . ,nk, . . . ,1 − nk, . . . |

=
∑

n1,...,nL

(−1)Nk−1 (1 − nk)A〈. . . ,nk, . . . ,1 − nk, . . . |

−
∑

n1,...,nL

(−1)Nk−1 (1 − nk)A〈. . . ,nk, . . . ,1 − nk, . . . |

= 0, (129)

and ∑
n1,...,nL

A〈1|(b̂k + b̂
†
L+k)

=
∑

n1,...,nL

A〈1|(âk + â
†
L+kP)

=
∑

n1,...,nL

A〈1|âk −
∑

n1,...,nL

A〈1|P â
†
L+k

=
∑

n1,...,nL

(−1)Nk−1 (1 − nk) A〈. . . ,1 − nk, . . . ,nk, . . . |

−
∑

n1,...,nL

(−1)Nk−1nk A〈. . . ,nk, . . . ,1 − nk, . . . |

=
∑

n1,...,nL

(−1)Nk−1nk A〈. . . ,nk, . . . ,1 − nk, . . . |

−
∑

n1,...,nL

(−1)Nk−1nk A〈. . . ,nk, . . . ,1 − nk, . . . |

= 0. (130)

In both cases we have changed nk → 1 − nk to get the terms
to cancel. Using W−1

1 W1 = 12L and Eq. (116) we can write

D = −C − W†
P

−1
, (131)

C = WP Q, (132)
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where Q is a L × L Hermitian matrix. This allows us to write

W1 =
(

WP WP Q

−WP −WP Q − W†
P

−1

)
(133)

and, from Eq. (133), together with the definition � =
WP QW†

P , we have

P� + �P† = �+. (134)

Hence, we find that only the last term of Eq. (124) does not
vanish and gives

A〈1|â†
i âj |ρss〉A = −A〈1|

L∑
k,m=1

WP
∗
i,kCj,mĉL+kĉ

′
L+m|0〉C

= −
L∑

k,m=1

WP
∗
i,kCj,mδk,l = −(CWP

†)j,i

= −(WP QW†
P )j,i = −�j,i . (135)

In complete analogy to the bosonic case, the observable matrix
Oi,j = tr(ρ̂α̂

†
i α̂j ) is then given by

O = −�t. (136)

C. Exact solution of a boundary driven X X model

Here we apply our method to directly obtain the spectrum
of the Eq. (100) for the boundary driven XX model, which can
then be solved analytically in the limit of a long chain. We note
that an approximate steady-state solution, and exact one- and
two-point correlations of the XX chain, including also local
dephasing, were computed in [15]. The Lindblad equation we
consider is

LXX(ρ̂) = − i

h̄
[ĤXX,ρ̂] + DXX(ρ̂) (137)

with

ĤXX = J

L−1∑
l=1

(σ̂+
l σ̂−

l+1 + σ̂−
l σ̂+

l+1) + hz

L∑
l=1

σ̂ z
l (138)

and

DXX(ρ̂) =
∑
l=1,L

[�+
l (2σ̂+

l ρ̂σ̂−
l − {σ̂−

l σ̂+
l ,ρ̂}) (139)

+ �−
l (2σ̂−

l ρ̂σ̂+
l − {σ̂+

l σ̂−
l ,ρ̂})]. (140)

First we apply the Jordan-Wigner transformation [39,40] to
make it a fermionic chain,

σ̂+
j = e−iπ

∑j−1
k=1 α̂

†
k α̂k α̂

†
j , (141)

σ̂−
j = eiπ

∑j−1
k=1 α̂

†
k α̂k α̂j , (142)

σ̂ z
j = 2α̂

†
j α̂j − 1, (143)

with Hamiltonian

ĤF = J

L−1∑
m=1

(α̂†
mα̂m+1 + α̂

†
m+1α̂m)

+ hz

L∑
m=1

(2α̂†
mα̂m − 1). (144)

In this case, the nonzero elements of the matrix h from Eq. (2)
are

hj,j = 2hz, (145)

hj,j+1 = hj+1,j = J. (146)

The dissipation instead becomes

D(ρ̂)

=
∑

m=1,L

�+
m

(
2e−iπ

∑m−1
k=1 α̂

†
k α̂k α̂†

mρ̂eiπ
∑m−1

k=1 α̂
†
k α̂k α̂m

− {α̂mα̂†
m,ρ̂})

+
∑

m=1,L

�−
m

(
2eiπ

∑m−1
k=1 α̂

†
k α̂k α̂mρ̂e−iπ

∑m−1
k=1 α̂

†
k α̂k α̂†

m

− {α̂†
mα̂m,ρ̂})

= �+
1 (2α̂

†
1ρ̂α̂1 − {α̂1α̂

†
1,ρ̂}) + �−

1 (2α̂1ρ̂α̂
†
1 − {α̂†

1α̂1,ρ̂})
+ �+

L

(
2e−iπ

∑L−1
k=1 α̂

†
k α̂k α̂

†
Lρ̂eiπ

∑L−1
k=1 α̂

†
k α̂k α̂L − {α̂Lα̂

†
L,ρ̂})

+ �−
L

(
2eiπ

∑L−1
k=1 α̂

†
k α̂k α̂Lρ̂e−iπ

∑L−1
k=1 α̂

†
k α̂k α̂

†
L − {α̂†

Lα̂L,ρ̂})
= �+

1 (2α̂
†
1ρ̂α̂1 − {α̂1α̂

†
1,ρ̂}) + �−

1 (2α̂1ρ̂α̂
†
1 − {α̂†

1α̂1,ρ̂})
+ �+

L

(
2α̂

†
Le−iπ

∑L
k=1 α̂

†
k α̂k ρ̂eiπ

∑L
k=1 α̂

†
k α̂k α̂L − {α̂Lα̂

†
L,ρ̂})

+ �−
L

(
2α̂Leiπ

∑L
k=1 α̂

†
k α̂k ρ̂e−iπ

∑L
k=1 α̂

†
k α̂k α̂

†
L − {α̂†

Lα̂L,ρ̂}),
(147)

where in the last lines we have included an extra term in the
string operator and shifted its position. Therefore, in the A
representation, we have

DA = �+
1 (2â

†
1â

†
L+1 − â1â

†
1 − âL+1â

†
L+1)

+ �−
1 (2â1âL+1 − â

†
1â1 − â

†
L+1âL+1)

+ �+
L (2â

†
Lâ

†
2LP − âLâ

†
L − â2Lâ

†
2L)

+ �−
L (2âLâ2LP − â

†
LâL − â

†
2Lâ2L), (148)

which is, in the B representation,

DB = �+
1 (2b̂

†
1b̂

†
L+1P − b̂1b̂

†
1 − b̂L+1b̂

†
L+1)

+ �−
1 (−2b̂1b̂L+1P − b̂

†
1b̂1 − b̂

†
L+1b̂L+1)

+ �+
L (2b̂

†
Lb̂

†
2L − b̂Lb̂

†
L − b̂2Lb̂

†
2L)

+ �−
L (−2b̂Lb̂2L − b̂

†
Lb̂L − b̂

†
2Lb̂2L). (149)

Then, restricting ourselves to the even sector as in Sec. II B,
we can simply write DB as

DB =�+
1 (2b̂

†
1b̂

†
L+1 − b̂1b̂

†
1 − b̂L+1b̂

†
L+1)

+ �−
1 (−2b̂1b̂L+1 − b̂

†
1b̂1 − b̂

†
L+1b̂L+1)

+ �+
L (2b̂

†
Lb̂

†
2L − b̂Lb̂

†
L − b̂2Lb̂

†
2L)

+ �−
L (−2b̂Lb̂2L − b̂

†
Lb̂L − b̂

†
2Lb̂2L), (150)
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which is exactly the same as Eq. (99). Hence we can follow the
derivation in Sec. II B, and reduce the problem of diagonalizing
L to the eigendecomposition of the matrix P defined in
Eq. (23).

For convenience we rewrite the four coefficients �a
l with

four new parameters:


1 = �−
1 + �+

1 , n̄1 = �+
1


1
, (151)


L = �−
L + �+

L, n̄L = �+
L


L

(152)

and then all the nonzero elements of matrix P are

P1,1 = −i
hz

h̄
− 
1

2
, PL,L = −i

hz

h̄
− 
L

2
, (153a)

Pm,m = −i
hz

h̄
, for 1 < m < L, (153b)

Pm,m+1 = Pm+1,m = − iJ

2h̄
, for 1 � m < L. (153c)

It thus results in that P is a bordered tridiagonal Toeplitz
matrix, whose eigenvalues and eigenvectors can be analytically
computed [27], and we can follow the derivation in Sec. II to
get the explicit spectrum under the condition J 2 = h̄2
1
L.
The only difference is that here there is a constant shift ih

for the diagonal terms of matrix P which was not present in
Sec. II. As a result, the eigenvalues of P are

h̄λ = −J sin (α) sinh (β) − i[hz + J cos (α) cosh (β)] (154)

with

α = kπ

L
, (155)

β = 1

2L
ln

(
1 + 2

√
κ

κ+1 sin kπ
L

1 − 2
√

κ

κ+1 sin kπ
L

)
, (156)

where k is an integer 1 � k < L and κ = [J/(h̄
1)]2. For
more details on the steps from Eq. (153) to Eqs. (154)–(156)
see Sec. II.

D. Computing the steady state

From Eq. (30) we understand that the steady state of the
system is the vacuum of the operators ĉj , that is |ρss〉 = |0〉C .
This is related to the vacuum of the b̂j , |0〉B = |0〉A, by a linear
transformation. We can then write

|ρss〉 = |0〉C = Ŝ−1|0〉B. (157)

In the following we show how to compute Ŝ from W1. First
we write Ŝ = eT̂ , where T̂ is

T̂ = 1

2

(
b†

1→L

bL+1→2L

)t(
U V
I J

)(
b1→L

b†
L+1→2L

)

− 1

2

(
b1→L

b†
L+1→2L

)t(
Ut It

Vt Jt

)(
b†

1→L

bL+1→2L

)
(158)

and where U,V,I,J are L × L matrices. It should be noted that
the presence of a minus sign in the second line of Eq. (158) is

different from the bosonic case. Hereafter we will write

W =
(

U V
I J

)
. (159)

To calculate eT̂ b̂
†
j e

−T̂ and eT̂ b̂L+j e
−T̂ , we use the relations

Ê := eT̂ b̂
†
j e

−T̂ =
∞∑

m=1

1

m!
[T̂ ,b̂

†
j ]m,

F̂ := eT̂ b̂L+j e
−T̂ =

∞∑
m=1

1

m!
[T̂ ,b̂L+j ]m,

where the nested commutator is defined recursively as
[Â,B̂]m+1 ≡ [Â,[Â,B̂]m] with [Â,B̂]0 ≡ B̂. This results in

Ŝ

(
b†

1→L

bL+1→2L

)t

Ŝ−1 =
(

b†
1→L

bL+1→2L

)t

eW. (160)

Similarly we can write

Ŝ

(
b1→L

b†
L+1→2L

)
Ŝ−1 = e−W

(
b1→L

b†
L+1→2L

)
, (161)

which results in

ŜLŜ−1

=
(

b†
1→L

bL+1→2L

)t

eWMe−W
(

b1→L

b†
L+1→2L

)

−
(

b1→L

b†
L+1→2L

)t

e−Wt

Mt eWt

(
b†

1→L

bL+1→2L

)

− tr(�−t + �+). (162)

Thus, as in the bosonic case by setting W1 = e−W, which
means

W = −lnW1, (163)

we can diagonalize ŜLŜ−1 whose steady state is |0〉B. This
then allows us to derive Eq. (157).

IV. CONCLUSIONS

We have shown how to map the problem of computing
the relaxation rates and the normal master modes of a
Lindblad master equation for the dissipatively boundary driven
uniform noninteracting bosonic chain and the XX chain,
to the diagonalization of a tridiagonal bordered Toeplitz
matrix. This special structure of the matrix also allows us
to find explicit analytical solutions and we have shown an
approximate solution for a large system. With the approach
presented, for a system of size L, the matrix to be diagonalized
is only of size L × L (when considering Hamiltonians which
conserve the total number of particles, i.e., there are no terms
of the type α̂i α̂j or α̂

†
i α̂

†
j ). For more general Hamiltonians

our approach can be readily extended, however the matrix
to be diagonalized would be a 2L × 2L block bordered
Toeplitz matrix (for a uniform bulk Hamiltonian with boundary
dissipative driving) which cannot be diagonalized with the
same analytical formulas. The method here presented can be
useful to study both the time evolution (since it gives access to
all the normal master modes and rapidities) and steady states
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for open bosonic and fermionic systems far from equilibrium.
Due to its simplicity, this method can allow one to find more
analytically solvable solutions.

We have also proposed a numerical algorithm which can
efficiently compute observables of the type 〈α̂†

i α̂j 〉. We have
then used this method to compute the relaxation gap of a
boundary driven bosonic quadratic system which presents two
different nonequilibrium phase transitions. A scaling analysis
of the gap shows that the gap scale as 1/L3 in all the parameter
space except at one of the two phase transitions, for which the

relaxation gap scales as 1/L5. This is due to the different
behavior of the spectrum of the Hamiltonian of the bulk of the
system at the two transition points.
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