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Quantum dynamical speedup in a nonequilibrium environment
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We theoretically study the dynamical speedup of a quantum system in a nonequilibrium environment. Based
on the trace distance, we derive the generalized Margolus-Levitin and Mandelstam-Tamm types of bounds on the
quantum speed limit time of a quantum system evolving from an arbitrary initial state. We demonstrate that the
mechanism for the speedup of dynamical evolution is closely associated with both the energy of the system and
exchange of information between the system and its environment. It is shown that the nonequilibrium feature of
the environment can speed up the quantum evolution in both Markovian and non-Markovian dynamics regions.
We emphasize that the non-Markovian effect of the system dynamics is neither necessary nor sufficient to speed
up the quantum evolution in a nonequilibrium environment.
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I. INTRODUCTION

How to achieve the dynamical speedup of evolution of a
quantum system and how to preserve quantum coherence are
the main challenges in quantum computation and quantum
information science [1–11]. Quantum speed limits (QSLs) are
the lower bounds on the minimal evolution time between two
distinguishable states of a quantum system, which would have
potential applications in understanding how to quantify and
manipulate quantum coherence and in protecting quantum
information against decoherence induced by environmental
noise [12–20]. For an isolated quantum system under unitary
dynamics, two independent bounds on this minimum time
were established by Mandelstam and Tamm (MT) [21] and
Margolus and Levitin (ML) [22]. And then, the bounds were
subsequently unified [23]. Also, QSLs for an open quan-
tum system were investigated based on different geometric
measures for the distinguishability between the initial and
final states of the system [24–32]. Generalized ML and MT
types of QSL bounds for an open quantum system under
nonunitary dynamical evolution have been derived based on
Bures angle by employing the von Neumann and Cauchy-
Schwarz inequalities, and it has been shown that the ML
type of bound is not only sharper than the MT type but also
tight [26]. Actually, there are many QSLs since many distance
metrics can be employed to measure the distinguishability of
two quantum states [18]. The trace distance, as a good distance
metric in the state space, is easy to calculate and measure and
has the properties of contractivity and convexity. Also, it has
a well-motivated physical interpretation as a measure for the
distinguishability of two quantum states and possesses the
properties of stability and chaining for estimating the error in
a complex quantum information process [33–36].

The ratio between the QSL time and driving time estimates
the potential capacity of speeding up quantum dynamical
evolution. When the ratio equals one, there is no potential
capacity for quantum dynamical evolution speedup, while for
other cases the smaller the ratio is, the greater the potential
capacity will be. There has been well-established investiga-
tions on the dynamical speedup of evolution of a quantum
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system with energy dissipation in an equilibrium environment
theoretically [37–39], and the environment-assisted speedup of
dynamical evolution is realized by controlling the environment
experimentally [40]. The connection has been investigated
between QSLs and entanglement and non-Markovianity [2–
5,37–39]. It was shown that entanglement can speed up the
dynamical evolution of a closed composite system. Also, it was
confirmed that the non-Markovian effect of the open system
dynamics is the unique condition for speeding up quantum
dynamical evolution in the long driving time limit while it
is a necessary but not sufficient condition to speed up the
dynamical evolution of the quantum system within a given
driving time [37,40].

Environmental effects on an open quantum system can
be classified into two aspects: transition between quantum
states and loss of phase coherence induced by dissipative and
pure decoherence environments [19,41–44]. However, there
are physical situations where nonequilibrium environmental
effects could be important. For example, in transient and
ultrafast processes in physical systems, the nonequilibrium
feature of the environment has dominant influence on the
dynamical evolution and decoherence of the quantum system
[45–52], and it has been shown that the nonequilibrium
decoherence process gives rise to a time-dependent frequency
shift and results in the suppression of the non-Markovian
effect of the system dynamics [52]. On the other hand,
the mechanism for the speedup of quantum evolution in a
pure decoherence environment is unknown. Therefore, several
important questions need to be discussed: How can we relate
the QSLs with dynamical decoherence, what is the mechanism
for the dynamical speedup under nonequilibrium decoherence
processes, and how can we speed up the quantum dynamical
evolution in a nonequilibrium environment?

In this paper, we study the dynamical speedup of a quantum
system under a nonequilibrium decoherence process with both
nonstationary and non-Markovian statistical properties. Based
on the trace distance, we derive the generalized ML and
MT types of QSL bounds of the system evolving from an
arbitrary initial state. We demonstrate that the generalized
sharper QSL bound is the ML type and it is tight since it
can be attained if the environment is in equilibrium and the
decoherence dynamics of the system is Markovian. Under a
nonequilibrium decoherence process, the QSL time is closely
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associated with both the energy of the system and information
exchange between the system and the environment. We show
that the environmental nonequilibrium feature can speed up the
dynamical evolution of the quantum system in both Markovian
and non-Markovian dynamics regions, and emphasize that the
non-Markovian effect of the system dynamics is neither a
necessary nor sufficient condition for the quantum speedup in
a nonequilibrium environment.

This paper is organized as follows. In Sec. II we derive the
generalized ML and MT types of QSL bounds of a quantum
system evolving from an arbitrary initial state based on the
trace distance and then analyze the speedup of dynamical
evolution in a nonequilibrium environment. In Sec. III we
discuss the influence of the environmental nonequilibrium
feature on the dynamical speedup of the quantum evolution. In
Sec. IV we give the conclusions drawn from the present study.

II. THEORETICAL FRAMEWORK

A. Derivation of generalized ML and MT types of QSL bounds

For an open quantum system, the reduced density matrix of
the system is governed by

d

dt
ρ(t) = Lρ(t), (1)

where L is a time-local superoperator. Since the trace distance
D(ρ1,ρ2) = 1

2 tr|ρ1 − ρ2| can be employed as a distance metric
to measure the distance between two distinguishable quantum
states ρ1 and ρ2 [33–36], we quantify the distance between an
initial state ρ(0) and a final state ρ(t) by

LD(ρ(0),ρ(t)) = 1
2 ||ρ(t) − ρ(0)||tr = 1

2 tr|ρ(t) − ρ(0)|, (2)

where ||A||tr = tr|A| = tr
√

A†A is the trace norm of an
operator A and 0 � LD(ρ(0),ρ(t)) � 1. To obtain the QSL
time, we consider the dynamical velocity [53] with which the
reduced density matrix evolves by differentiating Eq. (2) with
respect to time

d

dt
LD(ρ(0),ρ(t)) = 1

2
tr

[ρ(t) − ρ(0)]Lρ(t)

|ρ(t) − ρ(0)| . (3)

By employing the von-Neumann trace inequality for oper-
ators [54–56], we have∣∣∣∣tr [ρ(t) − ρ(0)]Lρ(t)

|ρ(t) − ρ(0)|
∣∣∣∣ �

n∑
i=1

�iσi

=
n∑

i=1

σi = ||Lρ(t)||tr, (4)

where �i = 1 and σ1 � · · · � σn are the singular values of
the matrices ρ(t)−ρ(0)

|ρ(t)−ρ(0)| and Lρ(t), respectively. For the case
of unitary dynamical evolution of a quantum system with the
Hamiltonian H (t), the trace norm ||Lρ(t)||tr is bounded by the
average energy 〈H 〉 of the system, namely,

||Lρ(t)||tr =
∣∣∣∣
∣∣∣∣− i

h̄
[H (t),ρ(t)]

∣∣∣∣
∣∣∣∣
tr

� 2

h̄
〈H 〉, (5)

where the triangle inequality |X ± Y | � |X| + |Y | is used
and the ground-state energy of the system is supposed
to be zero [22,23]. Integrating Eq. (3), using the fact

| ∫ dtL̇D(ρ(0),ρ(t))| �
∫

dt |L̇D(ρ(0),ρ(t))|, over time from
t = 0 to t = τ leads to the generalized ML type of QSL bound:

τ � LD(ρ(0),ρ(τ ))
1
2

∑n
i=1 σi

, (6)

where the time average is denoted by X = τ−1
∫ τ

0 dtX.
By employing the Cauchy-Schwarz inequality for opera-

tors, we have∣∣∣∣tr [ρ(t) − ρ(0)]Lρ(t)

|ρ(t) − ρ(0)|
∣∣∣∣ �

√√√√ n∑
i=1

�2
i

n∑
i=1

σ 2
i

=
√√√√n

n∑
i=1

σ 2
i = √

n||Lρ(t)||hs, (7)

where ||A||hs =
√

tr(A†A) is the Hilbert-Schmidt norm of an
operator A. In the case of unitary dynamical evolution, the
Hilbert-Schmidt norm ||Lρ(t)||hs is bounded by the variance
of the energy �H of the system

||Lρ(t)||hs =
∣∣∣∣
∣∣∣∣− i

h̄
[H (t),ρ(t)]

∣∣∣∣
∣∣∣∣
hs

�
√

2

h̄
�H, (8)

where the equality sign holds only if the state of the system
is pure. Similarly, we obtain the generalized MT type of QSL
bound

τ � LD(ρ(0),ρ(τ ))

1
2

√
n

∑n
i=1 σ 2

i

. (9)

By combining Eqs. (6) and (9), we obtain the unified
expression for the generalized ML and MT types of QSL
bounds for the quantum system evolving initially from an
arbitrary state as follows:

τQSL = max

⎧⎪⎨
⎪⎩

1
1
2

∑n
i=1 σi

,
1

1
2

√
n

∑n
i=1 σ 2

i

⎫⎪⎬
⎪⎭LD(ρ(0),ρ(τ )).

(10)

Since the inequality
∑n

i=1 σi

n
�

√∑n
i=1 σ 2

i

n
between the arithmetic

and quadratic means holds, the generalized ML type of QSL
bound is sharper than the MT type. In the following, we
demonstrate the generalized ML type bound is tight; that is,
the bound can be exactly attained.

B. Dynamical speedup under nonequilibrium
decoherence processes

We consider a two-level quantum system coupled to a
nonequilibrium environment. The environmental effect on the
quantum system could be described by means of stochastic
fluctuations in some system observable based on the Kubo-
Anderson spectral diffusion process [57–59]. We assume that
the energy of the system is conserved and the stochastic
fluctuations only cause the decoherence of the quantum
system, and the pure decoherence Hamiltonian of the system
is written as [57–61]

H (t) = h̄

2
[ω0 + ξ (t)]σz, (11)
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where σz is the Pauli matrix, ω0 is the intrinsic transition
frequency between the excited state |e〉 and ground state |g〉,
and ξ (t) denotes the environmental noise which is subject to a
nonstationary and non-Markovian stochastic process.

The dynamical evolution for the total density matrix yields
the Liouville equation

∂

∂t
ρ(t ; ξ (t)) = − i

h̄
[H (t),ρ(t ; ξ (t))], (12)

where the notation ρ(t ; ξ (t)) is used to indicate that the
total density matrix depends on the environmental noise
ξ (t), and the reduced density matrix of the system can be
derived by taking an average over the environmental noise as
ρ(t) = 〈ρ(t ; ξ (t))〉. The total density matrix elements in the
basis {|e〉,|g〉} satisfy the stochastic differential equations

ρ̇ee(t ; ξ (t)) =0,

ρ̇ge(t ; ξ (t)) =i[ω0 + ξ (t)]ρge(t ; ξ (t)),
(13)

where ρgg(t ; ξ (t)) = 1 − ρee(t ; ξ (t)) and ρeg(t ; ξ (t)) = ρ∗
ge

(t ; ξ (t)). Transforming Eq. (13) into the integral form gives

ρee(t ; ξ (t)) =ρee(0; ξ (0)),

ρge(t ; ξ (t)) =eiω0t+i
∫ t

0 ξ (t ′)dt ′ρge(0; ξ (0)).
(14)

Assuming there is no initial correlation between the system
and its surroundings

ρ(0) = 〈ρ(0; ξ (0))〉 = ρ(0; ξ (0)), (15)

and taking the average over the environmental noise ξ (t) gives
the reduced density matrix elements

ρee(t) =ρee(0),

ρge(t) =eiω0tF (t)ρge(0),
(16)

where ρgg(t) = 1 − ρee(t), ρeg(t) = ρ∗
ge(t), and F (t) =

〈ei
∫ t

0 dt ′ξ (t ′)〉 is the decoherence factor quantifying the system
coherence evolution for the system initially in the coherent
superposition of the two states |e〉 and |g〉 [59,62].

Then we obtain the reduced density matrix of the quantum
system in matrix notation as

ρ(t) =
(

ρee(0) ρeg(0)e−iω0tF ∗(t)

ρge(0)eiω0tF (t) ρgg(0)

)
. (17)

Taking a derivative of Eq. (17) with respect to time, as long
as F (t) �= 0, the evolution equation for the reduced density
matrix elements yields

ρ̇ee(t) = 0,

ρ̇ge(t) =
[
iω0 + Ḟ (t)

F (t)

]
ρge(t).

(18)

In view of F (t) being a complex time-dependent function [52],
we can write a time-local master equation for the reduced
density matrix as

d

dt
ρ(t) = Lρ(t)

= − i

2
[ω0 − s(t)][σz,ρ(t)] + 1

2
γ (t)[σzρ(t)σz − ρ(t)],

(19)

where s(t) = −Im[Ḟ (t)/F (t)] and γ (t) = −Re[Ḟ (t)/F (t)]
represent the frequency shift and decoherence rate, respec-
tively.

Under a nonequilibrium decoherence process, the en-
vironmental noise ξ (t) is assumed to be subject to the
nonstationary and non-Markovian dichotomic process. This
noise process can be characterized by the nonequilibrium
parameter a and the memory decay rate κ , and its amplitude
switches randomly with the jumping rate λ between the values
±ν [52]. Under nonequilibrium dynamical decoherence, the
decoherence factor for the quantum system can be analytically
solved as [52]

F (t) = L −1[F(p)],

F(p) = p2 + (κ + iaν)p + κ(2λ + iaν)

p3 + κp2 + (2κλ + ν2)p + κν2
,

(20)

where L −1 indicates the inverse Laplace transform and the
initial condition is F (0) = 1.

Based on the master equation for the reduced density matrix
in Eq. (19), the distance from an initial state ρ(0) within a given
driving time τ can be expressed as

LD(ρ(0),ρ(τ )) = 1

2
tr|ρ(τ ) − ρ(0)|

= 1

2

√
r2
x + r2

y

∣∣∣∣
∫ τ

0
Ḟ (t)dt

∣∣∣∣
= 1

2

√
r2
x + r2

y |1 − F (τ )|. (21)

Here we have set ω0 = 0 and chosen an arbitrary initial state
of the quantum system as [33]

ρ(0) = 1
2 (I + r · σ ), |r| � 1, (22)

where I is the identity matrix, r = (rx,ry,rz) is a real vector,
and σ = (σx,σy,σz) denotes the vector of Pauli matrices. If
and only if |r| = 1, the initial state is pure, otherwise, mixed.
And the singular values of Lρ(t) satisfy

σ1 = σ2 = 1
2

√
r2
x + r2

y |Ḟ (t)|

= 1
2

√
r2
x + r2

y

√
s(t)2 + γ 2(t)|F (t)|. (23)

Thus the path distance can be expressed as

�
p

D(ρ(0),ρ(τ )) = 1

2

n∑
i=1

σi τ

= 1

2

√
r2
x + r2

y

∫ τ

0
dt

√
s(t)2 + γ 2(t)|F (t)|.

(24)

Based on the generalized ML type of QSL bound in
Eq. (10), the ratio between the QSL time and the driving time
can be expressed as

τQSL

τ
=

∣∣ ∫ τ

0 dtḞ (t)
∣∣∫ τ

0 dt |Ḟ (t)| = |1 − F (τ )|∫ τ

0 dt
√

s2(t) + γ 2(t)|F (t)| . (25)

The ratio is independent of the initial state due to the fact
that there is no change of the population of the quantum
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system and the energy of the system is conserved under
pure decoherence processes. Consequently, the QSL time
under nonequilibrium decoherence is closely associated with
the decoherence dynamics of the system, and the dynamical
speedup of evolution contributes from both the unitary part of
the evolution and the flow of information exchange between the
system and the environment. The numerator and denominator
in the right-hand side of Eq. (25) stand for the scaled distance
LD(τ ) and path distance �

p

D(τ ),

LD(τ ) = LD(ρ(0),ρ(τ ))
1
2

√
r2
x + r2

y

= |1 − F (τ )|,

�
p

D(τ ) = �
p

D(ρ(0),ρ(τ ))
1
2

√
r2
x + r2

y

=
∫ τ

0
dt

√
s2(t) + γ 2(t)|F (t)|,

(26)

with a scaled constant 1
2

√
r2
x + r2

y . Then the speed of dynamical

evolution is proportional to

v(t) =
√

v2
s (t) + v2

γ (t) =
√

s2(t) + γ 2(t)|F (t)|

�
√

s2(t) + γ 2(t) = 〈Heff〉. (27)

Here the effective Hamiltonian of the quantum system satisfies
Heff = − h̄

2 s(t)σz − ih̄
2 γ (t)I based on Eq. (19), the ground-

state energy of the system is taken to be zero, and the quantum
average of a non-Hermitian operator is given by its absolute
value [63]. As a consequence, the dynamical speed of evolution
is bounded by the average energy of the system. To further
understand the physical meaning of vs(t) = |s(t)F (t)|, taking
the integration of vs(t) over time from 0 to τ , we have∫ τ

0
dt vs(t) =

∫ τ

0
dt |s(t)|

[
1 −

∫ t

0
dt ′γ (t ′)|F (t ′)|

]

=
∫ τ

0
dt |s(t)| −

∫ τ

0
dt |s(t)|

∫ t

0
dt ′γ (t ′)|F (t ′)|.

(28)

In the case of the unitary dynamical evolution, namely,
γ (t) = 0, the integration in Eq. (28) is the Anandan-Aharonov
geometric distance [53] since |s(t)| is the Lamb frequency
shift. Here we note

∫ τ

0 dt vs(t) as the generalized Anandan-
Aharonov geometric distance to describe the contribution
from the unitary part of the evolution under nonequilibrium
dynamical decoherence. The physical meaning of vγ (t) =
|γ (t)F (t)| is obvious since∫ τ

0
dt vγ (t) = 2N (τ ) + 1 − |F (τ )|, (29)

where N (τ ) = − ∫ τ

0 γ (t)<0 dtγ (t)|F (t)| is the non-
Markovianity characterizing the backflow of information
from the environment to the system within a given driving
time [42–44]. Thus,

∫ τ

0 dt vγ (t) is related to the contribution
from the nonunitary part of dynamical evolution in terms
of the information exchange between the system and its
environment.

It is worth noting the situation where the system undergoes a
equilibrium decoherence process. In this case, the decoherence

factor F (t) is real and the frequency shift s(t) = 0. Thus, the
ratio in Eq. (25) can be reduced to

τQSL

τ
= |1 − F (t)|

1 − |F (t)| + 2N (τ )
. (30)

In this situation, the ratio τQSL/τ is associated with the non-
Markovianity and change of coherence in a limited driving
time, whereas it depends only on the non-Markovianity in
the long time limit [37–40]. When the decoherence dynamics
of the quantum system is Markovian, the decoherence factor
0 � F (t) � 1 and the non-Markovianity N (τ ) = 0. Then the
QSL time is equal to the driving time and consequently the
bound is attained, which indicates that the generalized ML
type of QSL bound is also tight.

III. RESULTS AND DISCUSSION

In the following, we illustrate the influence of nonequi-
librium and non-Markovian dynamics on the quantum speed
limit time.

Figure 1 shows the ratio τQSL/τ for different values of
a as a function of the driving time τ . In both Markovian
and non-Markovian dynamics regions, when the environment
is out of equilibrium, the ratio τQSL/τ < 1 indicates the
potential capacity for quantum dynamical speedup and that
the dynamical evolution departs from the geodesic distance.
Furthermore, as the environment is away from equilibrium,
for a given driving time, the decreases of the ratio τQSL/τ

imply that the potential capacity for the dynamical speedup
enhances.

The nonequilibrium feature of the environment makes small
changes in the distance LD(τ ) in both the dynamics regions.
And the influences of the environmental nonequilibrium fea-
ture on the dynamical speedup are obvious in the path distance
�

p

D(τ ). To present the contributions from vs(t) and vγ (t) on
the dynamical evolution, we plot vs(t) and vγ (t) as a function
of the driving time τ for different values of a in Fig. 2. In
both the dynamical regions of Markovian and non-Markovian,
when the environment is in equilibrium, vs(t) = 0 indicates
that the contributions for the dynamical evolution entirely
come from vγ (t). As the environment gradually departs from
equilibrium, vs(t) increases significantly which indicates that
the contribution from unitary part of the evolution enhances. It
arises from the fact that the frequency shift s(t) increases and
the decoherence dynamics gets suppressed as the environment

0 3 6 9
0.2

0.6

1

λτ

τ Q
SL

/
τ

 

 

0 3 6 9
0

0.5

1

λτ

a=0
a=±0.5

a=±1 (b)(a)

FIG. 1. Ratio τQSL/τ as a function of the driving time τ for
different values of a in (a) Markovian dynamics region with ν = 0.8λ

and (b) non-Markovian dynamics region with ν = 3λ. The memory
decay rate κ = 2λ.
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(a)

(b)

FIG. 2. Speed of the dynamical evolution as a function of the
driving time τ for different values of a. The upper panels are for vs(t)
and the bottom panels for vγ (t). Left and right columns are the cases
of Markovian and non-Markovian dynamics regions with ν = 0.8λ

and ν = 3λ, respectively. The memory decay rate κ = 2λ.

deviates from equilibrium [52]. However, for the contribution
of vγ (t), there is no obvious change in the Markovian dy-
namical region (left panel, bottom); contrarily, its contribution
weakens remarkably in the non-Markovian dynamical region
(right panel, bottom). Furthermore, the contributions of vs(t)
and vγ (t) in the non-Markovian region are much larger than
that in the Markovian region due to the non-Markovianity
induced by the strong coupling between the system and the
environment.

As a comparison, we also show the results of the environ-
ment in equilibrium: In the Markovian dynamics region as
shown in Fig. 1(a) the ratio τQSL/τ = 1 at any time reveals
that the dynamical evolution is always along the geodesic
distance and there is no potential capacity to speed up the
dynamical evolution [vs(t) = 0 in Fig. 2, correspondingly];
whereas in the non-Markovian dynamics region as shown in
Fig. 1(b), it exhibits a plateau (τQSL/τ = 1) in short time and
then decreases, which indicates that the dynamical evolution
starts along and then gradually deviates from the geodesic
distance.

Figure 3(a) shows the ratio τQSL/τ as a function of the
coupling ν for different values of a in the long driving time
limit. As shown in the figure, the dynamical speedup occurs
in both Markovian and non-Markovian dynamics regions,
when the environment is in nonequilibrium. Physically, the
environmental nonequilibrium feature makes the quantum
dynamical speedup depart from the geodesic distance in the
Markovian and non-Markovian dynamics regions as shown
in Fig. 3(b). Furthermore, for a given coupling ν, as the
environment departs from equilibrium, the quantum dynamical
speedup becomes obvious arising from the fact that the path
distance diverges far from the geodesic distance. As shown
in Fig. 3(c), there is no non-Markovianity in the Markovian
dynamics region and the non-Markovianity N decreases in the
non-Markovian dynamics region as the environment diverges

0

0.5

1

τ Q
SL

/τ

 

 

0

6

12

p D
0 1 2 3

0

2

4

ν/λ

N
 

 

(b)

(c)

(a)

a=0
a=±0.5

a=±1

FIG. 3. (a) Ratio τQSL/τ , (b) path distance �
p

D , and (c) non-
Markovianity N as functions of the coupling ν for different values
of a in the long driving time limit (τ → ∞). The memory decay rate
κ = λ. The colored region is Markovian dynamics region and the
boundary of the dynamics regions from Markovian to non-Markovian
is ν = 0.68λ.

from equilibrium. Also, the results in Fig. 3 indicate that
the possible speedup capacity of a quantum system becomes
strong when the environment is far from equilibrium. This
indicates that the environmental nonequilibrium feature is the
only reason for quantum evolution speedup in the Markovian
dynamics region, and the environmental nonequilibrium fea-
ture and the non-Markovianity are both reasons for quantum
evolution speedup in the non-Markovian dynamics region.

IV. CONCLUSIONS

We derived the generalized ML and MT type bounds for
QSLs of the system evolving from an arbitrary initial state
based on the trace distance measure. We demonstrated that
quantum dynamical speedup is related to the contributions
from the unitary part of the evolution in terms of the energy of
the system and from the nonunitary part of dynamical evolution
based on the exchange of information between the system and
its environment. We showed that in the Markovian dynamics
region, the nonequilibrium feature of the environment is the
only reason to speed up the dynamical evolution, whereas the
environmental nonequilibrium feature and the non-Markovian
effect of the system dynamics are both reasons for quantum
evolution speedup in the non-Markovian dynamics region.
The non-Markovian effect of the system dynamics is neither
necessary nor sufficient to speed up the quantum evolution
under nonequilibrium decoherence.
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