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In this paper we propose a time-independent equality and time-dependent inequality, suitable for an
experimental test of the hypothesis of realism. The derivation of these relations is based on the concept of
conditional probability and on Bayes’ theorem in the framework of Kolmogorov’s axiomatics of probability
theory. The equality obtained is intrinsically different from the well-known Greenberger-Horne-Zeilinger (GHZ)
equality and its variants, because violation of the proposed equality might be tested in experiments with only
two microsystems in a maximally entangled Bell state |�−〉, while a test of the GHZ equality requires at least
three quantum systems in a special state |�GHZ〉. The obtained inequality differs from Bell’s, Wigner’s, and
Leggett-Garg inequalities, because it deals with spin s = 1/2 projections onto only two nonparallel directions at
two different moments of time, while a test of the Bell and Wigner inequalities requires at least three nonparallel
directions, and a test of the Leggett-Garg inequalities requires at least three distinct moments of time. Hence, the
proposed inequality seems to open an additional experimental possibility to avoid the “contextuality loophole.”
Violation of the proposed equality and inequality is illustrated with the behavior of a pair of anticorrelated spins in
an external magnetic field and also with the oscillations of flavor-entangled pairs of neutral pseudoscalar mesons.
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I. INTRODUCTION

One of the main questions that arise when comparing pre-
dictions of quantum theory with experiment is to what extent
the real physical properties of micro-objects correspond to
the observed values, measured with macrodevices. Heisenberg
noted in his book [1] that this essential question of quantum
theory is close to the general analysis of our perception of the
“phenomenon” of our world and the gist of the phenomenon,
the “noumenon,” according to Kant [2].

From the point of view of the simplest “orthodox” version
of the quantum-mechanical formalism [3], a process of
measurement corresponds to expansion of a microsystem state
vector |ψ〉 into a superposition of a macroscopically definitive
state |aα〉:

|ψ〉 =
∑

α

Cα|aα〉, (1)

where, according to the law of Born, |Cα|2 defines the
probability to find the system in state |aα〉 after measurement.
Usually one takes |aα〉 as a set of eigenvectors of Hermitian
operator Â which corresponds to some physical characteristics
(observables) A of the microsystem studied. Of course, the
expansion (1) and law of Born may be generalized in terms
of POVMs (positive operator-valued measures—a description
of a measurement using positively defined operators) and the
projection postulate of Dirac and von Neumann [4]. However it
is not important for the consequent arguments which approach
is used. We will use the simplest one, i.e., the superposition
principle (1) and the law of Born.

Let a microsystem now have two distinct observables
A and B which have spectra {aα} and {bβ} accordingly.
If physical characteristics A and B may be simultaneously
measured (i.e., may be measured with zero dispersion with

a pair of macroscopic devices of the same type), then the
vectors by which the state |ψ〉 is expanded must be the
common eigenvectors of the operators Â and B̂, leading to
the commutation condition [Â,B̂] = 0. If the operators Â and
B̂ do not commute, then they do not have a common system of
eigenvectors. In this case the observables A and B cannot be
measured together by any macrodevice. The simplest example
of the observables that cannot be measured together is the
projection of a fermion spin onto two nonparallel directions,
which are defined by unit vectors �a and �b. Another example is
the CP parity and flavor of a neutral pseudoscalar meson.

The following question may be posed: do the physical
characteristics A and B exist simultaneously and indepen-
dently without the assumption of the possibility to measure
them by some macrodevices (this is the hypothesis of local
realism). Usually the terms “hypothesis of local realism”
and “concept of macroscopic realism” are understood as
the possibility to describe a physical system in the clas-
sical paradigm using some assumptions about the nature
of “classical reality.” It might be for example locality or
the negligible influence of a measurement device. All these
assumptions we will call together the “hypothesis of realism”
by Einstein [5]. It does not make sense to talk about the physical
properties of a micro-object without making a statement
about the macrodevices used to measure these properties
(this is the Copenhagen interpretation of quantum mechanics
and the principle of complementarity of Bohr [6]).

A natural (but probably not unique) way to write in
mathematical terms the condition that a set of physical
characteristics of a microsystem exists jointly regardless of
the possibility to measure it with a macrodevice is that the
joint probability of the set of observables under consideration
is non-negative at any time. For example for the observables A

and B that means that for any elements of the spectra aα′ ∈ {aα}
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and bβ ′ ∈ {bβ} the probability of simultaneous existence of
aα′ and bβ ′—the joint probability w(aα′ ∩ bβ ′ )—satisfies the
following condition:

0 � w(aα′ ∩ bβ ′ ) � 1. (2)

The assumption of the existence of non-negative joint prob-
abilities (2) was implicitly used by Bell in his pioneering
works [7,8], as the density distribution ρ(λ) of hidden variables
λ is a direct corollary of (2). Later Bell’s idea was developed
by Clauser, Horne, Shimony, and Holt [9]. A historical review
of Bell’s inequalities may be found in [10–14], The idea of the
existence of non-negative joint probabilities (2) was used by
Wigner in [15]. In [16] the arguments of Bell were translated
into non-negative joint probabilities.

In classical physics the joint probabilities w(aα′ ∩ bβ ′ ) =
w(bβ ′ ∩ aα′ ) always exist and are well defined for any physical
system. In quantum theory if [Â,B̂] �= 0, the joint probabilities
w(aα′ ∩ bβ ′) cannot be directly measured by macrodevices.
However in this case it is possible to use an indirect procedure
based on specific properties of entangled states and the notion
of an “element of physical reality” introduced by Einstein.

The element of physical reality is defined as follows [5]:
“If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the value
of a physical quantity, then there exists an element of physical
reality corresponding to this physical quantity” and “every
element of the physical reality must have a counterpart in
the physical theory.” It is obvious that a given element may
be identified with some property of a physical system (for
example with a spin projection onto some direction) and that
obtaining information about the element of physical reality
differs from obtaining information about some observable only
by measurement method. In the first case the measurement is
indirect, in the second, direct, and accompanied by a reduction
of the state vector or density matrix. Because of the above we
will not make any distinction in the current paper between the
observables and the elements of physical reality.

Let us show how the indirect procedure works using the
decay of a pseudoscalar meson to a fermion-antifermion
pair. If the decay happens at time t0 through the strong or
electromagnetic interaction (i.e., preserving P parity), then
the pair will be in a spin-singlet Bell state |�−〉. This fact
follows from the general structure of Hamiltonians,

H(PS)(x) = g ϕ(x) [f̄ (x) γ 5 f (x)]N,
(3)

H(A)(x) = g′[∂μϕ(x)] [f̄ (x) γ μγ 5 f (x)]N,

which can be compared with similar decays in quantum field
theory (QFT). Here ϕ(x) is the field of pseudoscalar particles,
f̄ (x) and f (x) are fermionic fields, ∂μ = ∂/∂xμ is divergence,
g and g′ are effective coupling constants. Let us denote the
antifermion with index “1” and the fermion with index “2.”
Let the spin projections of the fermion and the antifermion
onto two directions exist simultaneously or jointly. Note that
the directions in space are defined by nonparallel unit vectors �a
and �b, such that the spin projection operators do not commute.
For brevity let us denote the spin 1/2 projection of fermion i

onto any axis, specified by unit vector �n, as

s
(i)
�n = ± 1

2 ≡ n
(i)
± ,

where i = {1,2}. Then the spin projections at the initial time
t0 onto each of the directions in the state |�−〉 satisfy the
anticorrelation condition

n
(2)
± (t0) = − n

(1)
∓ (t0). (4)

Let us denote the spin projection operators of the fermion
and antifermion onto direction �a as Â(2) and Â(1) accordingly.
Similarly B̂(2) and B̂(1) are the spin projection operators onto
direction �b. As the vectors �a and �b are nonparallel

[Â(1),B̂(1)] �= 0, [Â(2),B̂(2)] �= 0. (5)

At the same time, according to Eberhard’s theorem [17],

[Â(1),B̂(2)] = 0, [Â(2),B̂(1)] = 0. (6)

Equalities (6) ensure locality of the quantum theory (even non-
relativistic) at the level of macrodevices (so-called “nonsignal-
ing conditions”).

The commutation conditions (6) allow joint measurement
for example of the projection of the fermion spin onto direction
�a and the projection of the antifermion spin onto direction �b.
Hence the joint probability w(a(2)

α , b
(1)
β , t) at any time is a well-

defined value and it is possible to use for it probability theory
based on Kolmogorov’s axiomatics. Here {α,β,γ } = {+,−}.
Let us apply to this probability the concept of the elements
of physics reality and the anticorrelation condition (4). Then
for the time t0 it is possible to formally introduce the joint
probability

w
(
a(2)

α , b
(2)
β , t0

) ≡ w
(
a(2)

α ,−b
(1)
− β, t0

)
(7)

of the existence of physical characteristics of a microsystem
(in our case—the projection of fermionic spins onto two
nonparallel directions �a and �b), corresponding to simultane-
ously nonmeasurable observables A(2) and B(2). So, despite
condition (5), the definition of the element of physical reality
allows us to give operational meaning to the joint probability
w(a(2)

α , b
(2)
β , t0) and its analogs. I.e., formula (7) might be

considered as a possible expansion of the definition of the joint
probability concept to the area where Heisenberg’s uncertainty
principle prevents us from defining such a probability for direct
measurements. It seems logical to assume that Bayes’ theorem
can be applied to probabilities like (7).

Using the concept of local realism, it is possible to derive not
only Bell- or Wigner-like inequalities, but also equalities. Such
equalities, often called Greenberger-Horne-Zeilinger (GHZ)
equalities, were introduced in [18]. Proofs of GHZ equalities
may be found in [19,20]. Using the concept of local realism
and some additional assumptions, a system of equations has
been obtained for distinct spin projections of three fermions in
the GHZ state |�GHZ〉 = 1√

2
(|n(1)

+ n
(2)
+ n

(3)
+ 〉 − |n(1)

− n
(2)
− n

(3)
− 〉).

This system is incompatible with calculations in nonrelativistic
quantum mechanics.

Beginning in 1972 [21] there has been much experimental
evidence of violation of Bell’s and Wigner’s inequalities, i.e.,
evidence of unsoundness of the hypothesis of local realism
and/or the concept of elements of physical reality. However
until recently these experiments were not free from some
loopholes, which cast doubt on the connection between the
violations of Bell’s or Wigner’s inequalities and the soundness
of the quantum-mechanical description of the world. They
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are the locality loophole (or communication loophole), fair-
sampling loophole (or detection loophole), and contextuality
loophole.

Let us consider the first loophole using the example with
fermion-antifermion pairs. In this case the locality loophole
appears due to the fact that during the measurement of
the spin projections of each of the particles, the space-time
interval between them is timelike. Hence in the process of
measurement it is not possible to exclude a hypothetical
exchange of information between macrodevices, which en-
ables a quasinonlocal strong correlation between the two
measurements. Such a correlation may lead to the violation
of Bell’s or Wigner’s inequalities. The “locality loophole”
was overcome in experiments by Aspect [22] using the idea
by Wheeler [23] of delayed choice for a pair of two-channel
polarizers. In quantum optics this loophole is closed by “brute
force” [24], when pairs of correlated photons are separated
by a significant distance. For example in photon experiments
with fiber cables this distance is greater than a hundred
kilometers [25]. For spin-correlated fermions this distance is
about 1.3 km [26]. When analyzing experiments [25,26] one
should by definition take into account the limit of the speed of
signal exchange between spatially separated subsystems of a
correlated quantum system. Hence one should use QFT where
the signal exchange speed is finite, instead of nonrelativistic
quantum mechanics where this speed is formally infinite [27].

The second loophole arises due to the fact that all the
detectors have certain registration efficiencies, and hence there
is a gedanken possibility to select from the whole set the pairs
of correlated particles which lead to the violation of Bell’s
or Wigner’s inequalities, ignoring the others. For exclusion of
the detection loophole in Bell’s inequalities, one needs to have
efficiency of the detector of the level 2/3 [28]. In quantum
optics this barrier was overcome only in 2013 [29,30]. For
Wigner’s inequalities the authors are not aware of any papers
studying that efficiency value. The detection loophole should
play an important role in particle physics, because typical
efficiencies of detectors (taking into account selection criteria)
do not exceed percents.

Finally we consider the “contextuality loophole” [31,32].
Let us define “context” as the aggregate of all the experimental
conditions. Then, in order to obtain the values of correlators in
Bell’s inequalities or joint probabilities in Wigner’s inequal-
ities, it is necessary to conduct four or three independent
experiments. There is no guarantee that the measurements
are conducted under the same conditions. Even if one uses
the same experimental devices, it is still impossible to repeat
exactly all the internal parameters of macrodevices, because,
for example, in each of experiments one should select different
pairs of spin directions. I.e., it is impossible to make sure
that quantum ensembles of correlated particles are identical
in all the experiments. All the more, if the experiments were
conducted in different and noncontrollable conditions, their
results should not be summed up, subtracted, or compared
with each other. If we suppose that every experiment has its
own distribution of probabilities of the observable spectra, then
it is possible to obtain a generalized Bell’s inequality which is
never violated in experiment [33].

One possible way to exclude the contextuality loophole is
to conduct the measurements with an invariable state of the

macrodevices, i.e., with only two nonparallel directions �a and
�b. One can use time as an additional degree of freedom. The
same inequality, which potentially allows the experimenters to
avoid the contextuality loophole, will be introduced in Sec. II
of this paper.

Up to now, in each of the experiments for testing Bell’s
inequalities, it was possible to close only one or two loop-
holes [13,34]. However in 2015 three successful experiments
were conducted (two with photon pairs [35,36], and one with
correlated spins s = 1/2 [26]) which managed to avoid all
three loopholes.

Also, as will be shown below, the experimental situation
chosen to avoid the locality loophole [25,26,35,36] raises ques-
tions about applying these experiments to time-independent
Bell’s inequalities [7–9] and static Wigner’s inequalities [15].

Among the rest of the loopholes, the most quoted in the
literature is the freedom-of-choice loophole [37], where due
to hidden interactions and unknown parameters an experiment
itself causes the observer to select events with stronger
correlations. In our opinion such a loophole is unfalsifiable
and hence should not be considered scientifically according to
Popper’s refutability criterion [38].

Another loophole is so-called “memory loophole,” which
assumes that the preceding n − 1 measurements may somehow
(for example via some hidden variables) affect the conse-
quent measurement [39,40]. Note that the memory loophole
sometimes is mixed with the contextuality loophole in the
literature, and hence the methods to avoid both of them might
be similar. However in the current paper we adhere to the
original definition from [39,40], where these loopholes are
implicitly distinct. Note that experiments [26,35,36] seem to
close this loophole.

Time-dependent generalizations of static Bell’s and
Wigner’s inequalities may be justified in another way. The
derivation of these inequalities strongly depends not only on
the simultaneous existence of all of the physical characteristics
of a microsystem, but also on the assumption of locality both on
the macroscopic measurement level (i.e., Eberhard’s theorem)
and on the microscopic level (the hypothesis of local realism).
Local realism contradicts the mathematical structure of non-
relativistic quantum mechanics (NRQM). Because of that, the
violation of Bell’s inequalities is often considered to be exper-
imental proof of the nonlocality of quantum theory. However
this is not true, as there are two inseparable potential causes
of violation of the static Bell’s and Wigner’s inequalities: the
absence of joint Kolmogorov’s probabilities for observables,
and nonlocality on the microscopic level. To exclude the
second possibility, it is necessary to switch to calculations of
probabilities and correlators in the framework of QFT, which
is local on the microlevel by definition, for example because
of Bogolyubov’s principle of microcausality [41].

However in QFT it is not possible to use static Bell’s or
Wigner’s inequalities, because it is not possible to exclude
interactions of quantum fields with each other and with
vacuum fluctuations [42]. I.e., in QFT any particle or system
of particles is an open system. Also the description of an
entangled quantum system at different space-time points
should take into account relativistic effects, when the finite
time of signal propagation between the two parts of the
entangled microsystem is beyond the duration of macrodevice
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response. This is undoubtedly true for [26,35,36]. Hence to
have the possibility of a theoretical description of locality
loophole-free spatially separated experiments it is necessary
to include time evolution into any Bell-like inequalities to
assure their compatibility with the theory of relativity.

The Wigner’s inequalities are more suited for relativistic
generalization, because their intrinsic joint probabilities are
well defined both in NRQM and QFT. The correlators in the
Bell’s inequalities are calculated from loop diagrams, part of
which calculation depends on the renormalization procedure
at each order of perturbation theory. It is not possible to get a
definitive answer which does not depend on a renormalization
technique [43].

This paper is a logical continuation of a series [27,44–
46] in which we have studied possible relativistic correc-
tions for static Wigner’s inequalities, and then introduced
inequalities that generalized static Wigner’s inequalities for
time-dependent ones required in QFT. The main goal of the
papers above was testing Bohr’s complementarity principle
in the relativistic domain. The complementarity principle
is directly related to the concept of realism. We believe
that the statement of “testing the concept of realism” most
correctly reflects the gist and the results of [44–46]. Also the
connection between the violation of Leggett-Garg inequalities
and the complementarity principle does not appear to be that
obvious. In the current paper we will talk about realism,
not complementarity, yet this approach is fully compatible
with Kolmogorov’s axiomatics of probability theory and with
the concept of local realism; it is a particular realization of
the supposition of the independent time evolution of every
physical (micro)system. It would be nice to find a time
evolution description that does not require the supposition of
independence. In Sec. II of the current paper we will propose
such a description, which may be obtained in the framework of
Kolmogorov’s probability theory using a Bayesian approach
and operates only with (conditional) probabilities.

In addition to the works cited above, there are many
proposals to test Bell’s inequalities in particle physics. Most
of these tests use oscillations of neutral pseudoscalar mesons.
They were discussed in the work [45]. Note also the analysis
of the test of static Bell’s inequalities in neutrino oscillations
[47,48].

Time-dependent inequalities were proposed by Leggett and
Garg in their pioneering work [49]. The initial goal of this
work was for testing whether quantum mechanics may be
applied at the macroscopic scale for many-particle quantum
systems in a coherent state. The inequality, which is satisfied
by two-times correlators of one observable, assumes that this
observable obeys the laws of classical physics (this is the
concept of “macroscopic realism per se.” The expression of the
Leggett-Garg inequalities is similar to the Bell’s inequalities
in form [9]. Because of that the Leggett-Garg inequalities are
sometimes called “temporal Bell inequalities” [50]. This name
is not precise, because Bell’s inequalities involve correlators
of various observables at one moment of time, while the
Leggett-Garg inequalities should involve different-time cor-
relators of one observable. The name “time-dependent Bell’s
inequalities” should be attributed to inequalities that contain
probabilities or correlators of various observables at different

moments of time. Following this logic, the “time-dependent
Wigner’s inequalities” were introduced [44]. References to all
the key works related to Leggett-Garg inequalities may be
found in the review [51].

In 2015 a successful experimental test of violation of
the Leggett-Garg inequalities were conducted: first in an
experiment with nonclassical movement of a massive quantum
particle over a lattice [52], and then in a violation of quantum
coherence in macroscopic crystals [53].

The Leggett-Garg inequalities may also be used to test for
the existence of joint probabilities of observables which have
noncommuting operators in NRQM, i.e., to test the hypothesis
of realism. Let us note that in the recent publication [54]
authors contested the well-known statement that the Leggett-
Garg inequalities might be applicable to test the principle
of macroscopic realism. But their applicability to test the
principle of (local) realism is not disputed. The Leggett-Garg
inequalities may be reproduced if one supposes that some
hidden parameters λ whose probability density ρ(λ) depends
on time in Markov’s way, exist in a quantum system [55].
Such hidden parameters automatically lead to non-negative
joint probabilities. While a test of macroscopic coherence
requires soft measurements, a test of the existence of the
joint probabilities (i.e., the “hypothesis of realism” without
the term “macroscopic”) requires the use of sets of parallel
measurements, each conducted at only two fixed moments
of time [56]. This approach is related to the methodology
of the measurement of four distinct correlators in Bell’s
inequalities, so one might expect that this approach would
not be free of the contextuality loophole. The use of projection
measurements and sets of parallel experiments for testing the
hypothesis of realism in particle physics is considered in [57],
where entangled pairs of pseudoscalar mesons are used. In
2016 the neutrino experiment MINOS reported a test of the
Leggett-Garg inequalities in neutrino oscillations [58].

The current paper considers some generic experimental
situations where one measures some properties of a physical
system, then constructs a Kolmogorov’s space of elementary
outcomes and introduces into this space events, corresponding
to these experimental situations; we write some relations
in terms of conditional probabilities, because they are well
defined in both classical and quantum physics (in contrast to
joint probabilities), and finally we show that corollaries of
Bayes’ theorem are violated for correlated quantum systems.

There are many works dedicated to studies of intercon-
nections between the conditional probabilities in quantum
and classical theories, starting from fundamental monography
by von Neumann [59] and a paper by Lüders [60], where
rules for calculating conditional probabilities were introduced.
Important generalizations of the notion of the conditional
probability on a generalized probability space of quantum
mechanics were presented in [61,62]. In the current paper
the calculation of conditional probabilities will be based
on [61,62]. Generalizations of Lüders’ rule for non-Hermitian
projection operators for entangled and open quantum systems
were proposed in [63,64]. Based on this generalization, a
quantum-Bayesian interpretation of quantum mechanics was
developed (so-called QBism) [65,66], which is now, we
believe, one of the most elegant interpretations of quantum
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theory. It provides a unified approach to classical and quantum
phenomena. QBism is criticized in [67].

A versatile analysis of quantum conditional probability
and its relation to classics may be found in [68]. The main
conclusion of these works is that von Neumann’s formula can
not be considered a good generalization of classical conditional
probability for quantum phenomena, however there is no doubt
in Lüder’s rule [60] and its extension [61,62].

This paper consists of the following sections. In Sec. II,
using Kolmogorov’s approach, conditional probabilities, and
Bayes’ theorem, we obtain a static equality and a time-
dependent inequality, which allow us to test the hypothesis
of realism in time-dependent and open quantum systems. In
Sec. III we use an example of correlated spin-1/2 particles
in an external stationary and homogeneous magnetic field
to demonstrate that in the framework of NRQM for open
quantum systems the relations obtained in Sec. II are violated.
Section IV is devoted to the study of corollaries to violation of
Bayes’ theorem for systems of pseudoscalar neutral mesons.
Some experiments for testing the concept of realism are
proposed. They might be applicable to experiments at the
Large Hadron Collider [69–72] and Belle II [73]. Appen-
dices A–D contain all the auxiliary formulas that are required
for derivation of the results of Secs. III and IV.

II. TESTING THE REALISM HYPOTHESIS
USING BAYES’ THEOREM

Consider conditional probabilities in classical and quantum
theories using the observables A and B. In contrast to joint
probabilities (2), conditional probabilities like w(bβ ′ |aα′ ) are
well defined in both classical and quantum theories.

In the classical case the probability to measure value bβ ′

of the spectrum of observable B assuming that value aα′ of
observable A was measured can be written as follows:

w(bβ ′ |aα′ ) = w(bβ ′ ∩ aα′ )

w(aα′)
. (8)

As was noted above, the joint probability w(bβ ′ ∩ aα′ ) =
w(aα′ ∩ bβ ′) always exists. Value w(aα′ ) �= 0 is the probability
to measure value aα′ from the spectrum of observable A.
From (8) a simplest case of Bayes’ theorem can be derived:

w(bβ ′ |aα′ ) w(aα′) = w(aα′ |bβ ′) w(bβ ′ ), (9)

where w(bβ ′ ) �= 0: this is the probability to measure value bβ ′

from the spectrum of observable B.
In the quantum case for the calculation of the conditional

probability, one should use von Neumann’s formula [59],

w(bβ ′ |aα′) = Tr
(
P̂

(B)
β ′ P̂

(A)
α′ ρ̂0 P̂

(A)
α′ P̂

(B)
β ′

)
Tr

(
P̂

(A)
α′ ρ̂0

) , (10)

where ρ̂0 is the density matrix of the quantum system in the
initial state, P̂

(A)
α′ is the projector onto the state related to the

value aα′ of the spectrum of the observable A, and P̂
(B)
β ′ is

the analogous projector for the value bβ ′ of the spectrum
of the observable B. Applicability of formula (10) does not
require commutation of Â and B̂. It does not matter whether
the state is entangled or not (and hence to which subsystems
the observables A and B correspond). It also does not matter

whether the quantum system is open or not. It is obvious that
if [Â,B̂] �= 0, then

Tr
(
P̂

(B)
β ′ P̂

(A)
α′ ρ̂0 P̂

(A)
α′ P̂

(B)
β ′

) �= Tr
(
P̂

(A)
α′ P̂

(B)
β ′ ρ̂0 P̂

(B)
β ′ P̂

(A)
α′

)
.

Hence in the quantum case it is not always possible to obtain
an analog of Bayes’ theorem (9). Moreover in the framework
of QFT and for open quantum systems, field operators and
observable operators, which consist of fields operators, do not
commute at distinct moments of time, i.e., [Â(t1), Â(t2)] �= 0.
Because of that the time can be treated as an additional degree
of freedom together with spatial directions �a, �b and so on (if
we are talking about spins, for example).

Although we will refer to spin projections onto various
directions in space, the static equality and time-dependent
inequality obtained below are true for any set of dichotomic
observables.

Select three space directions, which are defined by nonpar-
allel unit vectors �a, �b, and �c. Let the system of antifermion “1”
and fermion “2” be in a singlet spin state at time t0. Suppose
that the concept of realism is true, i.e., spin projections a

(i)
± , b(i)

± ,
and c

(i)
± of the antifermion and fermion onto all three directions

exist simultaneously at any time t , despite the fact that they
cannot be measured by any macrodevice. At the time t0 these
projections obey the anticorrelation condition (4).

For this hypothetical situation it is easy to introduce a clas-
sical probability model based on Kolmogorov’s axiomatics.
Let us define space � of elementary outcomes ωk . Each of
them is one of the possible sets {a(1)

α b
(1)
β c(1)

γ a
(2)
α′ b

(2)
β ′ c

(2)
γ ′ } of spin

projections onto all three chosen directions �a, �b, and �c, where
indices {α,α′,β,β ′,γ,γ ′} = {+,−}. The set of the elements of
the space � does not depend on time.

Denote “elementary event” K
a

(1)
α b

(1)
β c

(1)
γ a

(2)
α′ b

(2)
β′ c

(2)
γ ′

as a sub-

set of all elementary outcomes ωk of the set � (i.e.,
K

a
(1)
α b

(1)
β c

(1)
γ a

(2)
α′ b

(2)
β′ c

(2)
γ ′

⊆ � and ωk ∈ K
a

(1)
α b

(1)
β c

(1)
γ a

(2)
α′ b

(2)
β′ c

(2)
γ ′

). Realiza-

tion of any of these events gives rise to an element
of physical reality—a concrete set of spin projections
{a(1)

α b
(1)
β c(1)

γ a
(2)
α′ b

(2)
β ′ c

(2)
γ ′ }. The aggregate of the considered

events forms an algebra (σ algebra) F . More complicated
events may be constructed by merging elementary events. It
is possible to introduce a probability measure w on (�,F),
which is always real and non-negative. It is additive (σ
additive) for nonintersecting events. Using this measure we
can define probabilities of joint and conditional events on �.

In order to derive a static equality let us consider
three events S1(t0) = {a(2)

+ ,b
(1)
+ }, S2(t0) = {c(2)

+ ,b
(1)
+ }, and event

S3(t0), when the fermion-antifermion pair is in the spin singlet
state at t0. Events S1(t0) and S2(t0) can be easily constructed
in � using the elementary events and condition (4):

S1(t0) = K
a

(1)
− b

(1)
+ c

(1)
+ a

(2)
+ b

(2)
− c

(2)
−

(t0) ∪ K
a

(1)
− b

(1)
+ c

(1)
− a

(2)
+ b

(2)
− c

(2)
+

(t0),

S2(t0) = K
a

(1)
− b

(1)
+ c

(1)
− a

(2)
+ b

(2)
− c

(2)
+

(t0) ∪ K
a

(1)
+ b

(1)
+ c

(1)
− a

(2)
− b

(2)
− c

(2)
+

(t0).

In � space, event S3 is defined as follows:

S3 = {(a(2)
+ ,a

(1)
− ∪ a

(2)
− ,a

(1)
+ ) ∪ (b(2)

+ ,b
(1)
− ∪ b

(2)
− ,b

(1)
+ )

∪(c(2)
+ ,c

(1)
− ∪ c

(2)
− ,c

(1)
+ )}. (11)
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This notation corresponds to the classical approach, which in
this case is identical to the concept of local realism, and in
essence differs from a description of event S3(t0) in NRQM
using a maximally entangled Bell state,

|�−(t0)〉 = 1√
2

(|n(2)
+ 〉|n(1)

− 〉 − |n(2)
− 〉|n(1)

+ 〉), (12)

where �n is any of the directions �a, �b, or �c. In QFT the initial
state is defined using a Hamiltonian (3), which creates a
corresponding entangled state when calculating the evolution
operator matrix element.

If the concept of realism is true, then we can consider
non-negative joint and conditional probabilities for the events
S1(t0), S2(t0), and S3(t0). It is possible to apply to them a
multiplication theorem on (�,F). Then

w(S1 ∩ S2|S3) = w(S1 ∩ S2 ∩ S3)

w(S3)
= w(S3 ∩ S1 ∩ S2)

w(S3)

= w(S3) w(S1|S3) w(S2|S1 ∩ S3)

w(S3)

= w(S1|S3) w(S2|S1 ∩ S3).

In analogy

w(S1 ∩ S2|S3) = w(S2|S3) w(S1|S2 ∩ S3).

Equating these results with each other, we obtain the following
variant of Bayes’ theorem:

w(S1|S3) w(S2|S1 ∩ S3) = w(S2|S3) w(S1|S2 ∩ S3). (13)

Experiments that can test the hypothesis of realism using
the static equality (13) are fully identical to those that test
static Bell’s [7–9] and Wigner’s [15] inequalities. However
it is easier to check the violation of (13) than the violation
of Bell’s inequalities. Also, (13) has an advantage over the
GHZ equality [18–20], because it allows the experimenter
to check in a system of only two (entangled) subsystems,
while an experimental check of violation of the GHZ equality
requires at least three subsystems in an entangled state. The
last condition makes it almost impossible to study the GHZ
equality in particle physics.

The static equality (13) is one of two main results of this
paper. In Secs. III and IV it will be shown that this equality is
violated in the framework of quantum theory.

We now derive a time-dependent inequality which follows
from the hypothesis of realism and Bayes’ theorem. In [44–46]
the authors have suggested a variant of the time-dependent
Wigner’s inequality, based on Kolmogorov’s axiomatics and an
assumption about the statistical independence of processes of
evolution of dichotomic variables of each of two subsystems,
which satisfy the condition (4) at the time t0 (and only at that
time). For t1 �= t2 this inequality may be written as follows:

w(a(2)
+ (t2) ∩ b

(1)
+ (t1)) � w(a(2)

+ (t0) → a
(2)
+ (t2)) [w(b(1)

+ (t0) → b
(1)
+ (t1)) + w(b(1)

− (t0) → b
(1)
+ (t1))] w(a(2)

+ (t0) ∩ c
(1)
+ (t0))

+w(a(2)
− (t0) → a

(2)
+ (t2)) [w(b(1)

+ (t0) → b
(1)
+ (t1)) + w(b(1)

− (t0) → b
(1)
+ (t1))] w(a(2)

− (t0) ∩ c
(1)
+ (t0))

+w(b(1)
+ (t0) → b

(1)
+ (t1)) [w(a(2)

+ (t0) → a
(2)
+ (t2)) + w(a(2)

− (t0) → a
(2)
+ (t2))] w(c(2)

+ (t0) ∩ b
(1)
+ (t0))

+w(b(1)
− (t0) → b

(1)
+ (t1)) [w(a(2)

+ (t0) → a
(2)
+ (t2)) + w(a(2)

− (t0) → a
(2)
+ (t2))] w(c(2)

+ (t0) ∩ b
(1)
− (t0)), (14)

where the dichotomic variable of the first subsystem is
measured at the time t1 > t0, while the dichotomic variable
of the second subsystem is measured at the time t2 > t0.
Here the following notation is used: w(n(i)

± (t0) → n
(i)
± (t1,2))

is the probability of spin projection of particle i onto �n at
t1,2 to be ±1/2 if at t0 the same projection to the same �n
was ±1/2; w(a(2)

+ (t2) ∩ b
(1)
+ (t1)) is the joint probability of the

projection of antifermion spin to �b to be +1/2 at t1, and
the projection of fermion spin to �a is +1/2 at t2. Although
the assumption of statistical independence of the evolution of
classical observables is almost obvious in the framework of the
hypothesis of local realism, it is quite hard to prove in some
cases. For this reason we would like to write an inequality
in which the time evolution is a consequence of a more
common property of classical objects rather than the property
of statistical independence, which is used in the derivation
of (14). That more common property might be Bayes’ theorem.

Consider two moments in time: the initial t0, and some
t > t0. The anticorrelation condition (4) is supposed to be true
only at the time t0. At any other moment of time it might not
be satisfied. As the space of elementary outcomes � does not
depend on time, it is possible to select the following events:
the event S1(t0) = {a(2)

+ ,b
(1)
+ ,t0}, the event S2(t) = {a(2)

α′ ,b
(1)
β ′ ,t},

where {α′,β ′} = {+,−}, and the event S3 for which at time
t0 the fermion-antifermion pair were in a singlet spin state.
Under the hypothesis of realism we again use Bayes’ theorem,
but now for the two moments of time,

w(S1(t0)|S3(t0)) w(S2(t)|S1(t0) ∩ S3(t0))

= w(S2(t)|S3(t0)) w(S1(t0)|S2(t) ∩ S3(t0)).

In this formula the conditional probability w(S1(t0)|S2(t) ∩
S3(t0)) is badly defined mathematically in both NRQM and
QFT. However if we suppose that the hypothesis of realism is
true then this conditional probability must satisfy the following
conditions:

0 � w(S1(t0)|S2(t) ∩ S3(t0)) � 1.

We obtain the time-dependent inequality

w(S1(t0)|S3(t0)) w(S2(t)|S1(t0) ∩ S3(t0)) � w(S2(t)|S3(t0)).

(15)

The time-dependent inequality (15) is the second main result
of the paper. Only two directions, �a and �b, were used in the
derivation of this inequality, not three or more as in Bell’s and
Wigner’s inequalities. Potentially that allows the experimenter
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to test inequality (15) using only one series of experiments and
thus evade the contextuality loophole.

It is suitable to write inequality (15) using the spin-1/2
projections onto directions �a and �b:

w({a(2)
+ ,b

(1)
+ ,t0}|S3(t0)) w({a(2)

α′ ,b
(1)
β ′ ,t}|{a(2)

+ ,b
(1)
+ ,t0} ∩ S3(t0))

� w({a(2)
n′ ,b

(1)
m′ ,t}|S3(t0)), (16)

where, let us emphasize again, we do not suppose any specific
dependence of the observables on time, and the event S3(t0)
may correspond, in principle, to any initial condition of a
system, not only the condition which satisfies (4). Event
S1(t0) also might be selected in a generic way as S1(t0) =
{a(2)

α′′ ,b
(1)
β ′′ ,t0}; however that generalization does not lead to any

new types of violation of the inequality (16).

III. COROLLARIES OF BAYES’ THEOREM AND
ANTICORRELATED SPINS IN AN EXTERNAL

MAGNETIC FIELD

We first show that the static equation (13) is violated in
NRQM if we consider a positron and electron in a spin singlet
Bell state. The density matrix corresponding to this state is
ρ̂0 = |�−(t0)〉〈�−(t0)|. For tests of static inequality the time
is not important, so let t0 = 0. Main formulas required for
derivation of conditional probabilities in static equation (13)
are given in Appendix A. State vector |�−(t0)〉 is defined
as (A2).

In plane (x, z), define three directions �a, �b, and �c. Projectors
onto the events S1(t0) = {a(2)

+ ,b
(1)
+ }, S2(t0) = {c(2)

+ ,b
(1)
+ }, and

spin singlet S3(t0) are

P̂S1 = |a(2)
+ 〉|b(1)

+ 〉〈b(1)
+ |〈a(2)

+ |,
P̂S2 = |c(2)

+ 〉|b(1)
+ 〉〈b(1)

+ |〈c(2)
+ |, and

P̂S3 = ρ̂0. (17)

Using (17), (A1), and (10) we obtain

w(S1|S3) = |〈�−(t0)|a(2)
+ 〉|b(1)

+ 〉|2 = 1

2
sin2 θab

2
,

(18)

w(S2|S3) = |〈�−(t0)|c(2)
+ 〉|b(1)

+ 〉|2 = 1

2
sin2 θbc

2
,

where θαβ = θα − θβ .
For calculation of the conditional probabilities

w(S2|S1 ∩ S3) and w(S1|S2 ∩ S3) it is necessary to
define projectors onto states |�S1∩S3〉 and |�S2∩S3〉. In the
general case such a procedure might be nontrivial. However
the isotropy of Bell state |�−(t0)〉 allows us to obtain a simple
calculation algorithm. Let us find for example |�S1∩S3〉.
Rewrite (12) in terms of the projection onto the direction �a:

|�−(t0)〉 = 1√
2

(|a(2)
+ 〉|a(1)

− 〉 − |a(2)
− 〉|a(1)

+ 〉)

= 1√
2

(
|a(2)

+ 〉
[
− sin

θab

2
|b(1)

+ 〉 + cos
θab

2
|b(1)

− 〉
]

− |a(2)
− 〉|a(1)

+ 〉
)

= · · · + |�S1〉 + · · · . (19)

From this, according to the superposition principle and the
results of [61,62], we obtain the non-normalized state vector
of event S1 ∩ S3:∣∣�S1∩S3

〉 = − 1√
2

sin
θab

2
|a(2)

+ 〉|b(1)
+ 〉 = − 1√

2
sin

θab

2

∣∣�S1

〉
.

Hence

P̂S1∩S3 = ∣∣�S1∩S3

〉 〈
�S1∩S3

∣∣ = 1

2
sin2 θab

2
P̂S1 .

In analogy

P̂S2∩S3 = 1

2
sin2 θbc

2
P̂S2 .

Using the von Neumann rule (10), we obtain the following
result. If the e+e− pair is in a spin singlet state,

w(S2|S1 ∩ S3) = Tr
(
P̂S2 P̂S1∩S3 ρ̂0P̂S1∩S3 P̂S2

)
Tr

(
P̂S1∩S3 ρ̂0P̂S1∩S3

)
= Tr

(
P̂S2 P̂S1 ρ̂0P̂S1 P̂S2

)
Tr

(
P̂S1 ρ̂0P̂S1

)
= Tr

(
P̂S2 P̂S1 P̂S2

)
Tr

(
P̂S1

) = Tr
(
P̂S1 P̂S2

)
= w(S1|S2 ∩ S3). (20)

We used the fact that for a Bell state ρ̂0,

P̂S1 ρ̂0P̂S1 ∼ P̂S1 and P̂S2 ρ̂0P̂S2 ∼ P̂S2 . (21)

The equality of the conditional probabilities (20) is not general
and is only related to the special choice of the initial state
|�−(t0)〉.

Substituting (18) and (20) into (13), if NRQM is compatible
with the hypothesis of local realism (and with probability
theory in Kolmogorov’s axiomatics), then for any three
directions �a, �b, and �c in plane (x, z), the following equation
should be always satisfied:

sin2 θab

2
= sin2 θbc

2
. (22)

Obviously this is not true. If the vector �a is perpendicular to
the vector �b, while the vector �c is the bisector of the angle
between �a and �b, then (22) is violated.

We now show that the time-dependent inequality (15) may
also be violated in NRQM. Again consider an e+e− pair, which
at the time to = 0 is described by the density matrix ρ̂0 =
|�−(t0)〉〈�−(t0)|. Put the system into an external constant
and homogeneous magnetic field �H aligned along the y axis.
From all possible decays, select only those where the leptons
are propagated along the magnetic field. This is assumed for
simplification of calculation of probabilities. Choose two space
directions �a and �b lying in the plane (x,z); then it is more
suitable to test the violation of (16) than of (15). Projectors
onto the events S1(t0) = {a(2)

+ ,b
(1)
+ }, and S3(t0) may be written

as

P̂S1 = |a(2)
+ 〉|b(1)

+ 〉〈b(1)
+ |〈a(2)

+ |, and P̂S3 = ρ̂0, (23)

The expression for the conditional probability
w(S1(t0)|S3(t0)) = w({a(2)

+ ,b
(1)
+ ,t0}|S3(t0)) is calculated
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in (18). In order to obtain two other conditional probabilities,
which are included in the formulas (15) and (16), it is
necessary to consider four cases for different values of α′ and
β ′ for the event S2(t).

(a) Let at time t > t0 the indices α′ = + and β ′ = +, i.e.,
S2(t) = {a(2)

+ ,b
(1)
+ }. Considering that ρ̂2

0 = ρ̂0 and that Trρ̂0 =
1, using the von Neumann rule (10), we find that

w(S2(t)|S3(t0)) = w({a(2)
+ ,b

(1)
+ ,t}|S3(t0))

= Tr
(
P̂S2Û (t,t0)P̂S3 ρ̂0P̂S3Û

†(t,t0)P̂S2

)
Tr

(
P̂S3 ρ̂0P̂S3

)
= Tr

[
P̂S2Û (t,t0)ρ̂0Û

†(t,t0)P̂S2

]
= |〈�−(t)|a(2)

+ 〉|b(1)
+ 〉|2.

The square of the modulus of the corresponding matrix element
is calculated using expressions (A3)–(A5). Finally,

w(S2(t)|S3(t0)) = w({a(2)
+ ,b

(1)
+ ,t}|S3(t0))

= 1

2
sin2

(
θba

2
+ 2ωt

)
. (24)

Using the von Neumann rule, property (21), and formulas (A3)
and (A4), one can obtain

w(S2(t)|S1(t0) ∩ S3(t0))

= w({a(2)
+ ,b

(1)
+ ,t}|{a(2)

+ ,b
(1)
+ ,t0} ∩ S3(t0))

= Tr
(
P̂S2Û (t,t0)P̂S1∩S3 ρ̂0P̂S1∩S3Û

†(t,t0)P̂S2

)
Tr

(
P̂S1∩S3 ρ̂0P̂S1∩S3

)
= Tr

(
P̂S2Û (t,t0)P̂S1 ρ̂0P̂S1Û

†(t,t0)P̂S2

)
Tr

(
P̂S1 ρ̂0P̂S1

)
= Tr

(
P̂S2Û (t,t0)P̂S1Û

†(t,t0)P̂S2

)
Tr

(
P̂S1

)
= |〈a(2)

+ |a(2)
+ (t)〉|2|〈b(1)

+ |b(1)
+ (t)〉|2 = cos4(ωt). (25)

We have used the standard properties of projection operators:
P̂ 2
Si

= P̂Si
and TrP̂Si

= 1, where i = {1,2}.
Combine results (18), (24), and (25), and substitute them

into the inequality (16), to get

sin2

(
θba

2

)
cos4(ωt) � sin2

(
θba

2
+ 2ωt

)
. (26)

If the concept of realism is true then the inequality (26) should
never be violated. However if we choose t such that ωt =
−θba/4, then (26) becomes

sin2

(
θba

2

)
cos4

(
θba

4

)
� 0, (27)

which is violated for most angles θba .
The inequality (26) may be tested selecting events from

one experiment without changing the internal state of a
macrodevice, to avoid the contextuality loophole. However
the detection loophole in this case might still be open.

(b) Let at the time t > t0 the indices α′ = − and β ′ = −,
i.e., let us consider the event S2(t) = {a(2)

− ,b
(1)
− }. Performing

calculations analogous to the above, we find the following

values for the conditional probabilities:

w(S2(t)|S3(t0))

= w({a(2)
− ,b

(1)
− ,t}|S3(t0))

= 1

2
sin2

(
θba

2
+ 2ωt

)
;

w(S2(t)
∣∣S1(t0) ∩ S3(t0))

= w({a(2)
− ,b

(1)
− ,t}|{a(2)

+ ,b
(1)
+ ,t0} ∩ S3(t0))

= sin4(ωt). (28)

Substituting probabilities from (18) and (28) into inequal-
ity (16), we find that

sin2

(
θba

2

)
sin4(ωt) � sin2

(
θba

2
+ 2ωt

)
. (29)

If we choose ωt = −θba/4, inequality (29) is almost always
violated:

sin2

(
θba

2

)
sin4

(
θba

4

)
� 0. (30)

(c) Finally let us consider the situation when α′ = ∓
and β ′ = ±. Then S2(t) = {a(2)

∓ ,b
(1)
± }. The corresponding

conditional probabilities are equal to

w(S2(t)
∣∣S3(t0))

= w({a(2)
∓ ,b

(1)
± ,t}|S3(t0))

= 1

2
cos2

(
θba

2
+ 2ωt

)
;

w(S2(t)
∣∣S1(t0) ∩ S3(t0))

= w({a(2)
∓ ,b

(1)
± ,t}|{a(2)

+ ,b
(1)
+ ,t0} ∩ S3(t0))

= sin2(ωt) cos2(ωt). (31)

Inequality (16) turns into

sin2

(
θba

2

)
sin2(ωt) cos2(ωt) � cos2

(
θba

2
+ 2ωt

)
. (32)

If we set ωt = π/4 − θba/4, we obtain

sin2 θba � 0, (33)

which, like (27) and (30), is wrong for almost all choices of
directions �a and �b.

Note that in real experimental situation Eq. (22) and
the inequalities (26), (29), and (32) may be violated less
significantly than in the simplest case of ideal anticorrelation,
which is considered in the current paper. It might be hard to
prepare the pure Bell state |�−(t0)〉. Also in real experiments
one should account for a noise. In the future it would
be interesting to study the violation of (13) and (15) for
more complicated states, for example for Werner states [74]
and other states defined by a density matrix obtained from
experiment.
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IV. COROLLARIES OF BAYES’ THEOREM FOR SYSTEMS
OF NEUTRAL PSEUDOSCALAR MESONS

In Sec. II, equality (13) and inequality (15) were obtained in
terms of spin 1/2 projections onto various directions in three-
dimensional space. Actually, relations (13) and (15) are true for
any dichotomic observables of any nature in any space. In the
case of neutral pseudoscalar mesons M = {K,D,Bd,Bs}, the
dichotomic variables can be the flavor of the meson, its CP

parity, and the lifetime (or mass). Pseudoscalar mesons are
unstable particles, hence they may serve as a simple model of
an open quantum system. Formulas (13) and (15), in principle,
may be tested in experiments at the Large Hadron Collider
[69–72], at B factory Belle II [73] and at φ factories.

When decaying a neutral vector meson with the quantum
numbers JPC = 1−− of a photon into a MM̄ pair, the latter
rests in the Bell state |�−〉 by flavor, CP parity, or lifetime
(H/L). In Appendix B the main properties of pseudoscalar
mesons are presented as well as the formula for evolution of
an entangled Bell state (here and below we use h̄ = c = 1).

As it is impossible to unambiguously relate the spin
projections to the directions �a, �b, and �c and projections of
states of pseudoscalar mesons onto “directions” of flavor, CP

parity and “directions” with a definitive mass or lifetime, we
need to consider some variants of these correspondences. Note
that 〈M|M̄〉 = 〈M1|M2〉 = 0, but 〈MH |ML〉 �= 0. Then it is
suitable to use the following: a+ → M , a− → M̄ , b+ → ML,
b− → MH , c+ → M2, and c− → M1, for the algorithms of
calculation of projectors P̂S1∩S3 and P̂S2∩S3 in Sec. III to be
analogous to the ones from Sec. IV.

We now show that equality (13) is violated in systems of
neutral pseudoscalar mesons. At t0 = 0 the state of the MM̄

system is defined by density matrix ρ̂0 = |�−(t0)〉〈�−(t0)|,
where the Bell state |�−(t0)〉 is defined by formula (B2). Pro-
jection operators onto events S1(t0) = {M (2),M

(1)
L }, S2(t0) =

{M (2)
2 ,M

(1)
L }, and singlet state in the flavor space S3(t0) are

P̂S1 = |M (2)〉∣∣M (1)
L

〉 〈
M

(1)
L

∣∣〈M (2)|,
(34)

P̂S2 = ∣∣M (2)
2

〉∣∣M (1)
L

〉 〈
M

(1)
L

∣∣〈M (2)
2

∣∣, and P̂S3 = ρ̂0.

Using the von Neumann rule (10), formulas (34), and (B2)
analogous to (18), one may write that [see formula (C1)]

w(S1|S3) = w
(
M (2),M

(1)
L ,t0

) = 1
2 |q|2,

(35)
w(S2|S3) = w

(
M

(2)
2 ,M

(1)
L ,t0

) = 1
4 |p + q|2.

Using a condition of orthogonality analogous to calculations
from Sec. III for non-normalized projection operators onto the
states corresponding to events P̂S1∩S3 and P̂S2∩S3 , we have

P̂S1∩S3 = 1

8|q|2 P̂S1 , P̂S2∩S3 = |p + q|2
16|pq|2 P̂S2 .

Then calculation of conditional probabilities according to von
Neumann’s rule (10) leads to the equality

w(S2|S1 ∩ S3) = w(S1|S2 ∩ S3) = Tr
(
P̂S1 P̂S2

) = 1
2 , (36)

which is analogous to formula (20). Substituting (35) and (36)
into the equality (13), we have

2 =
∣∣∣∣1 + p

q

∣∣∣∣
2

. (37)

The equality should be satisfied if the hypothesis of realism is
true. As shown in Appendix B for neutral K and D mesons,
the ratio q/p is close to +1 while for Bd and Bs mesons it is
almost always equals to −1. Hence (37) implies false relations
like 2 ≈ 4 and 2 ≈ 0.

If we use the correspondence a+ → M , a− → M̄ , b+ →
MH , b− → ML, c+ → M2, and c− → M1, which differs by
interchanging ML and MH , then in the framework of the
hypothesis of realism we come to the following equality:

2 =
∣∣∣∣1 − p

q

∣∣∣∣
2

, (38)

which, like (37), is not true in flavor-entangled systems of
neutral pseudoscalar mesons. Examination of other correspon-
dences leads to equalities which do not provide anything new.

Now consider the time-dependent inequality (15), and let us
show that it is also violated in systems of neutral pseudoscalar
mesons. The most natural choice of “directions” for neutral D

and Bq mesons is related to states with a definite flavor and
CP parity. For example at B factories the flavor of a neutral Bd

meson is determined by a lepton sign in semileptonic decay,
while CP parity is determined using the decay Bd → J/ψK0

S .
At hadron machines the task is much more complicated, as
BB̄ pairs are mainly produced not through the ϒ(4S) decay
but through the process of direct hadronization of bb̄ quark
pairs. In order to select states corresponding to ϒ(4S), one
needs to know the invariant mass of the BB̄ pair, i.e., to fully
reconstruct the energy and momentum of each Bd meson. So at
hadron machines it is not possible to use semileptonic decays
with branching ratios of the order of 10−1 for determination
of the B-meson flavor. An alternative way to detect the flavor
is to use the cascade decay B0

d → (D− → K−K+π−)K+,
with a branching ratio of about 10−5. For Bs mesons at
the LHC experiments, the flavor can be determined in the
decay B0

s → (D−
s → K−π+π−)π+. At hadron machines, the

statistics required for testing for violation of (15) should be
higher by a few orders of magnitude than at the B factories. For
D mesons the situation is slightly better because the flavor of
the D meson may be determined in the decay D0 → K−π+,
which has a branching ratio of about 4%. In the case of K

mesons, the hadron machines are not suitable at all, and the
test for violation of the inequality (15) must be performed only
at φ factories.

Consider events S1(t0)={M (2)
1 ,M (1)}, S2(t)={M (2)

1 ,M (1)},
and event S3(t0), which corresponds to the singlet spin state of
the MM̄ pair. Using formulas (C1) and (C2) from Appendix C
and the algorithm for calculation of projector P̂S1∩S3 described
in Sec. III, we find

w(S1(t0)|S3(t0)) = w
(
M

(2)
1 ,M (1),t0

) = 1

4
,

w(S2(t)|S3(t0)) = w
(
M

(2)
1 ,M (1),t

) = 1

4
e−2�t ,
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TABLE I. Experimentally found parameters of oscillations and CP violation for systems of neutral pseudoscalar mesons. The table is
modelled on one in [75]. The minus sign in the numerical values of �� reflects the difference in definitions between the current paper and [75].
Dimensionless variable λ = �M/��.

Meson ��, MeV �M , MeV tg β = |q/p|expt
M λ

B0
s −6.0 × 10−11 1.2 × 10−8 1.0039 ± 0.0021 −0.2 × 103

K0 −7.3 × 10−12 3.5 × 10−12 0.99668 ± 0.00004 −4.8 × 10−1

D0 −2.1 × 10−11 −6.3 × 10−12 0.92+0.12
−0.09 0.3

w(S2(t)|S1(t0) ∩ S3(t0))

= w(M1(0) → M1(t))w(M(0) → M(t))

=
∣∣∣∣g+(t) − 1

2

(
q

p
+ p

q

)
g−(t)

∣∣∣∣
2

|g+(t)|2. (39)

Using the set of probabilities (39), inequality (15) becomes∣∣∣∣g+(t) − 1

2

(
q

p
+ p

q

)
g−(t)

∣∣∣∣
2

|g+(t)|2e2�t � 1. (40)

To understand for which mesons inequality (40) may be
violated, consider the case without CP violation, i.e., when
q/p = ±1. Then for K and D mesons formula (40) becomes

e��t/2 + 2 cos(�Mt) � 3e−��t/2,

which is not violated for any values of t � 0, as �� < 0 (see
Table I). For Bq mesons, inequality (40) becomes

e−��t/2 + 2 cos(�Mt) � 3e��t/2. (41)

We estimate, for B0
s mesons, at which times t � 0 the

inequality (41) should be violated. From Table I one can see
that cos(�Mt) ≈ cos(200��t). Hence for small adjustments
of parameter t , the argument of the cosine goes through its
full period. Hence the condition of guaranteed violation of
inequality (41) is given by

e−��t/2 � 3e��t/2 + 2 or t � 2 ln 3

|��| .

|��Bs
| = (0.091 ± 0.008) × 1012 s−1 and τBs

= (1.512 ±
0.007) × 10−12 s [75], where τBs

is the average lifetime of
the B0

s meson, so the condition for guaranteed violation of
inequality (41) is t � 16τBs

. Due to the small magnitude
of CP -violation effects, the exact inequality (40) should be
violated at times of the same order.

From the calculations above it is clear that for various
choices of events S1(t0) and S2(t), inequality (15) will always
transform into the following expression:

FN (x,r,ζ,λ) � 1, (42)

where functions FN depend on dimensionless variables x =
��t , λ = �M/��, the modulus of r , and phase ζ of the ratio
q/p (see Appendix B).

There are some experimental limits on the range of possible
values of parameters r and ζ . In [45] and [46] concerning
the modeling of the violation of time-dependent Wigner’s
inequalities in systems of Bs mesons the following values
were selected: r = 1.004 and ζ = 185◦. In the present paper
we will also use these values.

If we introduce function

F1(x,r,ζ,λ) =
∣∣∣∣g+(t) − 1

2

(
q

p
+ p

q

)
g−(t)

∣∣∣∣
2

|g+(t)|2e2�t ,

then inequality (40) transforms into (42). A plot of the function
F1(x,r,ζ,λ) is shown in Fig. 1 left. That taking into account
the oscillations, the violation of inequality (40) holds for
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FIG. 1. Functions F1,5(x,r,ζ,λ) for Bs mesons. The top axis corresponds to ct (in mm), the bottom axis to the time in units of lifetime
z = (�H + �L)t/2 = �t = t/τBs

, where time t is calculated in the Bs-meson rest frame. The plots are produced for r = 1.004 and ζ = 185◦.
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TABLE II. Table of correspondences between sets of events,
functions FN related to these sets, and conditions of violation of
the inequality (42). The events S1(t0) and S2(t) depend on the same
directions of pseudoscalar mesons, so in the first column we provide
only directions. The event S3(t0) is identical for all the sets of events
and is not shown.

Set of events Function Conditions of violations of inequality (42)

{M (2)
1 ,M (1)} F1 Violates for Bs mesons

{M (2)
1 ,M̄ (1)} F1 Violates for Bs mesons

{M (2)
1 ,M

(1)
H } F2 Violates for Bs mesons

{M (2)
2 ,M (1)} F3 Violates for K and D mesons

{M (2)
2 ,M̄ (1)} F3 Violates for K and D mesons

{M (2)
2 ,M

(1)
H } F4 Violates for K and D mesons

{M (2),M
(1)
H } F5 Violates for K , D, and Bs mesons

{M̄ (2),M
(1)
H } F5 Violates for K , D, and Bs mesons

{M (2),M
(1)
L } F6 Never violates

{M̄ (2),M
(1)
L } F6 Never violates

{M (2)
1 ,M

(1)
L } F7 Never violates

{M (2)
2 ,M

(1)
L } F8 Never violates

z = 1/τBs
� 17, which agrees with a naïve estimate obtained

from the simplified inequality (41). One can also obtain
inequality (40) by choosing events S1(t0) and S2(t) in the form
S1(t0) = {M (2)

1 ,M̄ (1)}, S2(t) = {M (2)
1 ,M̄ (1)}. The event S3(t0)

remains the same.
The explicit form of the functions FN (x,r,ζ,λ) is shown

in Appendix D. The inequality (42) in systems of neutral
Bs mesons is violated not only while choosing events to
which the function F1, corresponds, but also for sets of
events, to which correspond the functions F2 and F5. The
correspondence between sets of events and the functions is
given in Table II. The behavior of the function F5 for Bs

mesons is shown in Fig. 1 right. The dependence of functions

F1 and F5 on z is almost identical due to the small magnitude
of CP -violation effects. Unfortunately a test of the violation
of the inequality (42) for z � 17 requires large statistics due
to the exponential character of Bs-meson decays.

Now consider systems of neutral kaons. According to
Table II, for K mesons the inequality (42) is violated when
choosing sets of events which lead to the functions F3, F4,
and F5. As one can see from Fig. 2, a significant violation of
inequality (42) holds for z ∼ 1, which makes the systems of
neutral kaons good candidates for an experimental test of the
hypothesis of realism.

In the case of entangled states of D0D̄0 mesons, the
following functions lead to violation of inequality (42): F3, F4,
and F5, which were already considered for entangled kaons.
This happens due to the fact that for neutral K and D mesons,
the real part of the relation q

p
is close to +1. From Fig. 3, for

D mesons even with z ∼ 40, the functions F3 and F5 remain
almost linear. Note that the corresponding functions for the
K mesons demonstrate exponential growth already for z � 1
(see Fig. 2). The difference in the behavior of the functions
F3,4,5(x,r,ζ,λ) for K and D mesons is stipulated by the value of
the relation |��|/�, which sets the scale of the magnitude of
the functions. For K mesons, ( |��|

�
)
K

≈ 2, while for D mesons
that parameter is lower by almost two orders of magnitude,
equal to ( |��|

�
)
D

≈ 10−2. For Bs mesons, ( |��|
�

)
Bs

≈ 0.13, and
the value of z ∼ 15 when the functions F1,2,5(x,r,ζ,λ) become
exponential. Hence they are an intermediate state between the
values of z for K and D mesons.

The analysis described above shows that from the exper-
imental point of view, violation of inequality (42) is more
suitable to observe in systems of entangled K and D mesons.
Due to oscillations, for Bs mesons inequality (42) is violated
for z � 17 and its observation requires quite large statistics.

V. CONCLUSION

Using the notion of conditional probability in the frame-
work of Kolmogorov’s axiomatics and Bayes’ theorem, we
obtained the static equality (13) and the time-dependent
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FIG. 2. Functions F3,4(x,r,ζ,λ) for neutral K mesons. The top axis corresponds to ct (in mm), the bottom axis to the time in units of lifetime
z = (�S + �L)t/2 = �t = t/τK , where t is calculated in the K-meson rest frame. The plots are produced for r = 0.997 and ζ = −0.18◦.
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FIG. 3. Functions F3,5(x,r,ζ,λ) for neutral D mesons. The top axis corresponds to ct (in mm), the bottom axis to the time in units of
lifetime z = (�H + �L)t/2 = �t = t/τD , where t is calculated in D-meson rest frame. The plots are produced for r = 1.1 and ζ = −10◦.

inequality (15) which allow experimental demonstration of
the unsoundness of the hypothesis of realism for quantum
systems.

The structure of time-dependent inequality (15) gives a
principal possibility to avoid the contextuality loophole in
contemporary experiments that test Bell’s, Wigner’s, and the
Leggett-Garg inequalities.

The possibility to experimentally test the violation of for-
mulas (13) and (15) is studied with two examples: the behavior
of correlated spins in a constant and homogeneous magnetic
field; and the behavior of pairs of correlated pseudoscalar
mesons. Some factors that can prevent such tests at the LHC
experiments, Belle II, and φ factories are considered.
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APPENDIX A: CORRELATED SPINS IN AN EXTERNAL
MAGNETIC FIELD: MAIN FORMULAS

At the initial time t0 = 0, a pseudoscalar particle at rest
decays into a positron (index “1”) and an electron (index “2”).

If such a decay is described by Hamiltonians (3), then for t0 =
0 the e+e− pair is in Bell state |�−〉 with zero full spin (12).

Choose spatial direction �n = (sin θn cos ϕn, sin θn sin ϕn,

cos θn). At time t0 = 0, the state vectors of the positron and
the electron, related to the spin projections ±1/2 onto axis �n,
are ∣∣∣∣1

2
,n

(i)
+

〉
=

(
cos(θn/2)e−iϕn/2

sin(θn/2)eiϕn/2

)
and

∣∣∣∣1

2
,n

(i)
−

〉
=

(
− sin(θn/2)e−iϕn/2

cos(θn/2)eiϕn/2

)
, (A1)

where i = {1,2}. Then

|�−(t0)〉 = 1√
2

⎡
⎣(

cos(θn/2)e−iϕn/2

sin(θn/2)eiϕn/2

)(2)(− sin(θn/2)e−iϕn/2

cos(θn/2)eiϕn/2

)(1)

−
(

− sin(θn/2)e−iϕn/2

cos(θn/2)eiϕn/2

)(2)(
cos(θn/2)e−iϕn/2

sin(θn/2)eiϕn/2

)(1)
⎤
⎦.

(A2)

To illustrate the violation of relations (13) and (16) in NRQM,
it is enough to measure fermionic spin projections onto two
or three nonparallel directions lying in plane (x,z) [we use
a standard rectangular coordinate system (x,y,z)]. We map
the unit vectors �a, �b, and �c to these directions. In this case
ϕa = ϕb = ϕc = 0.

Now put this spin singlet e+e− state into a constant, ho-
mogeneous magnetic field with strength �H directed along the
y axis. Require the electron and positron to propagate strictly
along y. This requirement avoids unnecessary complications
related to the rotation of charged particles in the magnetic field.

The spins of the electron and positron will begin to precess
around the y axis. Given initial condition (A1), the state vectors
of the electron which describe its spin projections onto �n at an
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arbitrary moment of time may be written as

∣∣ψ (2)
n+ (t)

〉 =
(

cos θn/2 cos(ωt)e−iϕn/2 − sin θn/2 sin(ωt)eiϕn/2

cos θn/2 sin(ωt)e−iϕn/2 + sin θn/2 cos(ωt)eiϕn/2

)(2)

and

∣∣ψ (2)
n− (t)

〉 =
(

− sin θn/2 cos(ωt)e−iϕn/2 − cos θn/2 sin(ωt)eiϕn/2

− sin θn/2 sin(ωt)e−iϕn/2 + cos θn/2 cos(ωt)eiϕn/2

)(2)

. (A3)

For the positron the analogous state vectors are

∣∣ψ (1)
n+ (t)

〉 =
(

cos θn/2 cos(ωt)e−iϕn/2 + sin θn/2 sin(ωt)eiϕn/2

− cos θn/2 sin(ωt)e−iϕn/2 + sin θn/2 cos(ωt)eiϕn/2

)(1)

and

∣∣ψ (1)
n− (t)

〉 =
(− sin θn/2 cos(ωt)e−iϕn/2 + cos θn/2 sin(ωt)eiϕn/2

sin θn/2 sin(ωt)e−iϕn/2 + cos θn/2 cos(ωt)eiϕn/2

)(1)

, (A4)

where ω = |e|H
2mec

, the Larmor frequency of a fermion.

Using initial condition (A2) and the explicit form of
the wave functions of the electron (A3) and positron (A4)
in the magnetic field, we obtain for the spin-wave function of
the e+e− pair for arbitrary time t � t0

|�−(t)〉 = 1√
2

(∣∣ψ (2)
n+ (t)

〉∣∣ψ (1)
n− (t)

〉 − ∣∣ψ (2)
n− (t)

〉∣∣ψ (1)
n+ (t)

〉)
. (A5)

APPENDIX B: OSCILLATIONS OF NEUTRAL
PSEUDOSCALAR MESONS: MAIN FORMULAS

The definitions used in this appendix are analogous to those
from [45] and [46].

In contrast to spin states for which one can choose an infinite
number of spatial directions for neutral pseudoscalar mesons
M = {K,D,Bq}, where q = {d,s}, there are only three fixed
“directions” with corresponding noncommuting “projectors.”

As a first direction let us choose the flavor of the
pseudoscalar meson. For D mesons, consider projections
onto states |D〉 = |cū〉 and |D̄〉 = |c̄u〉. Operators of charge
(Ĉ) and space (P̂ ) conjugation act on the flavor states as
follows:

ĈP̂ |M〉 = eiα|M̄〉 and ĈP̂ |M̄〉 = e−iα|M〉,

where α is an arbitrary real phase. This phase should not appear
in any experimentally testable relations. States |M〉 and |M̄〉
are orthogonal to each other.

A second direction is specified by the states with definite
values of CP parity:

ĈP̂ |M1〉 = +|M1〉, ĈP̂ |M2〉 = −|M2〉,

which can be written using the states |M〉 and |M̄〉 as

|M1〉 = 1√
2

(|M〉 + eiα|M̄〉), |M2〉 = 1√
2

(|M〉 − eiα|M̄〉).

Note that 〈M1|M2〉 = 0.
A third direction corresponds to the states with definite

lifetimes and masses. In terms of |M〉 and |M̄〉, projections

onto this direction may be written as

|ML〉 = p

(
|M〉 + eiα q

p
|M̄〉

)
and

|MH 〉 = p

(
|M〉 − eiα q

p
|M̄〉

)
.

Using the normalization condition, we find the relation for
complex coefficients p and q:

〈ML|ML〉 = 〈MH |MH 〉 = |p|2 + |q|2 = 1. (B1)

It can be shown that 〈ML|MH 〉 = |p|2 − |q|2 �= 0.
To automatically satisfy the normalization condition (B1)

we introduce a new variable β:

|p| = cos β, |q| = sin β, and
q

p
= tg βeiζ ≡ reiζ .

From the definition it follows that β ∈ [0,π/2].
Taking into account CPT invariance, the states |ML〉 and

|MH 〉 are eigenvectors of the Hamiltonian

Ĥ =
( H H12e

−iα

H21e
iα H

)

=
(

m − i/2� (m12 − i/2�12)e−iα(
m∗

12 − i/2�∗
12

)
eiα m − i/2�

)
,

with eigenvalues

EL = mL − i/2�L = H −
√

H12H21 = H + q/pH12 and

EH = mH − i/2�H = H +
√

H12H21 = H − q/pH12

accordingly. Finally we define parameters

�M = MH − ML = −2Re

(
q

p
H12

)
,

�� = �H − �L = 4Im

(
q

p
H12

)
.

Please note that the definition of �� here differs by a sign
from the definition of �� in [75]. Experimental values of the
parameters of CP violation are shown in Table I.
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Decay of a neutral vector meson with quantum numbers
JPC = 1−− into a pair of pseudoscalar mesons [experiments
mostly deal with the decays φ(1020) → KK̄ , ϒ(4S) →
BdB̄d , and ϒ(5S) → BsB̄s] produces a state of an MM̄ pair
at the time t0 = 0 which is described by the Bell state vector

|�−(t0)〉 = 1√
2

(|M (2)〉|M̄ (1)〉 − |M̄ (2)〉|M (1)〉)

= e−iα

√
2

(∣∣M (2)
2

〉∣∣M (1)
1

〉 − ∣∣M (2)
1

〉∣∣M (1)
2

〉)
= 1

2
√

2pq

(∣∣M (2)
H

〉∣∣M (1)
L

〉 − ∣∣M (2)
L

〉∣∣M (1)
H

〉)
. (B2)

This state vector is fully analogous to the state vector (A2),
entangled in the spin space [76–78].

The evolution of the state vectors |ML〉 and |MH 〉 can be
written as

|ML(t)〉 = e−iEL�t |ML〉 = e−imL�t−�L�t/2|ML〉,
(B3)

|MH (t)〉 = e−iEH �t |MH 〉 = e−imH �t−�H �t/2|MH 〉,
where �t = t − t0. From the above one can find the evolution
of the states |M(t)〉 and |M̄(t)〉:

|M(t)〉 = g+(�t)|M〉 − eiα q

p
g−(�t)|M̄〉

|M̄(t)〉 = g+(�t)|M̄〉 − e−iα p

q
g−(�t)|M〉

and the time dependence of the state vectors |M1(t)〉 and
|M2(t)〉:

|M1(t)〉 = 1√
2

[(
g+(�t) − p

q
g−(�t)

)
|M〉

+ eiα

(
g+(�t) − q

p
g−(�t)

)
|M̄〉

]
,

|M2(t)〉 = 1√
2

[(
g+(�t) + p

q
g−(�t)

)
|M〉

− eiα

(
g+(�t) + q

p
g−(�t)

)
|M̄〉

]
,

where g±(τ ) = 1
2 (e−iEH τ ± e−iELτ ). Function g±(τ ) satisfies

the conditions

|g±(τ )|2 = e−�τ

2

[
ch

(
��τ

2

)
± cos(�Mτ )

]

g∗
+(τ )g−(τ ) = −e−�τ

2

[
sh

(
��τ

2

)
+ i sin(�Mτ )

]
,

where � = (�H + �L)/2. Taking into account the initial
condition (B2), for the state vector of the MM̄ pair at an
arbitrary time one can write

|�−(t)〉 = e−i(mH +mL)�te−��t |�−(t0)〉. (B4)

For t0 = 0 above, �t ≡ t .
In systems of neutral pseudoscalar mesons, the magnitude

of CP violation is small. If we neglect the CP violation which
appears due to oscillations, then for K mesons, ( q

p
)
K

= 1−ε
1+ε

≈
1; so cos ζK = 1. For Bq mesons the effective Hamiltonian of

the oscillations is proportional to (VtbV
∗
tq)2 [79]. Then(

q

p

)
Bq

= − H21√
H12H21

≈ −
(

V ∗
tbVtq

|V ∗
tbVtq |

)2

= −1,

hence cos ζBq
= −1. For D mesons, experimental data from

BaBar [80] and Belle [81] are in agreement with the assump-
tion that cos ζD = 1, so cos ζ = ±1 is a good approximation
and the analysis of formulas (13) and (15) is much simplified.

APPENDIX C: OSCILLATIONS OF NEUTRAL
PSEUDOSCALAR MESONS: TRANSITION

PROBABILITIES

In this Appendix we collect the probabilities that are
necessary for a test of the static equality (13) and time-
dependent inequality (15) in systems of neutral pseudoscalar
mesons.

In the framework of quantum theory using the normaliza-
tion condition and the initial condition (B2), the following
expressions for time-independent probabilities hold:

w
(
M

(2)
1 ,M̄ (1),t0

) = ∣∣〈M (2)
1

∣∣〈M̄ (1)|�−(t0)〉∣∣2

= 1
4 ≡ 1

4 (|p|2 + |q|2);

w
(
M

(2)
1 ,M (1),t0

) = ∣∣〈M (2)
1

∣∣〈M (1)|�−(t0)〉|2

= 1
4 ≡ 1

4 (|p|2 + |q|2);

w
(
M

(2)
2 ,M̄ (1),t0

) = ∣∣〈M (2)
2

∣∣〈M̄ (1)|�−(t0)
〉∣∣2

= 1
4 ≡ 1

4 (|p|2 + |q|2);

w
(
M

(2)
2 ,M (1),t0

) = ∣∣〈M (2)
2

∣∣〈M (1)|�−(t0)〉∣∣2

= 1
4 ≡ 1

4 (|p|2 + |q|2);

w
(
M

(2)
1 ,M

(1)
H ,t0

) = ∣∣〈M (2)
1

∣∣〈M (1)
H |�−(t0)〉∣∣2 = 1

4 |p + q|2;

w
(
M

(2)
2 ,M

(1)
H ,t0

) = ∣∣〈M (2)
2

∣∣〈M (1)
H |�−(t0)〉∣∣2 = 1

4 |p − q|2;

w
(
M

(2)
1 ,M

(1)
L ,t0

) = ∣∣〈M (2)
1

∣∣〈M (1)
L |�−(t0)〉∣∣2 = 1

4 |p − q|2;

w
(
M

(2)
2 ,M

(1)
L ,t0

) = ∣∣〈M (2)
2

∣∣〈M (1)
L |�−(t0)〉∣∣2 = 1

4 |p + q|2;

w
(
M

(2)
H ,M̄ (1),t0

) = ∣∣〈M (2)
H

∣∣〈M̄ (1)|�−(t0)〉∣∣2 = 1
2 |p|2;

w
(
M

(2)
H ,M (1),t0

) = ∣∣〈M (2)
H

∣∣〈M (1)|�−(t0)〉∣∣2 = 1
2 |q|2;

w
(
M̄ (2),M

(1)
L ,t0

) = ∣∣〈M̄ (2)
∣∣〈M (1)

L

∣∣�−(t0)〉∣∣2 = 1
2 |p|2;

w
(
M (2),M

(1)
L ,t0

) = ∣∣〈M (2)|〈M (1)
L

∣∣�−(t0)〉∣∣2 = 1
2 |q|2. (C1)

In order to test the time-dependent inequality (15) for cor-
related MM̄ pairs, the following time-dependent probabilities
are needed (for t0 = 0):

w[M1(0) → M1(t)] = |〈M1(t)|M1〉|2

=
∣∣∣∣g+(t) − 1

2

(
q

p
+ p

q

)
g−(t)

∣∣∣∣
2

;
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w[M2(0) → M1(t)] = |〈M1(t)|M2〉|2

=
∣∣∣∣1

2

(
q

p
− p

q

)
g−(t)

∣∣∣∣
2

;

w[M2(0) → M2(t)] = |〈M2(t)|M2〉|2

=
∣∣∣∣g+(t) + 1

2

(
q

p
+ p

q

)
g−(t)

∣∣∣∣
2

;

w[M1(0) → M2(t)] = |〈M2(t)|M1〉|2

=
∣∣∣∣1

2

(
q

p
− p

q

)
g−(t)

∣∣∣∣
2

;

w[M̄(0) → M̄(t)] = |〈M̄(t)|M̄〉|2 = |g+(t)|2;

w[M(0) → M̄(t)] = |〈M̄(t)|M〉|2 =
∣∣∣∣pq g−(t)
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2

;

w[M(0) → M(t)] = |〈M(t)|M〉|2 = |g+(t)|2;

w[M̄(0) → M(t)] = |〈M(t)|M̄〉|2 =
∣∣∣∣ qpg−(t)

∣∣∣∣
2

;

w
(
M

(2)
1 ,M̄ (1),t

) = ∣∣〈M (2)
1

∣∣〈M̄ (1)|�−(t)〉|2 = 1

4
e−2�t ;

w
(
M

(2)
1 ,M (1),t

) = ∣∣〈M (2)
1

∣∣〈M (1)|�−(t)〉∣∣2 = 1

4
e−2�t ;

w
(
M

(2)
2 ,M̄ (1),t

) = ∣∣〈M (2)
2

∣∣〈M̄ (1)|�−(t)〉∣∣2 = 1

4
e−2�t ;

w
(
M

(2)
2 ,M (1),t

) = ∣∣〈M (2)
2

∣∣〈M (1)|�−(t)〉∣∣2 = 1

4
e−2�t .

(C2)

APPENDIX D: OSCILLATIONS OF NEUTRAL
PSEUDOSCALAR MESONS: FUNCTIONS FN

AND THEIR PROPERTIES

In this Appendix we show the explicit form of the functions
FN which enter time-dependent inequality (42). Also we
provide in Table II correspondences between these functions
and sets of events for neutral pseudoscalar mesons that
violate (42),

F1(x,r,ζ,λ) =
∣∣∣∣g+(t) − 1

2

(
q

p
+ p

q

)
g−(t)

∣∣∣∣
2

|g+(t)|2e2�t ;

F2(x,r,ζ,λ) =
∣∣∣∣g+(t) − 1

2

(
q

p
+ p

q

)
g−(t)

∣∣∣∣
2

e−��t/2e�t ;

F3(x,r,ζ,λ) =
∣∣∣∣g+(t) + 1

2

(
q

p
+ p

q

)
g−(t)

∣∣∣∣
2

|g+(t)|2e2�t ;

F4(x,r,ζ,λ) =
∣∣∣∣g+(t) + 1

2

(
q

p
+ p

q

)
g−(t)

∣∣∣∣
2

e−��t/2e�t ;

F5(x,r,ζ,λ) = |g+(t)|2e−��t/2e�t ;

F6(x,r,ζ,λ) = |g+(t)|2e+��t/2e�t ;

F7(x,r,ζ,λ) =
∣∣∣∣g+(t) − 1

2

(
q

p
+ p

q

)
g−(t)

∣∣∣∣
2

e+��t/2e�t ;

F8(x,r,ζ,λ) =
∣∣∣∣g+(t) + 1

2

(
q

p
+ p

q

)
g−(t)
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2

e+��t/2e�t .
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